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Hierarchical Decomposition for 
Betweenness Centrality Measure of 
Complex Networks
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Betweenness centrality is an indicator of a node’s centrality in a network. It is equal to the number 
of shortest paths from all vertices to all others that pass through that node. Most of real-world large 
networks display a hierarchical community structure, and their betweenness computation possesses 
rather high complexity. Here we propose a new hierarchical decomposition approach to speed up the 
betweenness computation of complex networks. The advantage of this new method is its effective 
utilization of the local structural information from the hierarchical community. The presented 
method can significantly speed up the betweenness calculation. This improvement is much more 
evident in those networks with numerous homogeneous communities. Furthermore, the proposed 
method features a parallel structure, which is very suitable for parallel computation. Moreover, 
only a small amount of additional computation is required by our method, when small changes in 
the network structure are restricted to some local communities. The effectiveness of the proposed 
method is validated via the examples of two real-world power grids and one artificial network, which 
demonstrates that the performance of the proposed method is superior to that of the traditional 
method.

Betweenness centrality (BC) is a fundamental and useful index for measuring the importance of a vertex within 
a graph, because it is primarily defined as the ratio of shortest paths between vertex pairs that pass through the 
vertex of interest1,2. BC has been applied in many complex networks. For instances, it can be used to detect the 
community structure of biological networks3, to analyze the topological structure of social networks4 and pro-
tein networks5, to control the synchronization of air networks6,7, and to enhance power grid robustness against 
malicious attacks8,9.

Measuring BC requires to calculate the shortest paths between all pairs of vertices in a graph, and the early 
method, i.e., the Floyd method10, requires O(n3) time, where n is the number of vertices. This computation 
becomes prohibitively expensive, especially for the dynamic online analysis such as live traffic estimation and nav-
igation11 and epidemic control in large-scale communication networks. Since BC was introduced by Anthonisse12 
and Freeman13, many related methods have been developed to increase the speed of BC computation. Brandes 
proposed a fast method that uses vertex pair-dependency to compute the BC of large networks14. Similarly, 
another fast method was developed by Newman4 to analyze scientific collaboration networks, which requires 
O(nm) time, where m is the number of edges. Puzis et al. proposed two complementary heuristics to enhance 
the BC computation speed15. Pontecorvi and Ramachandran16 introduced a fast method for fully dynamic BC 
computation. Several approximate BC methods have also been presented to improve calculation speed by using 
randomized methods17–19. The accuracy of these approximate methods may decrease as the size of the network 
increases. Moreover, modified Brandes’ methods have also been presented to calculate the variants of BC, such as 
flow betweenness20 and random-walk betweenness21. In all of the aforementioned methods, the global structural 
information is required to compute the shortest paths between all pairs of vertices in a graph, hence, the compu-
tations become prohibitive for large-scale networks. For example, Brandes’ and Newman’s methods both require 
O(nm) time. Therefore, most of the current methods are unsuitable for online application.
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Many real-world systems, such as social networks1,4, electric power grids9, communication networks6, 
and biological networks3,5, have a community structure, which consists of subsets of vertices that are densely 
connected to each other but sparsely connected to the rest of the network. In such a structure, the strong ties 
(intracommunity edges) are primarily along the shortest paths between the vertices of the same communities; 
conversely, the weak ties (intercommunity edges) that connect two communities are covered by many shortest 
paths between the nodes of different communities. Many methods22–31, inspired by this pattern, have been pro-
posed to detect the community structure of networks22. Particularly, Girvan et al. proposed one elegant method3 
for community detection that iteratively deletes the highest betweenness edges and hierarchically decomposes the 
networks. Conversely, the BC calculation could be simplified by using the local structural information of these 
communities in a graph.

In this article, a new decomposition method that uses the local structural information from different commu-
nities is proposed to speed up the betweenness calculation for complex networks with a community structure. 
This method is proved to be rigorously valid, and can be applied to any network with community structure, 
inspective of any community detection methods. This improvement is much more evident for those networks that 
has numerous communities, uniform community size and strong hierarchy structure. Our analysis shows that the 
runtime complexity for such weighted and unweighted networks with known community structure can be even 
reduced from +O nm n l og n( )2  and O(nm) to +( )O n n l og

c
n
c

2 1 2  and O(nm) to O(n2), respectively, where c is the 
number of communities of the networks. Furthermore, the proposed method features a parallel structure, hence, 
its computation speed can be enhanced via parallel calculation. Moreover, when small changes in the network 
structure are restricted to some local communities, e.g., an line outage in power grids, only some additional com-
putations are required for our method while a complete recalculation is needed by other methods. Therefore the 
proposed method is suitable for real-world, online BC-related application. The proposed method is compared 
with the traditional methods, and the results validate its superiority.

Methods
Hierarchical decomposition modelling.  Here we illustrate the model of hierarchical community struc-
ture and the updated community with a simple network composed of three communities, as shown in Fig. 1. 
Community of network consists of subset of vertices that are densely connected to each other but sparsely con-
nected to the rest of the network such as C1, C2 and C3 in Fig. 1. The intercommunity vertices (v7, v10, v16, v20, 
v21) are the terminal vertices of the intercommunity edges (e7,10, e7,21, e16,21, e16,20). Those vertices (v13, v18, v19) 
and the edges (e10,13, e13,16, e20,21) that lie on the shortest paths between the intercommunity vertices of the same 

Figure 1.  Hierarchical community structure and updated communities. (a) A network detected community 
structure and marked intercommunity vertices, intercommunity edges, ISP-vertices and ISP-edges. (b) The 
community structure including three communities (C1, C2, C3). (c) The hierarchy structure (HSN). (d) The 
original communities (C1, C2) and the updated community ( ′C3). For the community C3, the condition that the 
shortest paths (e21,18 +​ e18,19 +​ e19,20) between the two intercommunity vertices (v20, v21) in C3 are equal or greater 
than the shortest paths (e21,16 +​ e16,20) in the HSN, is satisfied, thus the community C3 is updated to ′C3 by copying 
those vertices and edges (v20, v21, e21,16 and e16,20) through which the shortest paths between the two 
intercommunity vertices (v20, v21) pass in the HSN.
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community (ISP) are called the ISP-vertices and the ISP-edges, respectively. Community structure consists of 
independent communities, as shown in Fig. 1(b). The hierarchy structure is the top level of a network and is also 
called the hierarchical subnet (HSN), which consists of intercommunity edges, intercommunity vertices, ISP-
vertices and ISP-edges, as shown in Fig. 1(c).

The proposed decomposition approach for BC calculation is to turn the BC computation in global net-
work into the computation in hierarchical subnet (HSN) and every independent community (more detailed in 
Algorithm). However, the BC computation within some original communities will generate calculation errors if 
the communities satisfy the condition that the shortest path lengths between the intercommunity vertex pairs of 
the community are equal or greater than that of the HSN (see Supplementary Lemma S1). To solve this problem, 
the original communities satisfying the condition must be updated.

Those communities satisfying the aforementioned condition are updated by copying those vertices and edges 
through which the shortest paths between the intercommunity vertex pairs pass in the HSN into the community, 
such as the updated community ′C3 from C3 shown in Fig. 1(d). For the communities that do not satisfy the con-
dition, the update is not needed, e.g., the community C1 and C2 shown in Fig. 1(d).

Algorithm: For a network with a hierarchical community structure, the HSN plays a vital role because it 
bridges all communities, especially the intercommunity vertices and the intercommunity edge of the HSN. This 
indicates that the betweenness calculation for a network with a hierarchical community structure can be decom-
posed into two main stages by the integrated use of local and global information. The first stage involves searching 
for the shortest paths and calculating BC within local communities and the HSN independently. In the sec-
ond stage, BC is calculated for every pair of vertices from different communities via the HSN. In the proposed 
method, we use breadth-first search to search for the shortest paths of unweighted networks and Dijkstra’s algo-
rithm for weighted networks, and Brandes’ method is used to calculate BC in every community and the HSN. 
More specifically, the proposed method for computing betweenness is stated as follows (also see the pseudo-code 
of the method in Table 1):

Step 1. Mark the intercommunity edges and the intercommunity vertices based on the community structure. 
Note that the structures of some networks are unknown in advance. In this case, the community structure of the 
network is detected by using a well-known fast method22–29.

Step 2. Isolate each community from the other communities. Then, search for and store the shortest paths for 
all intercommunity vertex pairs in each community. Mark ISP-vertices and ISP-edges.

Step 3. Distill the hierarchy structure to construct HSN by using the vertices and edges marked in Steps 1 and 
2. Search and store the shortest paths for all intercommunity vertex pairs in HSN, calculate the BC with Brandes’ 
method and store the number of the shortest paths between each intercommunity vertex pair for those vertices 
and edges through which the shortest paths pass.

Step 4. For any two intercommunity vertices in each community, if the shortest path length between them 
in the community (in Step 2) is equal or greater than that in the HSN (in Step 3), then update the community by 
copying those vertices and edges through which the shortest paths between them pass in the HSN into the com-
munity, as illustrated in Fig. 1(d).

Step 5. Search and store the shortest paths for all vertex pairs in each community except the intercommunity 
vertex pairs, calculate the BC with Brandes’ method and store the number of the shortest paths between each 
intercommunity vertex pair for those vertices and edges through which the shortest paths pass.

Step 6. Based on the data saved in Steps 3 and 5, calculate the shortest paths for any vertex pairs of different 
communities except the intercommunity vertex pairs via the HSN and update the BC for those vertices and edges 
through which the shortest paths pass.

The Step 6 of the proposed algorithm can be further decomposed (Supplementary Fig. S1), and the BCs of 
vertices and edges lying in the shortest paths between the vertices of different communities, can be updated 
according to the Supplementary equations S6, S7 and S8.

The computational efficiency of the proposed decomposition method is superior to the computational 
efficiency of other methods4,10,14,16 that are based on the global structural information, because only the local 
structural information from the communities and the HSN of network are required. Furthermore, from the 
mathematical analysis and proof (see Supplementary Method Section S1.2, S1.3), it is shown that the proposed 
method described by Steps 1–6 is rigorous and valid, and can be applied to any networks with hierarchical com-
munity structure, inspective of any community detection methods.

Computational complexity.  The preprocessing runtime in Step 2 is wimi and +w m w w( log )i i i i
2  for 

unweighted and weighted networks, respectively, where mi and wi are the number of edges and intercommunity 
vertices of the community Ci, respectively. The runtime of Step 3 for unweighted and weighted networks is wq and 
(wq +​ w2log w), respectively, where w and q are the numbers of intercommunity vertices and edges in the HSN, 
respectively. For a community Ci, the runtime of the BC computation inside Ci is (ni −​ w i)mi and 
[(ni −​ wi)mi +​ (ni −​ wi)2log (ni −​ wi)] for the unweighted network and the weighted network, respectively, where 
ni is the number of vertices of the community Ci (in Step 5).

The runtime of the BC computation from a non-intercommunity vertex of any a community Ci to all vertices 
of other communities is (n −​ ni) for both the unweighted and the weighted networks (in Step 6), where n is the 
number of vertices in the network. Then, for all vertices of Ci, the runtime is (ni −​ wi)(n −​ ni). Furthermore, the 
BC computation runtime for all communities of an unweighted network can be calculated by
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Then, we analyze two particular networks: the one without hierarchical community structure, and the other 
one with hierarchical community structure of many communities which possess the same number of vertices, 
edges, intercommunity vertices, ISP-vertices and ISP-edges. For the former one, the whole network is a commu-
nity, and thus the number of community is equal to 1 and w =​ 0, Tuw and Tw reach the maximum value at 
(Tuw)max =​ mn and (Tw)max =​ mn +​ n2log n, respectively. For the latter one, = =w ni

n
c
, = = =q mi

m
c

n k
c2
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Algorithm 1:

Input: G(V, E): A network with community structure;

Output: VB[v], EB[e]: BC of vertex and edge;

  C0 ←​ 0: The number of communities;

  VB[v] ←​ 0, v ϵ​ V; EB[e] ←​ 0, e ϵ​ E;

if The community structure of the network is unknown then

    Detect the community structure;

  end if

  C0 ←​ The number of communities; 

  Mark the intercommunity edges and vertices;

  for i =​ 1 to C0 do

    search and store the shortest paths for all intercommunity vertex pairs in Ci;

  end for

  Mark all ISP-vertices and ISP-edges; by using Brands’ method;

  Construct HSN and search and store the shortest paths in HSN;

  for i =​ 1 to C0 do

    Update the community Ci;

  end for

  for i =​ 1 to C0 do

    for j =​ 1 to ni do//ni is the number of vertices of community Ci

      for k =​ 1 to ni do 

        Search the shortest paths for all vertex pairs (i, j) and calculate the BC 
in Ci by using Brands’ method;

      end for

    end for

  end for

  for i =​ 1 to N do 

    for j =​ 1 to N do 

      if Ci ≠​ Cj then 

        Calculate the shortest paths for all vertex pairs (i, j);

        Update the BC for the vertices and edges lying in the shortest paths;

      end if

    end for

  end for

Table 1.   The pseudo-code of the proposed method.
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Where k  is average degree of the network.
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The above analysis shows that the computation complexities of the proposed BC method are ∈T n mn( , )uw
2  

and ∈ + +( )( )T n n mn n nlog , ( log )w c
n
c

2 1 2 2  for the unweighted and weighted networks with known com-
munity structure, respectively. More specifically, the computation complexity is related to the hierarchical com-
munity characteristics of network: more numerous communities, more uniform community size and stronger 
hierarchical structure (smaller HSN) result in less computational time. For the networks with unknown commu-
nity structure, community detection time must be considered in our method.

Extension to a dynamic environment and the parallel computation.  In the dynamic environment, 
there could be frequent small changes of network topological structure which are restricted to some local com-
munities. For instance, a line outage is likely to be trigged due to a random failure in power grids. In such a 
dynamic environment, the BC of networks needs frequent online update, for example, reevaluating the capacities 
of power transmission lines or traffic capacities in transportations.

In this aspect, a complete recalculation is required by other methods and this is time-consuming. In contrast, 
much less time is needed for our method in such a dynamic environment. For example, as shown in Fig. 2(a), only 
the BC within C3 and between C3 and Ci (i =​ 1, 2, …​, 5) are recalculated, and the total runtime complexity is 

+ ∑ = ≠O n m n n( )i i i3 3 3 1, 3
5  which is approximately equal to O n n( )3 , where = ∑ =n ni i1

5 , = ∑ =m mi i1
5 . Hence, from 

equation (5), the runtime of the dynamic betweenness calculation is approximately decreased to n3/n times the 
runtime of the static betweenness calculation.

Our method also has a natural advantage in parallel calculation. The computational resources, including the 
memories and procedures required by our method, can be conveniently divided in a parallel manner, because 
the information used to search for the shortest paths comes from the independent communities and HSN. 
Furthermore, the data sets stored in Steps 3 and 5, which are used to calculate the betweenness, are also independ-
ent. A simple parallel implementation of our method is the allocation of computing resources according to the 
communities and the HSN. For instance, as shown in Fig. 2(b), a server and five CUPs are assigned to calculate 
the BC for a given network with five communities, and their computational tasks are assigned as follow:

1.	 The server detects and isolates the communities of network, marks the intercommunity edges and vertices, 
assigns computational tasks according the size and number of communities and send the community infor-
mation to other CPUs;

2.	 Each CPU searches the shortest paths for all intercommunity vertex pairs in its community, marks and shares 
ISP-vertices and ISP-edges with the server.

Figure 2.  The dynamic computation and parallel computation. In (a) the dynamic computation, the red 
community C3 represents the failure area due to random failures or perturbs. In (b) the parallel computation, 
the HSN is the centrality of task assigning and information sharing, and the computational tasks of server and 
CPUs are independent with each other.
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3.	 The server constructs HSN, searches the shortest paths for HSN and shares the information of shortest paths 
with each CPU; each CPU calculates the BC and shares the shortest paths of its community with the server.

4.	 CPUi computes the BC and shortest paths within community Ci and between Ci and (Ci+1 and Ci+2) (if i >​ 5, 
i =​ i−​5) and shares those computational information with the server, the server updates BC for all vertices 
and edges.

For the above analysis, one can see that the main task of CPUi is to compute the BC of vertices and edges in 
its community Ci and between Ci and (Ci+1 and Ci+2), while the server coordinates tasks primarily, calculates BC 
of the HSN and updates BC for all vertices and edges. The computational tasks should be uniformly assigned in 
practical application for avoiding cask effect.

Results
Hierarchical community structure of test networks.  We tested the proposed method on one artificial 
network with a known community structure and two representative real-world networks with unknown com-
munity structures, i.e., the Henan provincial power grid and the Gansu provincial power grid in China32,33. The 
artificial network consists of 9 random subnets (communities) in which each vertex has 16 edges on average. 
Each subnet has the same number of vertices and 3 interconnected intercommunity vertices. The Henan power 
grid consists of 310 vertices (nodes) and 932 edges, and the Gansu power grid has 1569 vertices and 4326 edges. 
The vertices represent transformer substations or power plants, and the edges denote their interconnections34,35.

The community structure of the artificial network is known in advance, but the community structure of 
each power grid needs to be detected before applying our method. Three detection methods are presented to 
detect the community structure of power grids. The first one is the voltage information based detection method 
(VIDM). The community structure information of a power grid can be detected via the voltage grade of the 
vertices and edges, because a power grid is designed and operated according to the voltage grade. Therefore, the 
information-theory based method31 is used to divide each power grid into different communities by deleting the 
edges with high-level voltage (500 kV for the Henan power grid, 750 kV and 330 kV for the Gansu power grid). By 
using this method, the Henan and the Gansu power grids are divided into 9 and 5 communities, respectively. The 
second one is the geographical information based detection method (GIDM), which is used to divide the Henan 
and the Gansu power grids into 15 and 13 communities, respectively. The third one is the detection method24 
proposed by Radicchi et al. (RCDM). It is an effective and efficient approach to determine the community struc-
tures of networks that yields the correct number of communities without prior knowledge. By using the RCDM, 
the Henan and the Gansu power grids are divided into 9 and 6 communities, respectively, as shown in Table 2.

Computation accuracy.  We test the effectiveness of our method on one artificial network with a known 
community structure and two real-world power grids with unknown community structures. The performance of 
our method is compared with the performance of the well-known Brandes’ method. As shown in Fig. 3 (and see 
Supplementary Fig. S3), the BCs of each vertex and edge obtained by Brandes’ method and our method perfectly 
match each other. Taking the results of Brandes’ method as a reference, we also calculate the relative errors of our 
method. The accumulated relative betweenness errors of vertices and edges are both close to zero. The results 
indicate that the proposed method is rigorous and valid, and our method is accurate regardless of network par-
tition methods (see also Method and Supplementary Method Section S1.2 and S1.3 for a detailed analysis and 
proof).

Power 
grids

Detection 
algorithm Total HSN C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Henan GIDM (N/E) 310 49 26 12 30 10 8 15 15 20 20 20 43 44 23 13 11

932 148 77 32 86 29 21 38 41 46 48 52 129 131 62 35 30

VIDM (N/E) 310 24 26 27 40 23 40 63 44 23 24 \ \ \ \ \ \

932 62 77 79 122 67 104 191 131 62 70 \ \ \ \ \ \

RCDM (N/E) 310 28 26 27 20 20 23 40 107 23 24 \ \ \ \ \ \

932 74 77 79 54 60 67 104 326 62 70 \ \ \ \ \ \

Gansu GIDM (N/E) 1569 109 185 118 42 100 185 96 45 58 90 121 89 68 92 \ \

4326 562 423 255 97 242 520 250 109 126 209 262 223 166 215 \ \

VIDM (N/E) 1569 12 185 136 104 103 1041 \ \ \ \ \ \ \ \ \ \

4326 18 445 339 260 276 2993 \ \ \ \ \ \ \ \ \ \

RCDM (N/E) 1569 12 185 136 104 103 671 370 \ \ \ \ \ \ \ \ \

4326 18 445 339 260 276 2101 891 \ \ \ \ \ \ \ \ \

Table 2.   Community structures of the power grids. For each power grid, we detect its community structures 
by using the three detection algorithms (GIDM, VIDM and RCDM) and show the network size (Total) that 
includes the numbers of nodes (N) and edges (E). The HSN (intermediary subnet) is a subnet consisting of 
intercommunity edges, intercommunity vertices, ISP-vertices and ISP-edges; the parameter Ci represents the ith 
partitioned community.
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Computation efficiency.  The computational performance of our method is further tested on the artificial 
network and the two power grids. The corresponding results are shown in Figs 4–7.

In Figure 4, for the artificial network, our method can speed BC calculation up to 6.17 times, as compared 
with Brandes’ method. For the Gansu power grid which is partitioned into 5, 6 and 13 communities by VIDM, 
GIDM, and RCDM, respectively, as shown in Table 2, and the speedup factors of the hybrid methods, defined as 
the ratio of runtime of Brandes’ method to that of the hybrid methods, are 1.57, 1.97 and 2.64, respectively. Even 
if the number of communities is the same, for instance, the Henan power grid is divided into 9 communities by 
VIDM and RCDM, respectively, as shown in Table 2, the asymmetrical community sizes bring about diverse 
computation speeds (the speedup factors are 2.32 and 2.51, respectively) (see also equation (1) and equation (2)).

The effect of the number of partitioned communities on the computational efficiency is compared, as shown in 
Fig. 5. This figure shows that the increasing numbers of communities lead to larger computational speedup factors 
(see also equation (1) and equation (2)), since the speedup factor curves of the artificial network, the Henan and 
Gansu power grids rise.

The strong community structure36, as illustrated in Fig. 6(a), is another factor that affects the computational 
efficiency of the proposed method. The strong (or weak) community structure means sparser (or denser) inter-
community edges between communities, namely, smaller (or greater) interconnection probability between com-
munities. As shown in Fig. 6(b), one can see that the speedup factor gradually drops to 1, when the network 
structure is changed from strong community structure to no community structure (increasing interconnection 
probability). This is because a weaker community structure brings about a greater size of the hierarchical subnet 
(HSN) and results in a greater computational complexity (see also equation (1) and equation (2)).

Runtime improvement rates on network size and dynamic environment.  In Figure 7, the artifi-
cial network consists of 9 random subnets (communities). Each subnet has 32 vertices randomly interconnected 
including three interconnected intercommunity vertices. Each vertex possesses 6 edges on average. Then we 
increase the number of vertices from 288 to 3456 with a step of 576 while keeping the number of communities 

Figure 3.  Calculation validity. (a) The betweenness of each vertex in the artificial network. (b) The 
betweenness of each vertex in the Gansu power grid. (c) The betweenness of each vertex in the Henan power 
grid. The vertical axes means the betweenness value of each vertices, and the horizontal axis expresses unique 
number given to each node. The number represents the ID of each vertex.

Figure 4.  Speedup factor comparison for networks. For the artificial network with a known community 
structure, we compare the computational speed (speedup factor) of our method with Brandes’ method; and for 
the Henan and the Gansu power grids with unknown community structure, we compare the speedup factors of 
our method plus three detection methods (VIDM, GIDM and RCDM) combined with Brandes’ method.
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fixed. Note that some edges are added to ensure the average degree is fixed during the modification. As shown in 
Fig. 7(a), the runtime of both our and Brandes’ method grow with increasing number of vertices in power func-
tion as theoretical predictions (i.e., O(n2) and O(nm), respectively), furthermore, the runtime of our method is 
significantly lower than that of Brandes’ method, which indicates the faster computational speed of our method. 
The runtime of our method in the dynamic environment is also shown in Fig. 7(b). The improvement rate of 
runtime is defined as a ratio of the runtime difference between Brands’ and our methods to the runtime of Brands’ 
method. Figure 7(b) shows that the computation time in the dynamic environment is significantly lower than the 
runtime required for Brandes’ method. This is because that the previous BC information can be used to update 
the BC, when the inner structures of the communities are changed. Figure 7 also shows that the fewer the number 
of communities is changed, the faster the calculation speed is. This means that if more communities are changed, 

Figure 5.  Effect of the number of communities on computational efficiency. For the artificial network, 
the Henan and the Gansu power grids, their speedup factors rise with the increase of the number of their 
partitioned communities, meanwhile their sizes and structures are kept unchanged in experiments. For Henan 
and Gansu power grids with unknown community structure, we detect their community structures by using 
GIDM. We obtain different number of communities by treating the whole of some communities as a new larger 
community.

Figure 6.  Effect of the community structure strength on the computational efficiency. The size and 
community structures of the artificial network are kept unchanged in experiments. (a) With reference to ref. 36, 
we illustrate the findings with a simple network composed of two communities, where the community structure 
is modulated by the interconnection (intercommunity) edges starting from two separated random graphs. 
(b) The speedup factor decreases by degrees when the artificial network changes from the strong community 
structure to no community structure.
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more calculation is required to update the BC. Figure 7(b) shows the improvement rates of the runtime, which 
indicates that the improvement rates in the dynamic environment is higher than that of Brandes’ method. The 
fewer the number of communities is changed, the higher the improvement rate is. Moreover, Fig. 7 shows that the 
improvement rate is decreased with the increase of the network size, which occurred because more computation 
time is required to search for the shortest paths of each vertex-pair in each community, when the number of com-
munities is kept the same and the size of each community becomes increasingly larger. Notably, the improvement 
rate decreases slowly in a dynamic environment. This good performance is gained since that only additional 
computation is needed with the change of the community structure.

Investigation of our methods on networks of different density.  As a first, we give a theoretical anal-
ysis on the effects of the density of both unweighted and weighted networks on the speedup factor of our method. 
From Brands’ method and the equations (3–4), the theoretical speedup factors, for unweighted and weighted 
networks with homogenous community structure, can be derived as follows:
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Secondly, we validate the above analysis on a larger set of artificial networks by varying average degrees for 
unweighted and weighted networks. As shown in Fig. 8, the speedup factors grow linearly with average degree as 
theoretical predictions of equation (9) and (10), when the networks are very sparse (in the initial stages). For both 
unweighted and weighted networks with the same number of communities, the speedup factors become increas-
ingly hyperbolic with the growth of average degrees, which agree well with the theoretical results of equation (7) 
and (8). From the comparison of Fig. 8(a) and Fig. 8(b) (or equation (7) and (8)), one can see that the weighted 
networks have better speedup performance than unweighted networks.

Parallel implementation of our methods.  Here, a representative example of the parallel implementation 
of our method is provided. The performance of parallel computation is tested on five artificial networks by six 
computers as shown in Fig. 9. The tasks of the six computers (CPUs or server) are divided as shown in Table 3, 

Figure 7.  Effect of the network size on the computational efficiency in the artificial networks. (a) Runtimes 
for computing the betweenness of the artificial network with 288 to 3456 vertices. (b) Improvement rates 
of runtime. In all cases, the number of communities is unchanged. Parameter c represents the number of 
communities whose topological structures are changed. We select a community and remove three edges 
randomly for simulating local failures each time, until the number of failure communities, c, satisfies the 
experimental requirements.



www.nature.com/scientificreports/

1 0SciEntific REPOrTs | 7:46491 | DOI: 10.1038/srep46491

and the six computers compose of a local area network through a switch and use TCP/IP as their communication 
protocol. The tested results indicate that our method can further speed up the BC calculations by parallel compu-
tation. With the growth of the network size, the speedup performances are more prominent, because the essential 
communication and previous pretreatment cost is much less as compared with the total computational time.

Figure 8.  Speedup factor vs average degree. (a) The unweighted networks (b) The weighted networks. In each 
tested artificial network, each subnet has the same number of vertices and three interconnected intercommunity 
vertices and edges. The average degree of each artificial network is varied by increasing randomly the same 
number of edges in each subnet. Parameters C, N represent the number of total communities and vertices of 
these artificial networks respectively. The networks are weighted with reference to ref. 37.

Figure 9.  The speedup factor of parallel computation. In the five tested artificial networks, each network 
consists of 20 communities (subnets), each subnet has the same number of vertices and three interconnected 
intercommunity vertices and edges, and the average degrees of each networks is 20. The numbers in the brackets 
represent size of the networks.

Task CPU1 CPU 2 CPU 3 CPU 4 CPU 5 Server

Internal C1, C2, C3, C4 C5, C6, C7, C8 C9, C10, C11, C12 C13, C14, C15, C16 C17, C18, C19, C20 HSN

External Ci ↔​ Cj (i =​ 1, 2, 3, 
4) (j =​ 5, 6, …​, 12)

Ci ↔​ Cj (i =​ 5, 6, 7, 
8) (j =​ 9, 10, …​, 16)

Ci ↔​ Cj (i =​ 9, 10, 11, 
12) (j =​ 13, 14, …​, 20)

Ci ↔​ Cj (i =​ 13, 14, 15, 
16) (j =​ 17, 18, …​, 4)

Ci ↔​ Cj (i =​ 17, 18, 19, 
20) (j =​ 1, 2, …​, 8) update BC

Table 3.   The task partition of parallel computation. For a computer (CPU), its internal task is to calculate 
the BC in and between its five communities assigned by the server, while its external task is to compute the 
BC between its communities and the communities of other CPUs (Ci ↔​ Cj). The main task of the server is to 
calculate the BC in the HSN, assign the tasks to other computers and update the BC.
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Discussion
In this article, we propose a new decomposition method to enhance the efficiency of the betweenness calculation 
for networks with community structures. This method (including steps 1–6 in Methods) is rigorous and valid, 
and can be applied to any networks with community structure, inspective of any community detection methods 
(more detailed mathematical analysis and proof in Supplementary Method Section S1.2 and S1.3).

The computational efficiency of our method is related to the hierarchical community characteristics of net-
works. Namely, more uniform community size, more numerous communities and stronger hierarchical structure 
(smaller HSN) in networks will result in less computational complexity of our method (see equation (1), equa-
tion (2) and Figs 4–6). For such networks, if 

c k
2

, the runtime of our method for the weighted networks can 
be even reduced from +O nm n l n( og )2  to +( )O n n log

c
n
c

2 1 2 , and the runtime for the unweighted networks can 
be reduced from O(nm) to O(n2), where n, m and c are the numbers of vertices, edges and communities, respec-
tively (detailed in the computational complexity of Method Section). Our method can also speed up the between-
ness calculation for other atypical network with community structure. Thus, our method shows better 
performance than traditional methods. Moreover, the time complexity in a dynamic environment can also be 
effectively reduced by using our method.

For networks with an unknown community structure, it is necessary to detect the community structure of 
the networks, and the runtime of our method must include the runtime of detecting the community structure. 
Indeed, the community partition quality of detection methods influences directly the computational performance 
of our method (see complexity analysis in Method Section), and unsuitable detection methods may worse the 
computational speed of our method. However, if the community structure is known in advance, our method 
is much faster than other methods. In all case studies, our method plus other detection methods (including 
GIDM, VIDM, RCDM) is still much faster than traditional methods. For a larger scale network with unknown 
community structure, our hybrid method may be inapplicable because of excessive division cost from the detec-
tion methods such as RCDM. Furthermore, our method is naturally suitable for parallel calculation because the 
shortest path and betweenness within each community can be independently calculated. It is promising that our 
method can also help to enhance the calculation speed of the variants of betweenness and centrality, such as stress 
centrality1,14.
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