Abstract
The recent developments in the field of social networks shifted the focus from static to dynamical representations, calling for new methods for their analysis and modelling. Observations in real social systems identified two main mechanisms that play a primary role in networks’ evolution and influence ongoing spreading processes: the strategies individuals adopt when selecting between new or old social ties, and the bursty nature of the social activity setting the pace of these choices. We introduce a timevarying network model accounting both for ties selection and burstiness and we analytically study its phase diagram. The interplay of the two effects is non trivial and, interestingly, the effects of burstiness might be suppressed in regimes where individuals exhibit a strong preference towards previously activated ties. The results are tested against numerical simulations and compared with two empirical datasets with very good agreement. Consequently, the framework provides a principled method to classify the temporal features of real networks, and thus yields new insights to elucidate the effects of social dynamics on spreading processes.
Introduction
The recent availability of longitudinal and timeresolved datasets capturing social behaviour has induced a paradigm shift in the way we study, describe, and model the interactions between individuals. It moved the focus from static, timeaggregated, representations to timevarying, dynamical, characterisations of social networks^{1,2,3,4}. Thinking in terms of timevarying systems allows to overcome the limitations arising from the depiction of social ties as fixed and immutable in time^{2,3}. Indeed, it allows to capture a set of complex dynamics driving the evolution of links^{5,6,7,8,9,10,11} and to uncover the effects of such dynamics on processes unfolding on the networks’ fabrics^{12,13,14,15,16,17,18,19,20,21} (see ref. 3 for a recent review).
While social networks are shaped by a multitude of processes^{22}, two particular mechanisms have been found to play central roles in their emergence and evolution^{13,14,23,24,25,26,27}.
The first is the strategy in activation of social ties, i.e. the selection process driving the creation of a new connection, or the activation of an old one. Intuitively, social tie activation is not random. Empirical observations show that people tend to distribute a large fraction of their social acts towards already existing strong ties, while allocating a smaller amount of interactions to create new social relationships or to maintain weak ties^{23,24,25,27,28,29}, reinforcement process. In other words, in time some connections are frequently used in repeated interactions, while others are not.
The second mechanism is burstiness, i.e. the activity of single individuals evolves through heterogeneous interevent time distributions^{30,31,32,33,34,35,36,37,38}. Furthermore, the propensity of individuals to be engaged in a social act per unit time is also heterogeneous. In fact, empirical measures on real datasets, capturing different types of social dynamics, show that activity is heterogeneously distributed among people^{27,39,40,41}. In other words, not only individuals show heterogeneous propensities to be socially active, but their activation is bursty as well, and this bursty activity can dramatically influence the networks’ evolution.
Although the study of these mechanisms has been the focus of a range of works^{13,14,23,24,25,26,27}, a general modeling framework is still missing. Such a framework would allow for the analytical characterization on how the interplay of heterogeneous activity patterns and tie selection mechanisms shapes the evolution of social networks, and in turn the processes taking place on their fabrics.
Here we introduce a model of timevarying networks that allows to simultaneously regulate the relative strength of bursty activity and tie activation strategy. We analytically solve the asymptotic behaviour of the model and find a nontrivial phase diagram ruling the interplay of the two processes. In particular, we observe a regime where burstiness governs the evolution of the network, and a different region where the the dynamics is completely determined by the process of ties selection. If the reuse of previously activated connections is sufficiently strong and people has a tendency to preferably contact the same social circle, burstiness subleads the reinforcement mechanism even in the presence of diverging interevent time fluctuations, having no effect on the network evolution.
The theoretical results are validated showing that analytical predictions fit the empirical observations of two real world datasets: Physical Review B (PRB) collaboration network and Twitter mention network. Interestingly, PRB dataset belongs to a region of the parameter space where burstiness is suppressed and the statistics is Gaussian, while Twitter belongs to a regime of strong burstiness where nonGaussian effects dominate the network evolution. Thus, the framework we propose can be used to classify the temporal features of real networks, and it could provide new insights on the effects of social mechanisms on spreading processes unfolding in social networks.
Results
Activity driven network with burstiness and tie activation strategy
In the framework of activity driven networks^{24,27,39}, a network is formed by N nodes and each node i is assigned with an activity a_{i} drawn from an arbitrary distribution F(a_{i}). The activity sets the activation rate of node i, i.e. the probability a_{i}Δt that a node active in time interval Δt. In general, F(a_{i}) is chosen to be a broad function reflecting the shape of the corresponding distribution in empirical observations^{24,27,39}. Typically a power law distribution i.e. is observed for large activity.
The interevent time τ_{i}, i.e. the time between two subsequent activations of the agent i, is directly connected with the agent activity, since a_{i} = 1/〈τ_{i}〉. With exception of ref. 31, which does not consider the ties selection process, the activitydriven models proposed so far considered a Poissonian distributed τ_{i}. However, in social systems the interevent time distribution of a single agent is strongly heterogeneous and usually spans over several orders of magnitude. In order to capture this bursty nature of human dynamics, we impose that the interevent time τ_{i} for node i is drawn from a powerlaw distribution Ψ(τ_{i}):
where the exponent α characterizes the distribution and ξ_{i} is a lower time cutoff. The latter represents the characteristic timescale for the node i, i.e. , as the γth moment of the distribution Ψ(τ_{i}) reads . If also the ξ_{i} are heterogeneously distributed as
for small ξ_{i}, we obtain a network in which the corresponding activity potential a_{i} is broadly distributed. In particular the activity distribution behaves as for large a_{i}. We note that, instead of introducing an agent dependent cutoff, different definitions are possible, e.g. considering a distribution of waiting times , where since . Our model, therefore, belongs to a novel class of activity driven networks, where the agent time scale is set by a parameter in the waiting time distribution.
When a node is active, it initiates interactions with other nodes in the network. This way the degree k_{i} of a node i, defined as the number of connected peers of i up to time t, is evolving in time. To model this evolution we build on the latest development of the model in which the selection of ties is driven by a reinforcement process^{24,27}. In particular, if at time t a node i of degree k_{i} is active it will contact a new, randomly chosen node with probability p_{i}(k_{i}). Instead, with probability 1 − p_{i}(k_{i}) it reinforces a tie by contacting a node randomly chosen amongst the k_{i} already contacted agents. The form of p_{i}(k_{i}) has been measured and characterized^{27} in several datasets as:
where β_{i} measures the strength of the reinforcement process, and c_{i} sets the characteristic number of ties that an individual is able to maintain before the reinforcement process takes place. Though simple, the reinforcement mechanism provides a reliable description of real world datasets and allows for analytical tractability.
In our simulations, initially, for each node i we set the integrated degree k_{i} = 0 and assign a lower cutoff ξ_{i} according to distribution Φ(ξ_{i}) in Eq. (2). The evolution starts by extracting, for each node i, a time τ_{i} at which the node will get active for the first time. We then activate one node at a time accordingly to their next activation time. When active, an agent i selects a randomly chosen other agent in the network with probability p(k_{i}) = (1 + k_{i}/c)^{−β}; in this case the value of k_{i} is increased by one both for the connecting and the connected nodes. Otherwise, with probability 1 − p_{i}(k_{i}), the agent i interacts with a randomly chosen neighbor node which has been already connected to i. For simplicity we fix β and c constant for all nodes. After each iteration the interaction of node i is removed and a new activation time is selected by an interevent time τ_{i} drawn from the distribution in Eq. (1).
Single agent approach
In the following we apply a single agent approximation, in which agents can only attach to other nodes and never get contacted. We can write the master equation (ME) for the degree evolution, and analytically solve it in the asymptotic limit of large times. The activity is fixed to the value where ξ_{0} is the characteristic time of the considered agent. In particular, let us define Q(k, t) as the probability for an agent active at time t to have degree k right after t. The ME then reads as
The first term accounts for the probability that the active agent contacts a new node at time t, while the second term represents the probability of connecting to an already contacted neighbor. We evaluate the probability P(k, t) for a node to have degree k at the time t, by integrating Eq. (4) over all the possible waiting time values, i.e.
The solution to these equations for P(k, t) is, in the asymptotic regime (see Methods for details):
where f_{αβ}(x) is a nonGaussian scaling function (see ref. 42), and A′_{α,β}, A_{β}, and B are constants depending on α and β. Specifically, A′_{α,β} and A_{β} set the width of the nonGaussian and Gaussian distributions respectively, while B is the drift velocity of the peak of P(k, t). In other words, the former constants modulate the heterogeneity of the interactions of an individual, while B/ξ_{0}, sets the pace at which the degree of a node grows in time. How these constants can be calculated is described in the Methods section.
As a consequence of Eq. (6), the growth of the average degree 〈k(t)〉 is:
This solution leads to a dynamical phase diagram of the model, summarized in Fig. 1. For α < 1, in the Strong Burstiness Regime (StrBR) burstiness strongly affects the dynamics. Here the scaling function f_{αβ}(x) is not Gaussian and the exponent α/(1 + β), leading the growth of 〈k(t)〉, depends both on the burstiness and on the reinforcement exponents, β and α respectively. On the other hand, for α > (2β + 2)/(2β + 1), we have a Suppressed Burstiness Regime (SupBR), where the dynamics is independent of α. In particular, the reinforcement driven behavior, described in ref. 27, is fully recovered with a Gaussian scaling function and a connectivity growing as t^{1/(1+β)}. Finally, for 1 < α < (2β + 2)/(2β + 1) the average connectivity grows as t^{1/(1+β)} just as in the systems with suppressed burstiness. In this regime, the scaling function is not Gaussian and its scaling length depends on the burstiness exponent α. We call this phase the Weak Burstiness Regime (WBR). The non trivial dependence on β and α of the transition line between WBR and SupBR highlights the complex interplay between burstiness and tie reinforcement occurring for 1 < α < 2. Figure 2 shows that the curve α = (2β + 2)/(2β + 1) marks a transition from a Gaussian to a non Gaussian scaling function, providing a numerical support to the analytical asymptotic results. In particular, in Fig. 2(a) panel the left tail of the curve is slowly increasing with time, and the asymmetric distribution cannot be fitted with a Gaussian. On the other hand, in Fig. 2(b) we observe the opposite behavior: the long time curve is slowly converging to a normal PDF.
Multiagent simulations
Interestingly, the singleagent model provides a qualitatively correct description even of the multiagent case, where different agents display different activities (see Fig. 3). In particular, one can suppose that the degree distribution Eq. (6) holds for each node of the system if one replaces a_{0}t with (a + 〈a〉)t. In this case at and 〈a〉t represent the contribution to the growth of the degree induced by the node activity and by the activity of the rest of the network respectively (see refs 27,43 for an explicit calculation in the case without burstiness). Simulations confirm that the approximation works quite well, however, larger evolution times are required for observing the asymptotic scaling behavior. The same hypothesis allows to evaluate the degree distribution among different agents. In particular, if the activity a is distributed according to Eq. (2), at a given time t the degrees, for large k, are distributed as:
As shown in Fig. 3(b) inset, the simulation results are well described by the asymptotic behavior in Eq. (8).
Real world dataset
We now compare the asymptotic behavior predicted by the model with real world datasets. In particular we consider Twitter Mentions Network and the citation network of PRB, see Methods for details.
We measure the α exponent leading the interevent time distribution with the procedure found in ref. 44. In Twitter the distribution approximately follows a powerlaw (see Fig. 4(a) inset) with , while the exponents and characterizing the tie activation strategy and the activity distribution have been measured in ref. 27. Since for Twitter α < 1, we expect the system to fall in the StrBR region. In Fig. 4(b) we verified that, at different evolution times, P(k, t) is not Gaussian. Moreover, the dynamical scaling of P(k, t) and the asymptotic behaviors of 〈k(t)〉 and ρ(k) follow the predicted behavior in Eqs (7,8). In the PRB dataset we find α = 2.06(10) as shown in Fig. 5(a). This system, therefore, falls in the SupBR region of the phase diagram. Consistently, in Fig. 5(b) we show that the analytical Gaussian prediction of Eq. (6) correctly catches the asymptotic behavior of P(k, t). In this case the behavior of 〈k(t)〉 and ρ(k) is described by the model without burstyness as shown in ref. 27.
Discussion
In summary, we introduced a new model, which is able to capture two key aspects driving the evolution of social networks: tie activation strategies and burstiness. We solved the ME of the model in the large time regime and in unsaturated degree approximation , analytically exploring a complex phase space, where changes in the relative importance between the two mechanisms are linked to different degree distributions and emerging dynamics.
The proposed framework allows to classify the dynamical features of real social networks and thus anticipate their effects on spreading processes taking place on their fabrics. In particular, the model could help to clarify the role of burstiness on contagion phenomena, which is currently subject of a heated debate. It can also potentially be extended further by including other social processes such as the presence of communities or aging of nodes. Furthermore, in real world networks links appear with finite lifetimes and nodes typically enter or leave from the system during the network evolution. Our modelling framework does not include these dynamics. Earlier results^{45} of node removal processes in activitydriven network models suggest that after an initial period the network arrives to a stationary state, where its overall characteristics become time invariant. We leave the inclusion of such important processes in our model for future investigations.
Methods
Dataset
The analyzed dataset is the Twitter firehose (i.e. all the citations done from all the users) from January the 1st to September the 31st of 2008. The dataset consists of 536,210 nodes performing about 160 M events and connected by 2.6 M edges.
Since the data are daily aggregated we infer the interevent time distribution for h by assuming the events done by a node within a single day to be homogeneously distributed during the 24 hours of the day. As we are measuring the α exponent leading the in the right tail of the distribution this assumption does not change the resulting α. The α,ν, and μ exponents are measured using the procedure found in ref. 44 and reads α = 1.946(14), ν = 1.24(3), and μ′ = 2.03(5) respectively.
The PRB dataset contains data from from January 1970 to December 2007. The data are cleaned so as to not take into account the papers with a single author. Moreover, we do not include large collaborations in our analysis (papers with more than ten authors). Here data are naturally aggregated by month and we remark that to avoid problems of name disambiguation we used the data generated from ref. 46. To obtain the exponent α we apply to Ψ(τ_{i}) the same procedure^{44} of the Twitter case. In PRB we measure α = 2.06(10) so that the dataset belongs to the suppressed burstiness regime.
In both cases, to measure the reinforcement process and specifically the β exponent we measure the attachment probability on nodes featuring similar stories, i.e. with a comparable activity a_{i} (i.e. the number of events actually engaged by the node i) and final degree k_{i} (see ref. 27 for details). We then refer the reader to the work in ref. 27 for the F(a) and the ρ(k) distributions analysis.
Master Equation in the single agent approximation
In the calculation of P(k, t) within the single agent approximation we perform the Fourier Transform of Eq. (4):
where is the transform of Q(k, t) and . By taking the limit k → ∞ of Eq. (9) we end up with
The issue is now to compute the integral appearing in Eq. (10). For ω → 0 we have
where and
In Eq.(10) keeping the leading orders for large k and small ω the first integral can be approximated to the zeroth order in ω while the second should be expanded as Eq. (11):
We now introduce the new variable h = k^{1+β}, so that and for large h . We then have:
Introducing now , the Fourier Transform of with respect h, we have:
Let us now perform the Fourier Transform with respect to h and t also for Eq. (5). We get:
For α < 1, we can plug Eq. (16) into Eq. (15) and keeping the first order for ω → 0 and q → 0 we have:
so that:
This equation is the same of Eqq. (8) discussed in details in ref. 42, so that we can extract the asymptotic solution:
where f_{α} is a Lévy function. Reintroducing the degree variable k = h^{1/(1+β)} we obtain the first of Eq. (6).
For α > 1, we plug again Eq. (16) into Eq. (15) and we have:
where a_{1} = α/(α − 1). Here we have to take into account the second order for small ω and q. Indeed the first order term in q can be subtracted by introducing the variable (where B is a numerical constant). In the direct space, this corresponds to a shift of the h variable h′ = h − vt with . Introducing in (20) the shifted variables, we now get:
Eq.(21) displays different behaviors whether, for q → 0 and ω → 0, the term is dominant with respect to the integral. This can be discussed introducing a scaling hypothesis in Eq.(21). In particular, we expect with γ < 1. In the Fourier space we get:
Comparing the second integral with the final result we obtain the scaling form of the Fourier transform of P(h′ + vt, t):
Let us now focus on the integral in Eq.(21). First we can approximate , as we expect . Then we can integrate it by parts and write as getting:
Now we insert the scaling form of of Eq. (22). Introducing first ω′t = z and then , we get:
where is a new scaling function. Putting Eq.s (25) and (22) () in Eq. (21) we get:
Clearly from Eq.(26) we have and, since , we get that is always subleading with respect . From Eq. (26) we get that γ can have the following values: if the term dominates over ; or if B(q,ω′) dominates.
In particular, if , we have and . In this case, indeed, since , we get , while . The scaling form of P(k, t) can be recovered taking into account that the maximum of P(h, t) grows as h = vt and we can expand P(h, t) with respect to the small variable :
where the dependence on ξ_{0} is determined by the fact that in Eq. (26) ω′ always occurs through ω′ξ_{0}. Let us change the variable h into taking into account that . We get
So we obtain the second of Eq. (6).
Otherwise, if , , dominates over . In particular in Eq. (20) we can neglect the term . So that returning to the direct space and reintroducing the variable k we get:
Eq. (29) has been studied in ref. 27 showing that P(k, t) is a Gaussian function described by the third of Eq. (6).
Degree distribution ρ(k)
The degree distribution ρ(k) can be evaluated in the hypothesis that P(k, t) display the behavior of Eq. (6) even in the multisite case. Clearly, at fixed time t, we have:
where F(ξ_{0}) is the distribution of the lowercut off ξ_{0} of the interevent times. We will consider a distribution of ξ_{0} going as F(ξ) ∝ ξ^{ν−1} corresponding to an activity distribution behaving as: F(a) ∝ a^{−(ν+1)} indeed a ∝ ξ^{−1}. For the case α < 1 we get:
where is a constant. For α > 1 we note that in the large t limit the degree distributions tends to so that we obtain:
Additional Information
How to cite this article: Ubaldi, E. et al. Burstiness and tie activation strategies in timevarying social networks. Sci. Rep. 7, 46225; doi: 10.1038/srep46225 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Butts, C. T. A relational event framework for social action. Sociological Methodology 38, 155–200 (2008).
Holme, P. & Saramäki, J. Temporal networks. Physics Reports 519, 97–125 (2012).
Holme, P. Modern temporal network theory: a colloquium. The European Physical Journal B 88, 1–30 (2015).
Gonçalves, B. & Perra, N. Social phenomena: From data analysis to models (Springer, 2015).
Liu, S., Perra, N., Karsai, M. & Vespignani, A. Controlling contagion processes in activity driven networks. Physical Review Letters 112, 118702 (2014).
Isella, L. et al. What’s in a crowd? analysis of facetoface behavioral networks. Journal of theoretical biology 271, 166–180 (2011).
Grindrod, P., Parsons, M. C., Higham, D. J. & Estrada, E. Communicability across evolving networks. Physical Review E 83, 046120 (2011).
Praprotnik, S. & Batagelj, V. Spectral centrality measures in temporal networks. Ars Mathematica Contemporanea 11 (2015).
Ghoshal, G. & Holme, P. Attractiveness and activity in internet communities. Physica A: Statistical Mechanics and its Applications 364, 603–609 (2006).
Saramäki, J. & Moro, E. From seconds to months: an overview of multiscale dynamics of mobile telephone calls. The European Physical Journal B 88, 1–10 (2015).
Saramäki, J. et al. Persistence of social signatures in human communication. Proceedings of the National Academy of Sciences 111, 942–947 (2014).
Liu, S.Y., Baronchelli, A. & Perra, N. Contagion dynamics in timevarying metapopulation networks. Physical Review E 87, 032805 (2013).
Miritello, G., Moro, E. & Lara, R. Dynamical strength of social ties in information spreading. Physical Review E 83, 045102 (2011).
Starnini, M. & PastorSatorras, R. Temporal percolation in activitydriven networks. Physical Review E 89, 032807 (2014).
Valdano, E., Ferreri, L., Poletto, C. & Colizza, V. Analytical computation of the epidemic threshold on temporal networks. Physical Review X 5, 021005 (2015).
Rocha, L. E. & Blondel, V. D. Bursts of vertex activation and epidemics in evolving networks. PLoS Comput Biol 9, e1002974 (2013).
Scholtes, I. et al. Causalitydriven slowdown and speedup of diffusion in nonmarkovian temporal networks. Nature communications 5 (2014).
Han, D., Sun, M. & Li, D. Epidemic process on activitydriven modular networks. Physica A: Statistical Mechanics and its Applications 432, 354–362 (2015).
Morris, M. & Kretzschmar, M. Concurrent partnerships and the spread of hiv. Aids 11, 641–648 (1997).
Rocha, L. E. & Masuda, N. Random walk centrality for temporal networks. New Journal of Physics 16, 063023 (2014).
Kivelä, M. et al. Multiscale analysis of spreading in a large communication network. Journal of Statistical Mechanics: Theory and Experiment 2012, P03005 (2012).
Jackson, M. O. et al. Social and economic networks vol. 3 (Princeton university press: Princeton, 2008).
Onnela, J.P. et al. Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences 104, 7332–7336 (2007).
Karsai, M., Perra, N. & Vespignani, A. Time varying networks and the weakness of strong ties. Scientific Reports 4, 4001 (2014).
Miritello, G., Lara, R., Cebrian, M. & Moro, E. Limited communication capacity unveils strategies for human interaction. Scientific Reports 3, 1950 (2013).
Gonçalves, B., Perra, N. & Vespignani, A. Modeling users’ activity on twitter networks: Validation of dunbar’s number. PLoS ONE 6, e22656 (2011).
Ubaldi, E. et al. Asymptotic theory for the dynamic of networks with heterogeneous activity and social ties allocation. Scientific Reports 6, 35724 (2016).
Granovetter, M. The strength of weak ties: A network theory revisited. Sociological Theory 1, 201–233 (1983).
Weng, L., Karsai, M., Perra, N., Menczer, F. & Flammini, A. Attention on weak ties in social and communication networks. arXiv preprint arXiv:1505.02399 (2015).
Malmgren, R. D., Stouffer, D. B., Motter, A. E. & Amaral, L. A. N. A poissonian explanation for heavy tails in email communication. Proceedings of the National Academy of Sciences 105, 18153–18158 (2008).
Moinet, A., Starnini, M. & PastorSatorras, R. Burstiness and aging in social temporal networks. Physical Review Letters 114, 108701 (2015).
Goh, K.I. & Barabási, A.L. Burstiness and memory in complex systems. EPL (Europhysics Letters) 81, 48002 (2008).
Vázquez, A. et al. Modeling bursts and heavy tails in human dynamics. Physical Review E 73, 036127 (2006).
Barabasi, A.L. The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005).
Karsai, M., Kaski, K., Barabási, A.L. & Kertész, J. Universal features of correlated bursty behaviour. Scientific Reports 2, 397 (2012).
Jo, H.H., Karsai, M., Kertész, J. & Kaski, K. Circadian pattern and burstiness in mobile phone communication. New Journal of Physics 14, 013055 (2012).
Karsai, M., Kaski, K. & Kertész, J. Correlated dynamics in egocentric communication networks. PLoS ONE 7, e40612 (2012).
Karsai, M. et al. Small but slow world: How network topology and burstiness slow down spreading. Physical Review E 83, 025102 (2011).
Perra, N., Gonçalves, B., PastorSatorras, R. & Vespignani, A. Activity driven modeling of time varying networks. Scientific Reports 2, 469 (2012).
Vincenzo Tomasello, M., Perra, N., Juan Tessone, C., Karsai, M. & Schweitzer, F. The role of endogenous and exogenous mechanisms in the formation of R%D networks. arXiv preprint arXiv:1403.4106 (2014).
Ribeiro, B., Perra, N. & Baronchelli, A. Quantifying the effect of temporal resolution on timevarying networks. Scientific Reports 3, 3006 (2013).
Burioni, R., Gradenigo, G., Sarracino, A., Vezzani, A. & Vulpiani, A. Rare events and scaling properties in fieldinduced anomalous dynamics. Journal of Statistical Mechanics: Theory and Experiment 2013, P09022 (2013).
Starnini, M. & PastorSatorras, R. Topological properties of a timeintegrated activitydriven network. Physical Review E 87, 062807 (2013).
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Powerlaw distributions in empirical data. SIAM Review 51, 661–703 (2009).
Laurent, G., Saramäki, J. & Karsai, M. From calls to communities: a model for time varying social networks. Eur. Phys. J. B 88, 301 (2015).
Radicchi, F., Fortunato, S., Markines, B. & Vespignani, A. Diffusion of scientific credits and the ranking of scientists. Physical Review E 80, 056103 (2009).
Acknowledgements
We warmly thank A. Vespignani for useful suggestions and discussions.
Author information
Authors and Affiliations
Contributions
All authors (E.U., A.V., M.K., N.P. and R.B.) contributed to all aspects of this work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Ubaldi, E., Vezzani, A., Karsai, M. et al. Burstiness and tie activation strategies in timevarying social networks. Sci Rep 7, 46225 (2017). https://doi.org/10.1038/srep46225
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/srep46225
This article is cited by

Stochastic sampling effects favor manual over digital contact tracing
Nature Communications (2021)

Emergence and evolution of social networks through exploration of the Adjacent Possible space
Communications Physics (2021)

Spreading of performance fluctuations on realworld project networks
Applied Network Science (2021)

Epidemic spreading in modular timevarying networks
Scientific Reports (2018)

Dynamics on networks: competition of temporal and topological correlations
Scientific Reports (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.