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A genome-wide SNP-based 
genetic map and QTL mapping 
for agronomic traits in Chinese 
cabbage
Li Huang1,2,3, Yafei Yang1,2,3, Fang Zhang1,2,3 & Jiashu Cao1,2,3

The aim of this work was to construct a high-resolution genetic map for the dissection of complex 
morphological and agronomic traits in Chinese cabbage (Brassica rapa L. syn. B. campestris). Chinese 
cabbage, an economically important vegetable, is a good model plant for studies on the evolution of 
morphologic variation. Herein, two high-generation inbred Chinese cabbage lines, ‘Huangxiaoza’ and 
‘Bqq094-11’, were crossed. Then restriction-site-associated DNA sequencing (RAD-seq) was performed 
on the parents and 120 F2 individuals. A genetic map containing 711 bins representing 3985 single 
nucleotide polymorphism (SNP) markers was constructed. By using WinQTL with composite interval 
mapping (CIM) and mixed-model based composite interval mapping (MCIM) analysis via QTLNetwork, 
quantitative trait loci (QTL) linked to 16 genetic traits related to plant size, color and leaf characteristics 
were mapped to 10 linkage groups. The high density genetic map and QTL identified for morphological 
and agronomic traits lay the groundwork for functional gene mapping, map-based cloning and marker-
assisted selection (MAS) in Chinese cabbage.

Brassica is one of the most important cruciferous genera of the Brassicaceae family, and contains more than 40 
species1,2. Among these, Chinese cabbage is one of the most important vegetable crops in China with a long his-
tory of cultivation, and diverse cultivars with a variety of qualities and distinct morphological features. With the 
continual improvement in living standards in China, people are paying increasing attention to the appearance and 
qualities of Chinese cabbage. This has led to increased attention on future breeding needs for the improvement of 
its visual appearance and flavor. Thus, understanding the genetic basis of morphological and agronomic traits in 
Chinese cabbage has become increasingly important.

Most morphological and agronomic traits of Chinese cabbage are quantitative traits. As the breeding of 
Chinese cabbage still relies mainly on conventional breeding techniques, the selection of these quantitative traits 
has usually been carried out by phenotypic screening and largely depends on grower experience, and the selected 
traits are readily affected by the external environment. The selection process could be greatly simplified and 
improved by using marker-assisted selection (MAS) to construct a genetic map of quantitative trait loci (QTL), 
which would allow identification of the molecular markers closely linked with or co-segregated with target traits, 
and achieve accurate genotype detection3,4.

In recent years, with the rapid development of next-generation sequencing (NGS) technologies and bioin-
formatic methods, crop breeding theory and technology has undergone major changes. Numerous studies on 
genetic map construction and MAS have been carried out in Brassica crops. However, this type of research on 
Chinese cabbage is lagging behind. Before genomic information became available, the markers used in the con-
struction of genetic maps in Chinese cabbage were mostly PCR-based, small in number, and inaccurate, pre-
venting precise QTL analysis of complex quantitative traits. Even after the publication of the Chinese cabbage 
genome sequence2, the number of specific markers remains very limited, and most published markers at present 
are still PCR-based amplified polymorphism markers such as simple sequence repeats (SSR) and sequence-related 
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amplified polymorphisms (SRAP)5–10. Sequence-specific markers that can be used as anchors in Chinese cabbage 
chromosomes and can be easily applied to genomic mapping are even rarer. Thus, a great deal of work is still 
needed to improve the genetic map density and QTL mapping accuracy by using high-throughput sequencing 
technologies and making full use of the reference Chinese cabbage genome. In addition, the currently availa-
ble completed genomic sequences of Chinese cabbage are estimated to cover only about 60% of the genome. 
A high-density genetic map with sequence information will also provide an important basis for future genome 
splicing and assembly11,12.

Reduced-representation sequencing is an NGS method designed to sequence specific regions of the genome 
aimed at simplifying genome complexity. It is an effective technology for obtaining large numbers of molecu-
lar markers. Restriction-site-associated DNA sequencing (RAD-seq), a representative type of this approach, is 
widely used for high-throughput single nucleotide polymorphism (SNP) discovery and for genotyping in dif-
ferent organisms13. RAD tags are short DNA tags which form a genome-wide representation of every site of a 
particular restriction enzyme. As most organisms have large numbers of SNPs that disrupt restriction sites, this 
allows RAD tags to serve as genetic markers spread at a high density throughout the genome14.

In this study, using a pair of Chinese cabbage parental cultivars with significantly different morpholog-
ical traits and their F2 progeny as materials, we applied RAD-seq to obtain a large number of SNP markers. 
Co-segregating SNPs were assigned into bins to build the first high-density genetic map entirely composed of 
sequencing tags for Chinese cabbage. On this basis, QTL for 16 important morphological and agronomic traits of 
Chinese cabbage were mapped to 10 chromosomes (linkage groups), laying the foundation for accelerating MAS 
breeding in Chinese cabbage.

Results
The morphological and agronomic traits of Chinese cabbage showed a normal distribution in 
the F2 population and significant positive correlations. To perform this study, we analyzed important 
morphological and agronomic traits of Chinese cabbage, including plant height, plant diameter, leaf length, leaf 
width, petiole length, petiole width, petiole with leaf length, leaf wing, leaf shrink, leaf color, heading and bolt 
length. To identify the loci controlling these features, a mapping population including 120 F2 individuals was cre-
ated from the hybridization of the two parents, high generation inbred lines ‘Huangxiaoza’ and ‘Bqq094-11’ that 
show different phenotypes for these target traits. ‘Huangxiaoza’ is a cultivar suited for growth in northern China, 
which is characterized by heading with a shrunken yellow leaf, and a white petiole and leaf wings. The color of 
its inner leaf is significantly lighter than that of the outer leaf. ‘Bqq094-11’ is a southern regional non-heading 
Chinese cabbage, whose leaf is smooth without leaf wings. The whole plant including the leaf and petiole is dark 
green, with no difference in color between the inner and outer leaves (Fig. 1).

With the exception of the parental bolt length data, which were missing, the other 15 traits were all found to 
be significantly different between the two parents (P <  0.05) (Table 1). Obvious segregations in the 16 traits were 
observed in the F2 population, and the absolute values of kurtosis and skewness of each trait were less than 2. 
In addition, the absolute values of skewness and kurtosis for most of the traits were less than 1 (Table 1). These 

Figure 1. The phenotype of parents and representative F2 individuals of Chinese cabbage. (A) and  
(B) represent the female parent ‘Bqq094-11’; (C) and (D) show the phenotypes of male parent ‘Huangxiaoza’; 
(E–G) show the phenotypes of representative F2 individuals.
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results are consistent with the typical distribution of quantitative traits, i.e., under the polygene hypothesis, the 
frequency distribution of the traits in F2 generation follows a normal distribution. Additionally, with the excep-
tion of those traits recorded by grade values, a continuous distribution of other traits was observed in the F2 
population, indicating a typical genetic inheritance of quantitative traits (Fig. 2).

Correlative analysis of the 16 traits indicated a varying degree of correlation (Table S1). For example, seven 
of the 10 morphological traits, including plant height, plant diameter 1, plant diameter 2, leaf length, leaf width, 
petiole length and petiole width, were significantly correlated with each other at the P <  0.01 level. High corre-
lations between color traits were also commonly observed. For example, inner and outer leaf color contrast was 
strongly correlated with core leaf color and outer leaf color (P <  0.01), and highly correlated to outer leaf color b* 
(P <  0.05). Heading and bolt length also were significantly correlated (P <  0.05). In addition, correlations among 
different types of traits were observed. For example, plant height was significantly correlated with core leaf color 
(P <  0.05), and was highly significantly correlated with inner and outer leaf color contrast, petiole color, and 
heading (P <  0.01).

Construction of a high-resolution genetic map of Chinese cabbage based on high-quality 
RAD-seq data. The two parents and the 120 F2 individuals were used to construct genomic libraries and 
sent for RAD-sequencing. In summary, 2.6 Gb and 2.8 Gb of raw data containing 13,170,599 and 13,979,075 
raw reads were obtained in the female and male parents respectively. A total of 98 Gb of raw data containing 
493,384,229 raw reads were obtained in 120 F2 offspring. Detailed library information is provided in Table S2. The 
raw sequencing data was strictly filtered to obtain high quality clean data. A total of 2.4 Gb and 2.56 Gb of clean 
data were obtained in the female and male parent respectively after filtering, and 91 Gb clean data were obtained 
in the F2 offspring.

The clean data was mapped to the NCBI nucleotide database, and no DNA contamination from other organ-
isms was detected (data not shown). After removing the duplicated reads, the paired-end (PE) reads from the 
parents and F2 offspring were mapped against the Chinese cabbage reference genome. The mapping rate to the ref-
erence genome of PE reads obtained from the female and male parents were 75.22% and 70.26%, covering 35.19% 
and 31.40% of the reference genome respectively. The mapping rates of F2 offspring to the reference genome had a 
mean value of 75.22%. The coverage ranged from 15% to 30%, with an average of 19.79% (Fig. S1A). The average 
sequencing depth detected by SAMtools showed that the mean coverage of SNP loci in female and male parents 
was 18.00 and 17.20 times respectively. For the F2 individuals, the mean coverage of SNP loci was 7.86 times 
(Fig. S1B).

SAMtools was used to call SNP genotypes between the parents and a total of 27,885 putative SNPs were dis-
covered. Of these, 1700 SNPs were located on the Scaffold, and 26,185 were chromosomal. We then re-examined 

Traits

Parents values Distribution in the F2 population

‘Bqq094-11’ ‘Huangxiaoza’ SD Range Skewness Kurtosis

PH 25.7A 22.0 B 3.769 18.00 0.29 − 0.05

PD1 39.2A 34.4 B 7.068 35.70 0.39 − 0.08

PD2 33.5 a 29.9 b 6.448 30.60 0.22 − 0.33

LL 28.4A 23.6 B 4.533 27.50 0.06 1.07

LWh 18.6A 13.9 B 2.911 15.50 0.72 0.37

PL 12.8A 8.5 B 2.193 14.50 0.34 0.98

PW 4.6A 6.0 B 0.909 4.00 0.33 − 0.41

PLL 12.8A 0 B 3.897 16.00 1.20 0.87

LWg 3A 1 B 0.692 2.00 − 0.03 − 0.88

LS 5A 1 B 0.973 4.00 0.27 − 0.08

CLC 1A 5 B 0.996 4.00 − 0.61 − 0.407

LC 1A 5 B 0.995 4.00 0.06 − 0.65

LCL* 44.79A 39.66 B 2.636 16.78 0.23 0.53

LCa* 7.16A 3.25 B 1.030 5.82 − 0.29 0.35

LCb* 14.53A 3.55 B 3.144 17.00 0.55 0.28

CC 3A 1 B 0.761 2.00 0.48 − 1.13

PC 1A 3 B 0.478 2.00 − 0.25 1.30

H 2A 0 B 0.525 2.00 0.05 0.71

BL — — 10.678 44.50 0.19 − 0.43

Table 1.  Parental values and distribution in the F2 population for 16 Chinese cabbage traits. Note: PH, 
Plant Height; PD1, Plant Diameter 1; PD2, Plant Diameter 2; LL, Leaf Length; LWh, Leaf Width; PL, Petiole 
Length; PW, Petiole Width; PLL, Petiole With Leaf Length; LWg, Leaf Wing; LS, Leaf Shrink; CLC, Core Leaf 
Color; LC, Leaf Color; LCL*, Outer leaf color measured by CR-300 type colorimeter (from black to white); 
LCa*, Outer leaf color measured by CR-300 type colorimeter (from green to red); LCb*, Outer leaf color 
measured by CR-300 type colorimeter b (from blue to yellow); CC, inner and outer leaf Color Contrast; 
PC, Petiole Color; H, Heading; BL, Bolt Length. SD, Standard Deviation. Lowercase letters mean significant 
difference (P <  0.05) and capital letters mean significant difference (P <  0.01).
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the genotypes of these loci in the F2 population, and only the genotypes found in more than 85% of progeny (i.e., 
102 of the 120 individuals) were further selected. This screening reduced the SNP number to 8,147. After further 
filtering loci located on the Scaffold and showing significant segregation distortion (χ2 test, P <  0.001), a final set 
of 4047 SNPs was retained.

Finally, 3985 SNPs were assigned to 711 recombination bins and a high-density genetic map was constructed 
by mapping these bin markers onto the 10 Chinese cabbage linkage groups (chromosomes) (Fig. 3). The total 
physical distance of the linkage groups was 255.09 Mb, with an average distance of 358.77 Kb between linkage 
regions. The total genetic distance of the map was 1223.44 cM, with an average interval of 1.72 cM between adja-
cent markers/bins. Over 70% of the inter-bin distances (490 bins related) were less than 1 cM. A distance between 
bin pairs larger than 15 cM was only found in 13 regions, which were dispersed on chromosomes A01 (18 cM), 
A02 (30 cM), A5 (20 cM), A6 (37, 29, 29, 15 cM), A8 (30, 30 cM), A9 (17 cM), A10 (113, 55, 47 cM), accounting for 
1.8% of the total number of bins (Table 2, Table S3).

The collinearity between the constructed genetic map and the Chinese cabbage reference genome was then 
investigated. It was found that on chromosomes A02, A03, A05, A07, and A09, the correlation between the 
genetic distance and the physical distance appeared to be almost linear across the entire chromosome, showing no 
significant intermittent or negative slope. A relatively low correlation between physical distance and genetic dis-
tance of chromosomes A01, A04, A06, A08, and A10 was found, though linear trends could be observed (Fig. 4).

QTL controlling fifteen traits were detected by WinQTL software. On the basis of the high-density 
RAD genetic map, QTL mapping of the 16 Chinese cabbage traits was conducted. To maximize the mapping 
accuracy, a two-step procedures involving WinQTL cartographer 2.5 based on a composite interval mapping 
(CIM) model and QTLNetwork 2.1 via mixed-model-based composite interval mapping (MCIM) method was 
used to detect the QTL.

By performing CIM analysis using WinQTL, a total of 72 QTL were found for all traits with the exception 
of the petiole width (Table 3, Fig. 5). Two QTL with negative additive effects on plant height were detected on 
chromosome A09, accounting for 10.52% and 11.44% of phenotypic variation, respectively. Nine QTL affecting 
plant diameter 1 were identified; four on chromosome A06, three on chromosome A10, and one each on chro-
mosomes A07 and A09, of which 1PD1-8 located on A10 accounted for the most phenotypic variation (20.99%). 
Six QTL were found to be related to plant diameter 2, two each located on chromosomes A05 and A10, and one 

Figure 2. The frequency distribution in the F2 population of 16 Chinese cabbage traits. The traits analyzed 
for the plants are as follows: PH, Plant height; PD1, Plant diameter 1; PD2, Plant diameter 2; LL, Leaf length; 
LWh, Leaf width; PL, Petiole length; PW, Petiole width; PLL, Petiole with leaf length; LWg, Leaf wing; LS, Leaf 
shrink; CLC, Core leaf color; LC, Outer leaf color measured by naked eye; LCL*, Outer leaf color measured by 
CR-300 type colorimeter (from black to white); LCa*, Outer leaf color measured by CR-300 type colorimeter 
(from green to red) LCb*, Outer leaf color measured by CR-300 type colorimeter b (from blue to yellow); CC, 
Inner and outer leaf; color contrast; PC, Petiole color; H, Heading; BL, Bolt length.
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each on chromosomes A03 and A09. Among them, 1PD2-5 on A10 had the largest effect explaining 18.49% of the 
observed phenotypic variation. Four QTL linked to leaf length were identified on chromosomes A03, A06, and 
A09, among which, 35.29% of phenotypic variation was explained by 1LL-3 on A06. Two QTL associated with 
leaf width were detected on chromosome A09 and one on chromosome A02, of which 1LWh-2 on A09 accounted 
for most of the phenotypic variation (17.78%). One QTL located on chromosome A06 was found to be linked 
to leaf length, which explained 12.10% of the phenotypic variation. Four QTL mapping on chromosomes A05, 

Figure 3. Bin distribution of Chinese cabbage linkage groups. The genetic distance (centimorgans, cM) is 
shown on the left side of each linkage group, and the marker names are shown on the right side.

LG PD (Mb) GD (cM) SNP NO. Bin NO. APD (Kbp) AGD (cM)

A01 28.58 102.55 292 68 420.29 1.51

A02 27.72 103.04 390 74 374.59 1.39

A03 31.68 78.80 405 92 344.35 0.86

A04 18.80 33.10 223 25 752.00 1.32

A05 23.93 122.82 593 93 257.31 1.32

A06 25.85 183.26 290 69 374.64 2.66

A07 22.36 62.97 467 82 272.68 0.77

A08 21.52 113.73 377 61 352.79 1.86

A09 37.08 120.32 660 92 403.04 1.31

A10 17.56 302.85 288 55 319.27 5.51

Min value 17.56 33.10 223 25 702.40 0.77

Max value 37.08 302.85 593 93 398.71 5.51

total 255.09 1223.44 3985 711 358.77 1.72

Table 2.  Characteristics of the linkage groups in the maternal genetic map of Chinese cabbage. Note: LG, 
linkage group; PD, Physical distance; GD, Genetic distance; APD, Average physical distance; AGD, Average 
genetic distance.
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A06, A08, and A10 were associated with petiole and leaf length, and had little difference in their genetic contri-
bution (the phenotypic variation explained by the four QTL ranged from 4.86% to 7.88%). Five QTL affecting 
leaf wing were detected: two on chromosome A03, and one each on chromosomes A05, A06, and A10. In this 
case, 1LWg-4 located on A06 explained most (18.43%) of the phenotypic variation. As for leaf shrink, three QTL 
were identified, including one on chromosome A05 and two on chromosome A09. The highest phenotypic var-
iation (16.33%) was explained by 1LS-2 located on A09. Eight QTL associated with core leaf color were targeted 
to chromosomes A03, A05, A07, A09, and A10. Among these, 1CLC-1 and 1CLC-2 located on A03 explained a 
total of 30.63% of this trait variation. Seven QTL located on chromosomes A02, A03, A07, and A09 were asso-
ciated with outer leaf color as observed by the naked eye. These QTL explained 7.78–15.88% of the phenotypic 
variation, among which 1LC-6 and 1LC-7 located on A09 had a total of 28.35% contribution to the variation. As 
measured by a CR-300 type colorimeter, four QTL associated with outer leaf color L* were also mapped explain-
ing 6.29–11.28% of the phenotypic variation of this trait. Additionally, chromosome A10 harbored one QTL that 
affected the outer leaf color a*. This QTL, which showed an additive effect, could explain 80.38% of the pheno-
typic variation. In addition, three QTL related to outer leaf color b* were identified on chromosomes A06, A07, 
and A09, of which 1LCb*-3 on chromosome A09 had the largest genetic contribution explaining 22.56% of the 
phenotypic variation. Three QTL were related to inner and outer leaf color contrast on chromosomes A03, A09, 
and A10. 1CC-3 on A10 could be the major locus for this trait because it contributed up to 61.3% of the variation. 
Two QTL with similar contributions (explaining 12.1% and 9.86% of the phenotypic variation respectively) on 
chromosomes A01 and A07 were detected affecting petiole color. Four QTL, two each on chromosomes A03 
and A08, were found associated with heading. The contributions of the two QTL to the phenotypic variation on 
chromosome A03 were about 13%, and the contributions of the other two QTL located on chromosome A08 
were around 10%. As for bolt length, three QTL located on chromosomes A01, A05 and A06 were identified. The 
phenotypic variations explained by these QTL were all below 10%. It should be pointed out that 22 QTL were 
identified with logarithm of the odds (LOD) values between 2.5 and 3. These QTL may be unreliable and should 
be used with caution for further gene mapping or cloning.

QTL linked to nine traits were detected using QTLNetwork software. By using QTLNetwork to 
determine the QTL for the 16 traits, a total of 15 QTL were detected associated with eight traits, and two pairs of 
epistatic QTL were found associated with core leaf color and plant diameter 2 (Tables 4 and 5, Fig. 5). One QTL 
was detected associated with plant diameter 1, petiole length, outer leaf color, and bolt length, which explained 
12.30%, 14.28%, 8.94%, and 15.50% of each trait respectively. Two QTL involved in petiole with leaf length were 
detected on chromosomes A06 and A10, and accounted for 46.84% of the total phenotypic variation. Three QTL 
impacting leaf wing located on chromosomes A06, A09 and A10, accounted for up to 50.67% of the variation of 
this trait. Two QTL related to core leaf color were detected on chromosomes A03 and A07, and their contribution 
to the phenotypic variation was 50.10%. On chromosomes A07 and A09, two QTL associated with outer leaf color 
b* explained 27.08% of the phenotypic variation. Two QTL affecting inner and outer leaf color contrast, explain-
ing a total of 25.91% of the phenotypic variation were found on chromosomes A03 and A09.

In addition, one pair of epistatic QTL, associated with the core leaf color, were detected on chromosomes A05 
and A09 respectively. Another pair of epistatic QTL located on chromosomes A03 and A09, were associated with 
plant diameter 2.

Eleven common QTL were determined by WinQTL and QTLNetwork. As described above, the 
number of QTL detected through WinQTL was far more than the number detected by QTLNetwork. We com-
pared the outputs of WinQTL and QTLNetwork, and found 11 common QTL controlling nine traits (Table 6). 
However, the positions of the QTL detected were not entirely consistent; a total of eight QTL differed within 

Figure 4. Correlation between genetic distance and physical distance for the ten chromosomes in the 
Chinese cabbage genome. Genetic distance (cM) is derived from the genetic map, physical distance (Mb) is 
derived from concatenated scaffolds of B. rapa ‘Chiifu-401’.
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Traits QTL name LG Bin interval Position (cM) AE LOD value EV (%)

PH
1PH-1 9 7~8 10.87 − 1.779 2.93 10.52

1PH-2 9 14 15.90 − 1.853 2.73 11.44

PD1

1PD1-1 6 14~16 15.79 − 2.144 3.18 4.06

1PD1-2 6 19~22 19.24 − 2.716 2.72 6.73

1PD1-3 6 29~31 93.61 − 2.055 2.74 4.61

1PD1-4 6 35~46 98.24 − 2.841 3.20 8.08

1PD1-5 7 36~38 29.96 − 3.080 3.02 8.94

1PD1-6 9 48~70 89.50 − 3.635 4.47 14.50

1PD1-7 10 8 73.47 − 4.386 2.89 15.30

1PD1-8 10 10~20 88.41 − 6.018 4.33 20.99

1PD1-9 10 24~30 103.25 2.093 5.69 2.42

PD2

1PD2-1 3 82~83 69.47 3.049 2.91 11.78

1PD2-2 5 6~7 8.58 − 2.291 2.69 5.84

1PD2-3 5 10~11 11.12 − 2.232 2.84 5.47

1PD2-4 9 51~69 89.08 − 3.304 4.14 14.74

1PD2-5 10 8~10 74.47 − 4.417 3.45 18.49

1PD2-6 10 24~30 103.25 2.305 4.17 4.22

LL

1LL-1 3 28~30 26.51 − 2.085 2.70 10.80

1LL-2 3 32~46 34.14 − 2.348 3.54 14.34

1LL-3 6 22 36.03 − 4.394 2.54 35.29

1LL-4 9 53~75 94.14 − 2.336 4.31 15.36

LWh

1LWh-1 2 53~60 87.12 − 0.935 3.43 5.36

1LWh-2 9 17~24 45.90 − 1.723 4.13 17.78

1LWh-3 9 28~31 57.24 − 1.454 2.87 12.65

PL 1PL-1 6 36~51 108.95 − 1.126 4.24 12.10

PLL

1PLL-1 5 32~35 33.45 2.912 3.42 6.36

1PLL-2 6 33~51 126.68 − 1.294 6.35 4.86

1PLL-3 8 57~58 109.88 1.361 2.94 6.57

1PLL-4 10 44~54 300.33 − 1.603 9.83 7.88

LWg

1LWg-1 3 66~67 52.44 − 0.238 2.80 6.02

1LWg-2 3 69~70 55.11 − 0.273 2.64 7.68

1LWg-3 5 4~25 10.71 − 0.255 3.45 6.24

1LWg-4 6 11~22 17.95 − 0.436 5.72 18.43

1LWg-5 10 42~54 299.65 − 0.226 14.56 5.04

LS

1LS-1 5 60~77 90.09 − 0.270 3.90 4.22

1LS-2 9 59~63 89.50 − 0.619 3.26 16.33

1LS-3 9 74~75 103.81 − 0.334 2.66 5.34

CLC

1CLC-1 3 7~9 5.57 0.473 3.79 10.49

1CLC-2 3 70~90 66.42 0.622 8.31 20.14

1CLC-3 5 15~17 16.06 − 0.481 3.48 9.69

1CLC-4 5 19~20 20.00 − 0.433 2.63 7.29

1CLC-5 5 25~29 26.31 − 0.476 3.47 9.92

1CLC-6 7 1~13 0.01 0.295 7.78 4.46

1CLC-7 9 63~84 103.81 0.511 5.90 13.56

1CLC-8 10 30~32 162.47 − 1.304 2.94 16.29

LC

1LC-1 2 7~8 36.18 − 0.423 2.64 7.78

1LC-2 2 10 38.74 − 0.436 3.04 9.27

1LC-3 2 12~17 46.81 − 0.473 2.96 10.84

1LC-4 3 69~82 62.95 0.477 3.78 11.20

1LC-5 7 4~28 12.20 0.570 8.97 15.31

1LC-6 9 69~84 98.75 0.532 4.64 15.80

1LC-7 9 87~90 118.66 0.482 3.68 12.55

LCL*

1LCL*-1 6 67~68 182.83 − 1.160 3.12 8.85

1LCL*-2 7 1~8 0.01 − 1.298 4.16 11.28

1LCL*-3 9 38~40 74.77 2.093 2.67 6.29

1LCL*-4 9 77~87 111.39 − 1.390 3.46 11.07

Continued
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0.1 cM, and two QTL differed between 0.1 cM and 0.5 cM. For QTL in the same position or close to one another, 
each software gave basically the same value of their contributions to phenotypic variation and additive effects. 
However, QTLNetwork gave generally higher values overall than WinQTL, in particular the values of explained 
variation.

It should be noted that four QTL detected by QTLNetwork were not detected by WinQTL as follows: 2PLL-1 
associated with petiole with leaf length, 2LWg-1 and 2LWg-2 associated with leaf wing, and 2LCb*-1 with outer 
leaf color b*. In addition, as WinQTL uses a CIM model to detect QTL, epistatic relationships could not be 
detected.

Discussion
The emergence of NGS technology and its wide application have greatly reduced the cost of nucleotide sequenc-
ing, although the price remains a consideration when planning sequencing strategies. For some studies, there 
is no need for whole genome resequencing15. Genome complexity can be reduced by restriction enzyme diges-
tion and such simplified genome sequencing technologies are now widely used for large-scale high-throughput 
SNP genotyping, particularly for de novo SNP discovery. In addition to the advantage of high density and high 
throughput14, RAD-seq is a versatile method, which can be used on any number of individuals at any depth 
of sequencing, depending on available resources16. For these reasons, since its inception in 2007, RAD-seq has 
become one of the main technologies employed to rapidly discover SNPs and has been widely used in many spe-
cies in recent years17–26.

Here, we used RAD-seq to construct a new genetic map of Chinese cabbage, which already has a reference 
genome. One major advantage of RAD-seq in species that have a reference genome, is that researchers can 
pre-select a suitable enzyme to perform an in silico digest of the reference genome, so as to estimate the distri-
bution of digested fragments, and thereby know what to expect from the output that will be generated. In this 
study, we sequenced two parents and 120 F2 Chinese cabbage individuals, and obtained a total of 4,047 effective 
SNP markers. Only the homozygous SNP markers between parents and F2-type SNP markers genotyped in more 
than 85% of progeny were further selected. This selection criterion is much higher than that reported in many 
other studies24,25. Therefore, to obtain more SNPs, we suggest that the standard could be reduced further, e.g. 80% 
genotype coverage of the F2 individual.

Linear analysis of the genetic map constructed in this study and the Chinese cabbage reference genome12 
showed that the genetic distance and physical distance of each linkage group has a significant co-linear trend, 
indicating that the constructed map has a high credibility. However, there were still some gaps between the 
genetic and physical distances on chromosomes A01, A04, A06, A08, and A10. The possible causes might be: 
(1) the assembly size of Chinese cabbage reference genome is still some distance from completion; (2) the linear 
correlation of markers on the RCZ16_DH map used to guide the Chinese cabbage genome assembly with the 
assembled sequence is also only about 93%, and there were some irregular distributions on chromosome A02, 
A04, A06, A08 and A10, similar to our study12; and (3) compared with the number of markers obtained by whole 
genome sequencing, the number of markers obtained by reduced-representation genome sequencing is relatively 
small, according to studies in other species27. It therefore may not be accurate to assess the relationship between 

Traits QTL name LG Bin interval Position (cM) AE LOD value EV (%)

LCa* 1LCa*-1 10 32 212.47 21.375 21.38 80.38

LCb*

1LCb*-1 6 67~68 182.83 − 1.906 4.53 17.01

1LCb*-2 7 17~38 12.2 − 1.266 4.03 7.12

1LCb*-3 9 69~87 107.17 − 2.477 6.47 22.56

CC

1CC-1 3 70~90 63.38 − 0.336 4.55 13.50

1CC-2 9 77~79 106.33 − 0.313 3.35 11.45

1CC-3 10 32 212.47 0.800 4.24 61.30

PC
1PC-1 1 1~11 5.1 − 0.198 3.11 12.10

1PC-2 7 1~10 1.74 − 0.182 3.61 9.86

H

1H-1 3 57~61 48.24 − 0.256 2.87 13.01

1H-2 3 69~70 55.38 − 0.274 2.71 13.51

1H-3 8 23~25 72.64 − 0.239 2.71 9.81

1H-4 8 57~60 113.47 − 0.222 3.52 9.96

BL

1BL-1 1 26~28 20.38 − 4.709 2.95 9.95

1BL-2 5 45~68 85.9 3.973 5.26 6.37

1BL-3 6 36~51 107.95 − 3.236 4.33 4.29

Table 3.  QTL identified in the F2 population of Chinese cabbage using WinQTL cartographer 2.5. Note: 
PH, Plant Height; PD1, Plant Diameter 1; PD2, Plant Diameter 2; LL, Leaf Length; LWh, Leaf Width; PL, Petiole 
Length; PLL, Petiole With Leaf Length; LWg, Leaf Wing; LS, Leaf Shrink; CLC, Core Leaf Color; LC, Leaf Color; 
LCL*, Outer leaf color measured by CR-300 type colorimeter (from black to white); LCa*, Outer leaf color 
measured by CR-300 type colorimeter (from green to red); LCb*, Outer leaf color measured by CR-300 type 
colorimeter b (from blue to yellow); CC, inner and outer leaf Color Contrast; PC, Petiole Color; H, Heading; BL, 
Bolt Length. LG, linkage group; AE, Additive Effects; EV, Explained Variation. LOD values <  3 are marked in 
bold fonts.
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genetic distance and physical distance in this case. Similarly, when we looked at the relationship between the 
Chinese cabbage VCS-13M DH map which was also built via high-throughput sequencing, with the reference 
genome28, we also found some negative slopes and gaps that were even larger than those in our study.

Since Song et al. built the first amplified fragment length polymorphism (AFLP) map29, more than 30 genetic 
maps have been constructed for Chinese cabbage5–8,30,31. Along with the launch of the multinational B. rapa 

Figure 5. Distribution of QTLs in the Chinese cabbage genetic linkage map. Solid arrows indicate QTL loci 
identified by WinQTL cartographer 2.5, and hollow arrows indicate QTL loci identified by QTLNetwork 2.1.

Traits QTL name LG Bin interval Position (cM) AE EV (%)

PD1 2PD1-1 10 27~28 103.2 2.9890 12.30

PL 2PL-1 6 48~49 107.9 − 1.2022 14.28

PLL
2PLL-1 6 45~46 105.4 − 2.0171

46.84
2PLL-2 10 51~52 300.3 − 2.5396

LWg

2LWg-1 6 31~32 94.0 − 0.3344

50.672LWg-2 9 18~20 39.1 − 0.1692

2LWg-3 10 50~51 299.9 − 0.3702

CLC
2CLC-1 3 81~82 66.4 0.5999

50.10
2CLC-2 7 1~2 0.0 0.3747

LC 2LC-1 9 90~91 118.6 0.3746 8.94

LCb*
2LCb*-1 7 29~30 22.6 − 1.5485

27.08
2LCb*-2 9 79~80 107.2 − 1.6575

CC
2CC-1 3 81~82 66.4 − 0.3377

25.91
2CC-2 9 78~79 106.3 − 0.3051

BL 2BL-1 5 59~60 86.3 5.5388 15.50

Table 4.  QTL identified in the F2 population of Chinese cabbage using QTLNetwork 2.1. Note: PD1, Plant 
Diameter 1; PL, Petiole Length; PLL, Petiole With Leaf Length; LWg, Leaf Wing; CLC, Core Leaf Color; LC, 
Leaf Color; LCb*, Outer leaf color measured by CR-300 type colorimeter b (from blue to yellow); CC, inner and 
outer leaf Color Contrast; BL, Bolt Length. LG, linkage group; AE, Additive Effects; EV, Explained Variation.

Traits QTL_i LG Interval-i QTL_j LG Interval-j

CLC 2CLC-3 5 38~39 2CLC-4 9 20~21

PD2 2PD2-1 3 16~17 2PD2-2 9 12~13

Table 5.  Epistasis effects for plant diameter and core leaf color in the F2 population of Chinese cabbage 
detected by QTLNetwork 2.1. Note: CLC, Core Leaf Color; PD2, Plant Diameter 2. LG, linkage group.
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Genome Sequencing Project (BrGSP) in 2003, Choi et al. constructed a map comprising a total of 556 markers by 
using the doubled haploid (DH) lines8. The total length of this linkage map is 1,182 cM with an average interval 
of 2.83 cM between adjacent loci, forming the backbone for anchoring sequence contigs for BrGSP. In fact, only 
the integration of the genetic, physical, and chromosome maps will provide a better guide for crop breeding. 
Therefore, the first generation physical map and the second generation linkage map were built successively6,30. 
Three representative reference linkage maps, which were constructed by the use of SSR markers, are the VCS_DH 
map31, the CK_DH map6 and the JWF3P map5. However, the genome coverage of these maps is incomplete, 
anchoring only approximately 73.6% of the scaffolds onto chromosomes. To better improve the assembly of the 
Chinese cabbage genome, a new map named RCZ16_DH was constructed. This map comprises a total of 507 
markers including 415 insertion/deletion length polymorphisms (InDels) and 92 SSRs, 1234.2 cM in total length 
with an average distance of 2.43 cM between adjacent marker loci12. After the release of the Chinese cabbage 
genome (http://www.Brassica-rapa.org), two linkage maps were constructed. One comprises 503 InDels32, and 
the other comprises 221 SNPs, 31 InDels and 62 SSRs, covering 1,115.9 cM with an average interval of 3.6 cM 
between the adjacent marker loci28.

The genetic maps constructed so far are not saturated enough to perform detailed studies of genetic traits. 
This is because the populations used in the mapping studies were not large enough or too few genetic markers 
were used. In this study, we sequenced a population consisting of 120 F2 individuals and their two parents, and 
obtained a set of SNP markers which are more widespread than InDel markers previously used in genetic map-
ping of Chinese cabbage33. A total of 711 bin markers representing 3985 SNP markers were mapped onto 10 link-
age groups, covering 1223.44 cM with an average inter-bin distance of 1.72 cM. The number of markers used in 
this map is far more than any other map built in the past. Meanwhile, markers across linkage groups fit a uniform 
distribution. This new Chinese cabbage genetic map is the most saturated map by far, and undoubtedly lays the 
foundation for further genomics and genetic breeding studies.

Knowledge of the genetic basis of variation underlying quantitative traits and QTL mapping is critical for 
improved breeding of Chinese cabbage. A significant amount of research has been done in Chinese cabbage on 
QTL detection for traits linked to plant morphology, vernalization, bolting and flowering, disease resistance and 
yield34–43. However, this is limited by the accuracy of QTL mapping and genetic information in part due to the 
populations used for genetic studies and the complex genetics of Chinese cabbage. Therefore, to meet the require-
ments for breeding, QTL mapping of the important morphological and agronomic traits in Chinese cabbage is 
still a critical issue.

The morphological traits of Chinese cabbage such as plant height, plant width, leaf length, and petiole length 
are inseparably linked to its yield and appearance. Leaf color is closely related to photosynthesis and consumer 
preferences. Heading and bolting go together with edible qualities. These traits together determine the charac-
teristics and quality of Chinese cabbage36. Previous studies detected several QTL associated with leaf architec-
ture traits including plant height, leaf length, leaf width, and petiole length, in Chinese cabbage37,43. Some newly 
detected QTL in our study are located on the same linkage group with those of previous studies but at different 
positions. For example, QTL affecting leaf length were found on chromosomes A03, A06 and A09 both in our 
study and the previous studies37,43. However, there were more novel QTL detected in our study than QTL that 
were previously identified. Our study also mapped QTL for leaf color for the first time in Chinese cabbage. Most 
of these are located on chromosomes A03, A06 and A09. The identification of these QTLs for leaf traits will no 
doubt help us to facilitate the identification of key genes and increase our understanding of the molecular basis of 
leaf development in Chinese cabbage. Together with the QTL mapping of genes underlying the important traits 
contributing to heading and bolting, we can further dissect the genetic architecture underlying quantitative traits 
and accelerate MAS breeding to develop novel high-yielding, high-quality Chinese cabbage varieties.

Traits LG

WinQTL QTLNetwork

QTL name
Bin 

interval
Position 

(cM) EV (%) AE QTL name
Bin 

interval
Position 

(cM) EV (%) AE

PD1 10 1PD1− 9 24~30 103.25 2.42 2.093 2PD1− 1 27~28 103.2 12.3 2.989

PL 6 1PL-1 36~51 108.95 12.1 − 1.126 2PL-1 48~49 107.9 14.28 − 1.2022

PLL 10 1PLL-4 44~54 300.33 7.88 − 1.603 2PLL-2 51~52 300.3 — − 2.5396

LWg 10 1LWg-5 42~54 299.65 5.04 − 0.226 2LWg-3 50~51 299.9 — − 0.3702

CLC
3 1CLC-2 70~90 66.42 20.14 0.622 2CLC-1 81~82 66.4 50.1 0.5999

7 1CLC-6 1~13 0.01 4.46 0.295 2CLC-2 1~2 0 0.3747

LC 9 1LC-7 87~90 118.66 8.85 − 1.16 2LC-1 90~91 118.6 8.94 0.3746

LCb* 9 1LCb*-3 69~87 107.17 22.56 − 2.477 2LCb*-2 79~80 107.2 — − 1.6575

CC
3 1CC-1 70~90 63.38 13.5 − 0.336 2CC-1 81~82 66.4 25.91 − 0.3377

9 1CC-2 77~79 106.33 11.45 − 0.313 2CC-2 78~79 106.3 − 0.3051

BL 5 1BL-2 45~68 85.9 6.37 3.973 2BL-1 59~60 86.3 15.5 5.5388

Table 6.  Common QTL detected by WinQTL cartographer 2.5 and QTLNetwork 2.1 in Chinese cabbage. 
Note: PD1, Plant Diameter 1; PL, Petiole Length; PLL, Petiole With Leaf Length; LWg, Leaf Wing; CLC, Core 
Leaf Color; LC, Leaf Color; LCb*, Outer leaf color measured by CR-300 type colorimeter b (from blue to 
yellow); CC, inner and outer leaf Color Contrast; BL, Bolt Length. LG, linkage group; AE, Additive Effects; EV, 
Explained Variation.

http://www.Brassica-rapa.org
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Knowledge of genetics has indicated that complex significant correlations exist among agronomic traits, prob-
ably because of closely linked genes or pleiotropic effects from the same gene. This kind of aggregation of QTL 
and pleiotropic effects occurs frequently in Chinese cabbage and other crops37. In this study, as shown in Fig. 5, 
many co-located QTL were also detected. For example, according to the results detected by QTLNetwork, 2PL-1 
associated with petiole length, 2PLL-1 associated with petiole with leaf length, and 2LWg-1 associated with leaf 
wing were co-located between bin31 and bin49 on chromosome A06. It is worth mentioning that significant cor-
relations have often been found in traits with the same QTL locations. Similar results were achieved by WinQTL 
testing, in which considerable overlap among locations of QTL for different agronomic traits corresponded well 
with the positive correlations usually observed among these sets of phenotypes. These results further suggest that 
for interconnected or functionally similar traits, their QTL are often located on similar regions or even the same 
region in the same linkage group. Further fine mapping could help us to determine whether such regions contain 
a major QTL with pleiotropic effects on several traits or multiple linked QTL44. The identification of large-effect 
pleiotropic or closely linked QTL would be of great value for breeding program where the goal is to simultane-
ously improve various agronomically important traits.

Methods
Plant material and trait measurement. The mapping population we used was 120 F2 individuals which 
came from crossing the high generation inbred lines ‘Huangxiaoza’ (male parent) and ‘Bqq094-11’ (female par-
ent). All the tested materials were grown in the vegetable research farm of Zhejiang University. All traits were 
surveyed at the normal harvest time (Fig. S2). The standards of measurement were as follows. Plant height (PH): 
the maximum height of the highest point of the plant from the ground. Plant diameter 1 (PD1): the maximum 
distance of the outer leaves of the plant. Plant diameter 2 (PD2): the minimum distance of the outer leaves of 
the plant. Leaf length (LL): the length of the maximum outer leaves from the petiole base to the leaf apex. Leaf 
width (LWh): the width of maximum outer leaf at its widest point. Petiole length (PL): the length from the base 
of petioles to the tip of midrib of the largest rosette leaf. Petiole width (PW): the width of petioles at the widest 
point of the largest outer leaf. Petiole with leaf length (PLL): the length from the tip of midrib to the wing tip at 
the bottom of the largest rosette leaf. The measurement units of the above characteristics were centimeters (cm). 
Leaf wing (LWg): according to the largest outer leaves, they were divided into three grades from without wing to 
with large wing, and those without leaf wing were marked as “1”. Leaf shrink (LS): the wrinkle level of the largest 
outer leaves. According to the level of wrinkle in the leaves, they were divided into five grades, of which those 
with a smooth surface were marked as “1”. Core leaf color (CLC): the color of the inner leaves deviated from leaf 
veins in the center of plant. Leaves were divided into five grades of core leaf color from yellow to green, with yel-
low marked as “1”, dark green marked as “5”. Outer leaf color (leaf color, LC) was measured using a CR-300 type 
colorimeter (Minolta, Japan) and the naked eye to measure the color of the largest outer leaf deviated from leaf 
veins. The colorimeter can respectively evaluate in three-dimensions: L (from black to white, 0 to 100), a (from 
green to red, − A to + A), b (from blue to yellow, − B to + B). Each plant was measured using three points; 1) as 
measured by the naked eye from yellow green to dark green plants were divided into five grades, with yellow 
green marked as “1”, dark green as “5”; 2) the color traits of outer leaves measured by colorimeter were recorded as 
LCL*, LCa*, LCb*; 3) color of outer leaves measured by naked eye was recorded as LC. Inner and outer leaf color 
contrast (color contrast, CC): according to the degree of color contrast leaves were divided into three grades, of 
which those with no color contrast were marked as “1”. Petiole color (PC): the color at the base of petiole at the 
back of the largest outer leaf. Petiole color was divided into three grades, of which the whitest was marked as “1”, 
and the greenest was marked as “3”. Heading (H): according to whether the plant headed or not, the heading trait 
was divided into three grades, non-heading is marked as “1”, and heading as “3”. Bolt length (BL): distance (cm) 
from the emergence site of the cotyledon to the vertex of the flower stalk. All of the above measurements were 
repeated three times. For LWg, LS and CC, we preferred to use the value which appeared most frequently in the 
measurements, and for the other traits, the values were averaged from the three repeats.

Phenotypic characterizations. The phenotypic data were analyzed using SPSS 18.0 statistical software. 
To analyze the characteristics of the two parents, we used the “analyze - compare means - independent sam-
ple T test” process to assess the difference in parental traits. For the 120 F2 individuals, we used the “analyze 
- descriptive statistics - frequencies” to make a count of variance, range, skewness and kurtosis, and obtained a 
cylindrical profile. We made a correlation analysis of the 120 F2 individuals’ different agronomic traits using the 
“analyze-correlate-bivariate” process, and account correlation matrix of the Pearson correlation coefficient.

RAD library construction and sequencing. Genomic DNA from parents and their F2 progeny was 
extracted using the DP320 kit (TIANGEN Biotech Co., Ltd. Beijing, China). The DNA samples of female par-
ent ‘Bqq094-11’ and the male parent ‘Huangxiaoza’ were recorded as 121 and 122 respectively, and those of 
the 120 F2 individuals were numbered from 1 to 120. The DNA was quantified with the Quant-iTTM dsDNA 
High-sensitivity kit (Invitrogen, Grand Island, NY, USA), so that the starting amount of the parental DNA was 
1.5 μ g, and that of the progeny was 300 ng. The DNA was digested with EcoRI (New England Biolabs, Ipswich, 
MA, USA), the digestion product samples were ligated to a P1 adapter with the Illumina Solexa kit ©. DNA was 
processed to obtain RAD libraries and a Covaris S220 ultra-sonicator was used to break DNA to 300–700 bp in 
length, and 1.6×  AMPure XP Beads were used to purify the DNA samples. A Quick Blunting kit Enzyme Mix 
(New England Biolabs) and Klenow fragment (exo-; New England Biolabs) were used to blunt end and add ade-
nine to the 3′  end. The DNA was then ligated with a P2 adapter, followed by purification using 1.6 ×  AMPure XP 
Beads and then used for selective PCR using 2×  Phusion PCR Master Mix (NEB) over 18 cycles. PCR products 
were subjected to agarose gel (1.5%) electrophoresis, and the DNA between 300 bp to 700 bp was extracted and 
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purified by QIAGEN Gel Extraction Kit. Each RAD library was quantified using an Agilent Bioanalyzer (Santa 
Clara, CA, USA), and finally sequenced on an Illumina HiSeq2000PE100 by Beijing Novogene Bioinformatics 
Technology Co. Ltd (http://novogene0.bioon.com.cn/).

Quality control of sequencing data and mapping reads against the reference genome. The 
output raw sequencing data/reads were filtered to discard those containing adapter contamination, low-quality 
base reads (Q score ≤  5) and ambiguous base reads (N). Specifically, reads should not contain adapter sequences; 
ambiguous bases should not comprise more than 10% of the sequence length, and low-quality bases should not 
account for more than 50% of the total bases of the read. Then the number of total reads, total data output, overall 
error rate, Q20 content, Q30 content, and GC content of the clean data were calculated. Contamination with 
DNA from other sources was assessed by aligning the clean data with the nucleotide databases of National Center 
for Biotechnology Information (NCBI, http://archive-dtd.ncbi.nlm.nih.gov/). Following removal of duplicates in 
the clean reads, the paired-end (PE) reads were mapped against the Chinese cabbage reference genome (http://
brassicadb.org) using BWA software45 applying the following parameters, aln-o 1 -m 100000 -t 4 -l 32 -i 15 -q 10. 
Any duplicates in the mapping results were removed by SAMtools’ rmdup46.

SNP detection and SNP marker-based genetic map construction. SNPs detection was performed 
using SAMtools. In order to reduce false positives, we required a minimum threshold of four copies and a max-
imum threshold of 1000 copies of each allele in the parental samples47. In the progeny, the maximum threshold 
was the same but the minimum threshold was two copies48. Only the homozygous SNP markers between parents 
and F2-type SNP markers genotyped in more than 85% of progeny were further selected. Markers showing signifi-
cant segregation distortion (χ2 test, P <  0.001, d.f. =  2) were excluded49,50. Co-segregating SNP loci were collapsed 
into bins, and a linkage bin-map was constructed from the recombination bins serving as genetic markers using 
ScMap software (Novogene Bioinformatics Technology Co. Ltd, Beijing China). The ScMap software used a mod-
ified version of the sliding-window approach developed by Huang et al.51.

QTL mapping. QTL mapping was performed with WinQTL cartographer 2.5 and QTLNetwork 2.152,53. For 
QTL analysis with WinQTL cartographer 2.5, a permutation test (parameter 1000) was used to determine the 
QTL with a LOD threshold of 2.5. CIM was performed using Model 6, a value of 5 for control markers and a 
forward regression method, scanning intervals of 1 cM between markers and putative QTL with a window size of 
10 cM. A 1000 permutation test at 95% confidence level to determine the LOD thresholds, with significance set as 
P <  0.0554. By using QTLNetwork v2.1 (http://ibi.zju.edu.cn/software/qtlnetwork/download.htm) and a MCIM 
method, QTL was determined by a 1,000-permutation test at the confidence level of 95%. The window size and 
walk speed used for the genome scan were 10 cM and 1 cM, respectively. The QTL identified were named as 1/2 
followed by trait abbreviation and QTL number, in which 1 represents the QTL detected by WinQTL cartogra-
pher 2.5, and 2 represents the QTL detected by QTLNetwork 2.1. For example, 1PH-1 represents the first QTL site 
of plant height detected by WinQTL cartographer 2.5.

References
1. Nagaharu, U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of 

fertilisation. J Japan Bot 7, 389–452 (1935).
2. Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nature genetics 43(10), 1035–1039 (2011).
3. Collard, B., Jahufer, M., Brouwer, J. & Pang, E. An introduction to markers, quantitative trait loci (QTL) mapping and marker-

assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2), 169–196 (2005).
4. Xu, Y. & Crouch, J. H. Marker-assisted selection in plant breeding: from publications to practice. Crop Science 48(2), 391–407 

(2008).
5. Kim, J. S. et al. A sequence-tagged linkage map of Brassica rapa. Genetics 174(1), 29–39 (2006).
6. Kim, H. et al. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. 

BMC Genomics 10(1), 432 (2009).
7. Suwabe, K. et al. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic 

origin of clubroot resistance. Genetics 173(1), 309–319 (2006).
8. Choi, S. R. et al. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 

115(6), 777–792 (2007).
9. Geng, J.-F. et al. A genetic linkage map of nonheading Chinese cabbage. J Am Soc Hort Sci 132, 816–823 (2007).

10. Wu, J. et al. Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese 
cabbage (Brassica rapa L. ssp. pekinensis). Plant and Soil 310(1–2), 25–40 (2008).

11. Lewin, H. A., Larkin, D. M., Pontius, J. & O’Brien, S. J. Every genome sequence needs a good map. Genome research 19(11), 
1925–1928 (2009).

12. Wang, Y. et al. A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly. BMC Genomics 
12(1), 239 (2011).

13. Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and 
evolutionary genomics. Nat Rev Genet 17(2), 81–92 (2016).

14. Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A. & Johnson, E. A. Rapid and cost-effective polymorphism identification and 
genotyping using restriction site associated DNA (RAD) markers. Genome Research 17(2), 240–248 (2007).

15. Shendure, J., Mitra, R. D., Varma, C. & Church, G. M. Advanced sequencing technologies: methods and goals. Nat Rev Genet 5(5), 
335–344 (2004).

16. Davey, J. W. & Blaxter, M. L. RADSeq: next generation population genetics. Brief Funct Genomics 9(5–6), 416–423 (2010).
17. Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS One 3(10), e3376 (2008).
18. Baxter, S. W. et al. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. 

PloS One 6(4), e19315 (2011).
19. Li, Y. & He, M. Genetic mapping and QTL analysis of growth-related traits in Pinctada fucata using restriction-site associated DNA 

sequencing. PLoS One 9(11), e111707 (2014).

http://novogene0.bioon.com.cn/
http://archive-dtd.ncbi.nlm.nih.gov/
http://brassicadb.org
http://brassicadb.org
http://ibi.zju.edu.cn/software/qtlnetwork/download.htm


www.nature.com/scientificreports/

13SCIentIfIC REPORTS | 7:46305 | DOI: 10.1038/srep46305

20. Wang, L. et al. Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass. Sci Rep 5, 16358 
(2015).

21. Fu, B., Liu, H., Yu, X. & Tong, J. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys 
nobilis). Sci Rep 6, 28679 (2016).

22. Chutimanitsakun, Y. et al. Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map 
in barley. BMC Genomics 12(1), 4 (2011).

23. Zhou, X. et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using 
next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics 15(1), 351 (2014).

24. Wang, Y. et al. Molecular mapping of restriction-site associated DNA markers in allotetraploid upland cotton. PLoS One 10(4), 
e0124781 (2015).

25. Xiao, B. et al. SNP-based genetic linkage map of tobacco (Nicotiana tabacum L.) using next-generation RAD sequencing. J Biol Res 
(Thessalon) 22, 11 (2015).

26. Sun, R. et al. A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs 
controlling apple fruit quality. BMC Genomics 16, 747 (2015).

27. Miao, X. X. et al. Simple sequence repeat-based consensus linkage map of Bombyx mori. Proc Natl Acad Sci USA 102(45), 
16303–16308 (2005).

28. Chung, H. et al. Construction of a genetic map based on high-throughput SNP genotyping and genetic mapping of a TuMV 
resistance locus in Brassica rapa. Mol Genet Genomics 289(2), 149–160 (2014).

29. Song, K., Suzuki, J., Slocum, M., Williams, P. & Osborn, T. A linkage map of Brassica rapa (syn. campestris) based on restriction 
fragment length polymorphism loci. Theor Appl Genet 82(3), 296–304 (1991).

30. Mun, J.-H. et al. The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics 9(1), 280 (2008).
31. Mun, J.-H. et al. Sequence and structure of Brassica rapa chromosome A3. Genome Biol 11(9), R94 (2010).
32. Liu, B. et al. Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theor Appl Genet 126(1), 

231–239 (2013).
33. Park, S., Yu, H.-J., Mun, J.-H. & Lee, S.-C. Genome-wide discovery of DNA polymorphism in Brassica rapa. Mol Genet Genomics 

283(2), 135–145 (2010).
34. Teutonico, R. & Osborn, T. Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of  

B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet 89(7–8), 885–894 (1994).
35. Teutonico, R. & Osborn, T. Mapping loci controlling vernalization requirement in Brassica rapa. Theor appl genet 91(8), 1279–1283 

(1995).
36. Nozaki, T., Kumazaki, A., Koba, T., Ishikawa, K. & Ikehashi, H. Linkage analysis among loci for RAPDs, isozymes and some 

agronomic traits in Brassica campestris L. Euphytica 95(1), 115–123 (1997).
37. Lou, P. et al. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 

58(14), 4005–4016 (2007).
38. Soengas, P., Hand, P., Vicente, J., Pole, J. & Pink, D. Identification of quantitative trait loci for resistance to Xanthomonas campestris 

pv. campestris in Brassica rapa. Theor Appl Genet 114(4), 637–645 (2007).
39. Sakamoto, K., Saito, A., Hayashida, N., Taguchi, G. & Matsumoto, E. Mapping of isolate-specific QTLs for clubroot resistance in 

Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 117(5), 759–767 (2008).
40. Cheng, Y. et al. Unconditional and conditional QTL mapping for plant height in non-heading Chinese cabbage. HortScience 44(2), 

268–273 (2009).
41. Yu, S. et al. Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage (Brassica 

rapa ssp. pekinensis). Mol Breeding 23(4), 573–590 (2009).
42. Wang, Q. et al. Quantitative trait loci for photosynthetic pigment concentration in a doubled-haploid population of pak choi 

(Brassica rapa ssp. chinensis var. communis Tsen et Lee). J Hortic Sci Biotech 85(5), 421–426 (2010).
43. Xiao, D. et al. Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach. Plant Physiol 164(3), 

1309–1325 (2014).
44. Lemmon, Z. H. & Doebley, J. F. Genetic dissection of a genomic region with pleiotropic effects on domestication traits in maize 

reveals multiple linked QTL. Genetics 198(1), 345–353 (2014).
45. Li, H. & Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14), 1754–1760 

(2009).
46. Li, H. et al. The sequence alignment/map format and SAM tools. Bioinformatics 25(16), 2078–2079 (2009).
47. Pegadaraju, V., Nipper, R., Hulke, B., Qi, L. & Schultz, Q. De novo sequencing of sunflower genome for SNP discovery using RAD 

(Restriction site Associated DNA) approach. BMC Genomics 14(1), 556 (2013).
48. Van Tassell, C. P. et al. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature 

methods 5(3), 247–252 (2008).
49. Liu, X. et al. Progress of segregation distortion in genetic mapping of plants. Res J Agron 4(4), 78–83 (2010).
50. Kakioka, R., Kokita, T., Kumada, H., Watanabe, K. & Okuda, N. A RAD-based linkage map and comparative genomics in the 

gudgeons (genus Gnathopogon, Cyprinidae). BMC Genomics 14(1), 32 (2013).
51. Huang, X. et al. High-throughput genotyping by whole-genome resequencing. Genome Res 19(6), 1068–1076 (2009).
52. Wang, S., Basten, C. J. & Zeng, Z.-B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, 

Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) (2006).
53. Yang, J. et al. QTL Network: mapping and visualizing genetic architecture of complex traits in experimental populations. 

Bioinformatics 24(5), 721–723 (2008).
54. Van Ooijen, J. W. LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83(5), 

613–624 (1999).

Acknowledgements
This work was supported by the National Program on Key Basic Research Project (No. 2012CB113900), the 
National Natural Science Foundation of China (No. 31372078), the Key Technology Innovation Team of Zhejiang 
Province (No. 2013TD05), and the Grand Science and Technology Special Project of Zhejiang Province (No. 
2016C02051-6).

Author Contributions
L.H. and J.C. conceived the experiments; Y. Y. conducted the experiments and analyzed the results; L.H., F. Z. and 
J. C. drafted the manuscript; all authors reviewed the manuscript.

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm


www.nature.com/scientificreports/

1 4SCIentIfIC REPORTS | 7:46305 | DOI: 10.1038/srep46305

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing Interests: The authors declare no competing financial interests.
How to cite this article: Huang, L. et al. A genome-wide SNP-based genetic map and QTL mapping for 
agronomic traits in Chinese cabbage. Sci. Rep. 7, 46305; doi: 10.1038/srep46305 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	A genome-wide SNP-based genetic map and QTL mapping for agronomic traits in Chinese cabbage
	Introduction
	Results
	The morphological and agronomic traits of Chinese cabbage showed a normal distribution in the F2 population and significant positive correlations
	Construction of a high-resolution genetic map of Chinese cabbage based on high-quality RAD-seq data
	QTL controlling fifteen traits were detected by WinQTL software
	QTL linked to nine traits were detected using QTLNetwork software
	Eleven common QTL were determined by WinQTL and QTLNetwork

	Discussion
	Methods
	Plant material and trait measurement
	Phenotypic characterizations
	RAD library construction and sequencing
	Quality control of sequencing data and mapping reads against the reference genome
	SNP detection and SNP marker-based genetic map construction
	QTL mapping

	Additional Information
	Acknowledgements
	References




