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Maxdenominator Reweighted 
Sparse Representation for Tumor 
Classification
Weibiao Li1, Bo Liao1, Wen Zhu1, Min Chen1, Li Peng1, Xiaohui Wei1, Changlong Gu1 & Keqin Li2

The classification of tumors is crucial for the proper treatment of cancer. Sparse representation-based 
classifier (SRC) exhibits good classification performance and has been successfully used to classify 
tumors using gene expression profile data. In this study, we propose a three-step maxdenominator 
reweighted sparse representation classification (MRSRC) method to classify tumors. First, we extract a 
set of metagenes from the training samples. These metagenes can capture the structures inherent to 
the data and are more effective for classification than the original gene expression data. Second, we use 
a reweighted ll1 regularization method to obtain the sparse representation coefficients. Reweighted ll1 
regularization can enhance sparsity and obtain better sparse representation coefficients. Third, we 
classify the data by utilizing a maxdenominator residual error function. Maxdenominator strategy can 
reduce the residual error and improve the accuracy of the final classification. Extensive experiments 
using publicly available gene expression profile data sets show that the performance of MRSRC is 
comparable with or better than many existing representative methods.

Accurate tumor classification is beneficial for cancer treatment. A tumor can be classified as benign, premalig-
nant, or malignant, of which only a malignant tumor can be called cancer. Thus, a reliable and precise classifica-
tion of tumors is valuable for accurate diagnosis.

Traditional histopathological approach classifies tumors by microscopic tissue examination. However, this 
process fails to classify many cancer cases. Many classification methods using gene expression profile data have 
been adapted to classify tumors. Golub et al.1 successfully distinguished acute myeloid leukemia (AML) from 
acute lymphocytic leukemia (ALL) using gene expression profile data. Furey et al.2 classified cancer tissue samples 
by support vector machines (SVMs) with gene expression profile data. Bhattacharjee et al.3 precisely classified 
human lung humors. Ship et al.4 predicted lymphoma by gene expression profile data and supervised machine 
learning. Huang et al.5 used independent component analysis (ICA)-based penalized discrimination method to 
classify tumors. Ghosh et al.6 used least absolute shrinkage and selection operator method to classify and select 
biomarkers in genomic data. All these methods will suffer from overfitting when used to classify tumors.

Sparse representation has been attracting much attention because of the progress in 1 norm 
minimization-based methods, such as basis pursuit7 and compressive sensing theory8–10. Wright et al.11 proposed 
a sparse representation-based classification (SRC) method for face recognition. Common two-stage machine 
learning methods initially create a training model for testing, and then the samples are tested. By contrast, SRC 
uses a sparse linear combination of the training samples to represent the testing sample. In this model, a 1 norm 
least square method12 is applied to search for the sparse representation coefficient which will decide the type of 
the test sample. This essential characteristic would prevent the SRC to perform the training and testing steps, 
reducing the overfitting problem. Hang et al.13 used SRC to classify tumors and obtained very good experimental 
results.

However, the original training samples of gene expression profile data may be not efficient to represent the 
input testing samples. Brunet et al.14 demonstrated that metagenes can recover meaningful biologic information 
from gene expression profile data. A metagene which can cover the structure inherent to the data is a linear 
combination of the gene expression profiles of samples. Metagenes can be obtained using singular value decom-
position (SVD), principal component analysis (PCA), and nonnegative matrix factorization (NMF). Brunet et 
al.14 discovered the metagenes by NMF and used these metagenes to cluster the samples, yielding very good 
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results. Zhen et al.15 used SVD or NMF to capture the metagenes from the gene expression profile data. In the 
current study, we determined the metagenes using SVD. Several studies have reported on the extraction of the 
metagenes. NMF was used in ref. 14 to decompose gene expression patterns as an additive combination of a 
few metagene patterns. The NMF metagenes could overlap and thus expose the participation of a single gene in 
multiple pathways or processes. ICA was applied in ref. 16 to gene expression data, and a linear model, which 
was termed “expression modes,” was derived. In this model, the expression of each gene is a linear function of the 
expression modes. The dominant expression modes were experimentally found to be related to distinct biolog-
ical function, such as the phase of the cell cycle or the mating response. SVD was applied in ref. 17 to transform 
genome-wide expression data from “genes” ×​ “arrays” space to reduced diagonalized “eigengens” ×​ “eigenarrays” 
space, where the eigengenes (or metagenes) are unique orthonormal superposition of the genes (or samples). 
SVD was applied to capture the weighted metagenes18, then the test sample is represented as the linear combina-
tion of these weighted metagenes. These analytical results show that using metagenes to replace gene expression 
data can produce better results for classification.

In addition, 1 norm is just as a replacement of the 0 norm in the objective function of sparse representation. 
However, 1 and 0 norms significantly differ. According to the definitions of 1 and 0 norms, larger coefficients 
are penalized more heavily in the 1 norm than smaller coefficients, contrary to the more democratic penalization 
of the 0 norm. Candès et al.19 addressed this problem by proposing a reweighted 1 norm minimization method 
for signal recovery. In the current study, we also use the reweighted 1 norm minimization strategy to find the 
sparse representation coefficients.

We propose a maxdenominator residual error function which takes full advantage of the linear relation 
between test sample and metagenes to capture the classification from the sparse representation coefficients.

We first extract a set of metagenes from the training samples. Each testing sample is represented as a linear 
combination of metagenes, and the linear combination coefficients of metagenes are captured by reweighted 1 
norm minimization strategy. Then, we use a maxdenominator residual error function to obtain the classification 
result. Our method is named as Maxdenominator Reweighted Sparse Representation Classification (MRSRC).

The rest of this paper is organized as follows. In the Result Section, the experiments will be presented, and the 
performance of the proposed method will be compared with those of several common methods for tumor clas-
sification. In the Discuss Section, the results are discussed, and conclusions are drawn. Finally, we will describe 
the metagene model and briefly review SRC. We will also introduce the reweighted sparse representation method 
and the maxdenominator residual error function. We will also describe the details of MRSRC, including its object 
function and the solution algorithm in the Method Section.

Results
In this section, we run an experiment to evaluate the performance of the proposed MRSRC method. The 
experiment is divided into five parts. The first part involves the two-class classification given in the Two-Class 
Classification Section. The second part is the multi-class classification given in the Multiclass Classification 
Section. The third part comprises the different feature dimensions given in the Experiment with different num-
ber of genes Section. The fourth part involves the cross-validation given in the Comparison of CV performance 
Section. The fifth part visually presents the sparse representation coefficients given in the Visualization of Sparse 
Representation Coefficients Section. The proposed method is compared with several state-of-the art methods, 
such as the widely used LDA +​ SVM20, ICA +​ SVM21, SRC13, and SVD +​ MRSC15, MACE22, OTSDF22. The for-
mer two methods are models based on SVM as a classification and accompanied by feature extraction. We use 
these two methods as the baseline. The latter two methods are template based and get very good performance for 
classification of tumors.

In our proposed MRSRC method, three parameters should be set, namely, positive regularization parameter 
λ​, stability parameter ε, and maximum reweighted iterations parametermax. According to a previous study23, the 
value of λ​ is given as follows:

λ λ= .0 01 , (1)max

λ = ∞X x2 , (2)
T

max

where µ µ=∞ max i  denotes the ∞  norm of the vector μ. For the stability parameter ε, as a rule of thumb, ε 
should be slightly smaller than the expected nonzero magnitudes of θ. From Fig. 1, we can set ε =​ 0.1 in this paper. 
Finally, we set the maximum reweighted iterations parameter = 4max . These values were selected because much 
of the benefit comes from the first few reweighting iterations, and the added computational cost for improved 
sparse representation coefficients is quite moderate.

The SVM kernel parameters for the LDA +​ SVM and ICA +​ SVM algorithms are determined by 10-fold cross 
validation. In addition, we simply extract c −​ 1 (where c denotes the number of classes) new features to train the 
classifier, because LDA can find a maximum of c −​ 1 meaningful projection vectors in the subspace. Moreover, the 
determination of the number of independent components of ICA is also an empirically dependent work. Here, 
we use the same method as suggested by ref. 24 Zheng et al. The SRC and MSRC methods also need parameter 
λ to control sparsity. The parameters of methods of MACE and OTSDF are set as recommended by22 Wang et al.

To avoid the effects of imbalanced training set, we use Balance Division Method (BDM) to divide each original 
data set into balanced training set and test set. For this BDM, Q samples from each subclass are randomly selected 
to be used for training set, and the rest are used for test set. Here, Q must be an integer number. For example, if we 
set Q to 5, then 5 samples per subclass randomly selected are used as training set and the rest are assigned to the 
test set. Then we evaluate the performance of seven methods on a balanced split data set. We randomly select 
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p =​ 5 to −min( c ) 1i  samples per subclass as training set and use the rest for testing to guarantee that at least one 
sample in each category can be used for test. In the test, p denotes the number of training samples per classes, and 
min( c )i  denotes the minimum number of subclass set of samples in the training data. The training/testing are 
performed 10 times, and the average classification accuracies are presented.

To evaluate the classification performance in imbalanced split training/testing sets, we perform a 10-fold strat-
ified CV on a tumor subtype data sets. All samples are randomly divided into 10 subsets on the basis of stratified 
sampling: nine subsets are used for training, and the remaining samples are used for testing.

We determine the accuracy, sensitivity, and specificity to measure the performance for a fair experimental 
evaluation. These metrics are defined as follows:

=
+

+ + +
Accuracy TN TP

TN TP FN FP
,

(3)

=
+

Sensitivity TP
TP FN

,
(4)

=
+

Specificity TN
TN FP

,
(5)

where true positives (TP) and true negatives (TN) denote the ratio of samples that are correctly classified into 
the positive and negative groups, respectively. False negatives (FN), and false positives (FP) denote the incor-
rectly classified true positive samples into the negative group and true negative samples into the positive group, 
respectively.

Two-Class Classification.  In this section, four publicly available microarray data sets are used to compare 
the performance of the methods. These data sets are acute leukemia data set1, colon cancer data set25, gliomas data 
set26, and diffuse large B-cell lymphoma (DLBCL) data set27 (please see supplementary information for data sets).

The acute leukemia data set contains 72 samples of 7,129 genes. The target class has 2 states, including 47 acute 
lymphoblastic leukemia patients and 25 acute myelogenous leukemia patients. The colon cancer data set includes 
40 tumor and 22 normal colon tissue samples and contains the expression of 2,000 genes with the highest mini-
mal intensity across 62 tissues. The gliomas data set consists of 50 samples with two subclasses (glioblastomas and 
anaplastic oligodendrogliomas), and each sample contains 12,625 genes. The DLBCL data set contains 77 samples 
of 7,129 genes. The target class has 2 states, including 58 diffuse large b-cell lymphoma samples and 19 follicular 
lymphoma samples. Table 1 provides the details of the data sets.

The average prediction accuracies of the classification of the balanced training set and test set are shown in 
Fig. 2. The MRSRC exhibits encouraging performance. The MRSRC achieves the best classification accuracy in all 
cases for the colon cancer data (Fig. 2b). Although gliomas are difficult to classify, the proposed approach can still 

Figure 1.  Optimal classification accuracy of MRSRC on four binary class dataset. 

Data set Classes Genes
The number of 

samples

Acute leukemia data 2 7,129 72

Colon cancer data 2 2,000 62

Gliomas data 2 1,2625 50

DLBCL data 2 7,129 77

Table 1.  The descriptions of four data sets for two-class classification.



www.nature.com/scientificreports/

4Scientific RePorTS | 7:46030 | DOI: 10.1038/srep46030

achieve the highest classification accuracy via 21 (81%) samples per subclass used for training (Fig. 2c). MRSRC 
also achieves relatively high prediction accuracies in most cases in the acute leukemia and DLBCL data sets 
(Fig. 2a and d). Notably, the classification accuracies of LDA +​ SVM and ICA +​ SVM drop quickly as the number 
of samples considered for training increases. These results are consistent with the observations in the literature22.

We illustrate the experimental results by showing the sensitivity and specificity of the proposed MRSCR, SCR, 
and MSCR in Tables 2 and 3 when the numbers of metagenes per subclass are fixed to 10.

The experimental results and analysis show that the proposed MRSRC is highly competitive for two-class 
tumor classification.

Figure 2.  Comparison of prediction accuracy on four binary classification datasets by varying the number 
of samples from per subclass. 

Data set SRC MSRC MRSRC

Acute leukemia data 94.00% 93.33% 94.00%

Colon cancer data 80.00% 85.83% 87.50%

Gliomas data 67.22% 67.78% 67.78%

DLBCL data 96.67% 93.33% 93.33%

Table 2.  The classification sensitivity of two-class classification when the numbers of metagenes per 
subclass are fixed as 10.

Data set SRC MSRC MRSRC

Acute leukemia data 93.24% 94.59% 95.41%

Colon cancer data 77.33% 84.67% 85.33%

Gliomas data 70.00% 73.33% 72.50%

DLBCL data 88.54% 89.38% 88.96%

Table 3.   The classification specificity of two-class classification when the numbers of metagenes per 
subclass are fixed as 10.
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Multiclass Classification.  In this section, four multiclass data sets are used to further investigate the perfor-
mance of the MRSRC. The experimental setup is the same as that for the binary classification case. The data sets 
include the small, round blue cell tumors (SRBCT)28, ALL29, MLLLeukemia30, and LukemiaGloub1 (please see 
supplementary information for data sets).

The SRBCT data set is composed of four types of tumors. This data set includes 83 samples with 2,308 
genes. The ALL data set consists of 248 samples with six subclasses. Each sample contains 12,625 genes. The 
MLLLeukemia data set consists of 72 samples with three subclasses. Each sample contains 12,582 genes. The 
LukemiaGloub data set consists of 72 samples with three subclasses. Each sample contains 7,129 genes. Table 4 
provides details of the data sets.

The average prediction accuracy of the classification is shown in Fig. 3. The MRSRC achieves the best clas-
sification accuracy in all cases in the SRBCT data and LukemiaGloub data (Fig. 3a and d). In the ALL experi-
ments (Fig. 3b), the proposed MRSRC shows no evident advantages over SRC and MSRC. The MRSRC achieves 
extremely high prediction accuracy in most cases for the MLLLeukemia data set (Fig. 3c). As shown by the data 
dimensions in the four experiments, the MRSCR offers more advantages and more stability than other methods.

Experiment with different numbers of genes.  In this subsection, we evaluate the performance of the 
seven methods with different feature dimensions on eight tumor data sets. For the training data, 10 samples per 
subclass are randomly selected, whereas the remaining samples are used for the test. We perform the test with 
various numbers of genes, starting from 102 to 352 genes in increments of 5. The top genes are selected from each 
data set by applying the Relief-F algorithm31 to the training set.

Data set Classes Genes samples

SRBCT data 4 2,308 83

ALL data 6 12,625 248

MLLLeukemia data 3 12,582 72

LukemiaGloub data 3 7,129 72

Table 4.   The descriptions of four data sets for multiclass classification.

Figure 3.  Comparison of prediction accuracy on four multiclass classification datasets by varying the 
number of samples from per subclass. 
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Figure 4 presents the result of the binary classification. The MRSRC outperforms the other methods in terms 
of prediction accuracy for all data sets, except for the DLBCL data set (Fig. 4d). The gene selection of the MRSRC 
is better than that of other methods for the acute leukemia, colon, and gliomas data sets (Fig. 4a,b and c). The 
MRSRC, SRC, and MSRC share the same curve trend. Evidently, the MRSRC, SRC, and MSRC consistently out-
perform LDASVM, ICASVM, MACE, and OTSDF in all data sets.

Figure 5 shows the average prediction accuracy of multiclass classification. As shown in Fig. 5, the MRSRC 
is robust with respect to the number of top-ranked genes. Selection can obviously improve the classification 
accuracies of all methods in the four data sets. The results show remarkable progress, especially for LDASVM. 
This result is due to the fact that LDA can capture a large amount of discriminating information in the multiclass 
classification task and significantly reduce the over-fitting phenomenon in comparison with its performance in 
the binary classification task.

Comparison of CV performance.  To evaluate the classification performance of the MRSRC, SRC, and 
MSRC in the imbalanced split training/testing sets, we perform a 10-fold stratified CV on the tumor subtype data 
set. All samples are randomly divided into 10 subsets on the basis of stratified sampling: nine subsets are used 
for training, and the remaining samples are used for testing. This evaluation process is repeated 10 times, and the 
average result is presented. The 10-fold CV results are summarized in Tables 5, 6 and 7.

Table 5 Shows that the MRSRC achieves the best accuracy in the seven data sets. Especially in the case of 
multiclass classification, the MRSRC shows superior performance in all data sets. Table 6 shows that the MRSRC 
achieves the highest value in all eight data sets. Table 7 shows that the MRSRC achieves the highest specificity in 
all the multiclass.

We can conclude that the MRSRC is outstanding in the imbalance split training/testing sets.

Visualization of Sparse Representation Coefficients.  To further analyze the results, we compared the 
value of coefficients of MSRC and MRSRC for the eight data sets. Figures 6 and 7 show the value of the sparse rep-
resentation coefficients of the training samples. A test samples is represented as the linear relation of metagenes of 
such training samples. From Figs 6 and 7, we can observe that MRSRC obtains better sparse representation coef-
ficients. MRSRC demonstrates more coefficients, which are equal to zero and are close to the theoretical results.

Figures 6 and 7 Also show that the test sample can be represented as the linear combination of metagenes. The 
figures illustrate that metagenes can recover meaningful biological information from gene expression profile data 

Figure 4.  Comparison of accuracy on four binary classification datasets by varying the number of top 
selected genes. 
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Figure 5.  Comparison of accuracy on four multiclass classification datasets by varying the number of top 
selected genes. 

Data set SRC MSRC MRSRC

Acute leukemia data 83.87% 83.87% 83.87%

Colon cancer data 95.83% 97.22% 98.61%

Gliomas data 72.00% 72.00% 78.00%

DLBCL data 98.70% 96.10% 92.21%

SRBCT data 98.80% 96.39% 98.80%

ALL data 97.98% 97.58% 98.39%

MLLLeukemia data 98.61% 98.61% 98.61%

LukemiaGloub data 95.83% 97.22% 97.22%

Table 5.   10-fold CV prediction accuracy of eight tumor microarray datasets using different classification 
methods.

Data set SRC MSRC MRSRC

Acute leukemia data 72.73% 77.27% 77.27%

Colon cancer data 92.00% 92.00% 96.00%

Gliomas data 71.43% 71.43% 78.57%

DLBCL data 94.74% 94.74% 100.0%

SRBCT data 100.0% 96.55% 100.0%

ALL data 86.67% 86.67% 93.33%

MLLLeukemia data 100.0% 100.0% 100.0%

LukemiaGloub data 88.89% 88.89% 100.0%

Table 6.   10-fold CV prediction sensitivity of eight tumor microarray datasets using different classification 
methods.
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and can cover the structure inherent to the data. Each metagene in the data set obtained maximum coefficient, 
which indicates that the test sample is very similar to the metagene.

Discussions
Sparse representation-based methods (SRC, MSRC, and MRSRC) consistently outperform the model-based 
methods (LDASVM and ICASVM) and the template-based methods (MACE and OTSDF) in most exper-
iments. This result is probably due to the small sample size problem for model-based strategies. Sparse 
representation-based methods perform well even when five samples per subclass were considered for training and 
the rest for testing. Moreover, MRSRC outperforms SRC and MSRC in most cases, which implies that reweighted 
and maxdenominator strategies can contribute to improve sparse solution and obtain better classification results. 
Additionally, gene selection can enhance the accuracy of classification using all datasets. Gene expression profil-
ing involves data with high dimensionality, and exclusion of the redundant is critical for classification.

In this paper, we propose a new sparse representation-based method for classifying tumors. This method 
adapts reweighted strategy to balance − norm1 . The reweighted strategy contributes to capture sparse solution, 
which is used for classification. Classification is achieved by a maxdenominator residual error function, which 
takes full advantage of the linear relations between the testing sample and metagenes extracted using SVD from 
the training samples. We also compare the performance of MRSRC with those of two sparse representation-based 
methods, two model-based methods and two template-based methods using eight tumor expression datasets. The 
results have shown the superiority of MRSRC and validated the effectiveness and efficiency of MRSRC in tumor 
classification.

MRSRC exhibits stable performance with respect to different training sample sizes compared with the other 
four methods. The properties of this reweighted sparse representation algorithm should be investigated further. 
Thus, we will extend the algorithm with dimensionality reduction in our future studies.

Methods
Metagenes of Gene Expression File Data.  Metagenes of gene expression data are captured by mathe-
matical operation on the original sample data. These mathematical operations include SVD, PCA, NMF, ICA, 
or other linear or nonlinear models. Essentially, mathematical operation on gene expression data contributes to 
highlight particular biological functions, recover meaningful biological information, capture alternative struc-
tures inherent to the data, provide biological insight, reduce noise, and compress the data in a biologically sensible 
way14–18. Another viewpoint presented in ref. 15 shows that the gene expression pattern can be approximately 
represented as linear combination of these metagenes.

Assuming that X ∈​ Rm×n is a training sample set of gene expression file data, then matrix X has the following 
approximation by mathematical operation:

= ΦX H, (6)

where Φ​ is a metagene matrix with size of m ×​ p, and each of the p columns are regarded as a metagene. Matrix H 
is a pattern matrix with size of p ×​ n, and each of the n columns are treated as the metagene expression pattern of 
the corresponding sample. We will use Φ​, instead of X, for the classification.

Several studies have reported on the extraction of the metagenes. NMF was used in ref. 14 to decompose gene 
expression patterns as an additive combination of a few metagene patterns. The NMF metagenes could overlap 
and thus expose the participation of a single gene in multiple pathways or processes. ICA was applied in ref. 16 
to gene expression data, and a linear model, which was termed “expression modes,” was derived. In this model, 
the expression of each gene is a linear function of the expression modes. The dominant expression modes were 
experimentally found to be related to distinct biological function, such as the phase of the cell cycle or the mating 
response. SVD was applied in ref. 17 to transform genome-wide expression data from “genes” ×​ “arrays” space to 
reduced diagonalized “eigengens” ×​ “eigenarrays” space, where the eigengenes (or metagenes) are unique ortho-
normal superposition of the genes (or samples). SVD was applied to capture the weighted metagenes18, then the 
test sample is represented as the linear combination of these weighted metagenes.

These analytical results show that using metagenes to replace gene expression data can produce better results 
for classification.

Data set SRC MSRC MRSRC

Acute leukemia data 90.00% 87.50% 87.50%

Colon cancer data 97.87% 100.0% 100.0%

Gliomas data 72.73% 72.73% 77.27%

DLBCL data 100% 96.55% 89.66%

SRBCT data 100% 100% 100%

ALL data 98.71% 99.14% 99.14%

MLLLeukemia data 100% 100% 100%

LukemiaGloub data 100% 100% 100%

Table 7.  10-fold CV prediction specificity of eight tumor microarray datasets using different classification 
methods.
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Sparse Representation for the Classification of Testing Tumor Samples.  SRC has been successfully 
applied to tumor classification in refs 13 and 15. The experimental results showed that SRC is quite competitive in 

Figure 6.  The value of the sparse representation coefficients of MSRC and MRSRC on four binary 
classification datasets when choosing one sample as test set. 

Figure 7.  The value of the sparse representation coefficients of MSRC and MRSRC on four multiclass 
classification datasets when choosing one sample as test set. 
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classifying tumors. We simply introduce several notations of this model to enhance the understanding of the SRC. 
We assume that ⊆ = …X X R i c{ , 1, 2, , }i i

m  is a set of training samples, and ∈ …y y c{ {1, 2, , }}i i  is labeled 
corresponding to Xi, where m is the dimensionality of samples, and c is the number of classes. The jth class train-
ing samples Xj can be presented as columns of a matrix = … ∈ = …×X x x x R j c[ , , , ] , 1, ,j j j j

m n
,1 ,2 ,n j

j , where 
xj,I is a sample of the jth class, and nj is the number of the jth class training samples. Thus, a training sample matrix 
X can be obtained, as follows:

= … ∈ ×X X X X R[ , , , ] , (7)c
m n

1 2

where = ∑ =n nj
c

j1 .
Then, we use SVD to obtain the metagenes of each class. We factorize each class training sample matrix Xi, as 

follows:

= Φ .X H (8)i i i

We can derive the metagenes from the c classes after computing the metagenes Φ​i of each class, as follows:

Φ = Φ Φ … Φ .[ , , ] (9)c1 2

Given a test sample x ∈​ Rm, according to SRC, x can be represented as the linear combination of metagenes of 
all training samples, as follows:

θ= Φx , (10)

where θ ∈​ Rn is the sparse representation coefficients. The x can also be represented in the form of an equation, 
as follows:

θ θ θ= Φ + Φ + … + Φx , (11)c c1 1 2 2

where θ ∈ Ri
ni is the coefficient vector corresponding to the ith class training samples. Ideally, if x belongs to the 

jth class, then θ has the following form:

θ θ θ=











… … …











.

θ
� ������ ������

0, , 0, , , , 0, 0

(12)

j j

T

,1 ,n j

j

Equation (12) indicates that only the entries corresponding to the jth training sample Xj are not zeros. Then, x 
can be finally expressed as follows:

θ θ= Φ + … + Φx , (13)j j j j,1 ,1 ,n ,nj j

where Φ​j,i is a metagene of the jth class training samples, and nj is the number of the jth class training samples.
Then, the key problem becomes the calculation of the sparse representation vector θ. Only a fraction of entries 

are not zeros, so θ is expected to be sparse. Several excellent methods have been put forward in the theory of 
sparse representation and compressive sensing8–10.

Reweighted Sparse Representation.  The sparse representation coefficients of a sample x ∈​ Rm can be 
obtained mathematically by solving the combinatorial optimization problem, as follows:

θ θ= Φ
∈ 

subject xmin to , (14)x Rm 0

where θ
0

 is the 0 norm. However, the optimization problem given by Equation (14) is NP-hard and generally 
impossible to solve efficiently, because its solution usually requires an intractable combinatorial search32.

A common alternative to the combinatorial optimization problem is to solve the following convex problem:

θ θ= Φ
∈ 

subject xmin to , (15)x Rm 1

where θ θ= ∑ =


,i
n

i11
 is the 1 norm. Contrary to Equation (14) and (15) can actually be recast as a linear pro-

gram and can be solved efficiently33. The distinction between Equations (14) and (15) is the choice of objective 
function, with the latter using 1 norm as a proxy for the literal 0 norm sparsity count. However, a key difference 
exists between the 1 and 0 norms. As mentioned earlier, the coefficients are penalized when they are imbalanced 
in the 1 norm, contrary to the more equal penalization in the 0 norm.

First, we consider the following weighted 1 minimization problem to resolve the important issues:

∑ θ θ= Φ
θ∈ =

w subject xmin to ,
(16)R i

i i
1

n

where wi is the positive weight. Similar to Equation (15) and (16) is convex and can be recast as a linear program. 
For convenience, Equation (16) can be rewritten as follows:
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θ θ= Φ
θ∈ 

W subject xmin to , (17)Rn 1

where W is a diagonal matrix with w1 …​ wm on the diagonal and zeros elsewhere.
Equation (17) can be viewed as a relaxation of the following weighted 0 minimization problem:

θ θ= Φ .
∈ 

W subject xmin to (18)x Rn 0

If the solution to Equation (14) is unique, then the mathematical solution to Equation (18) is unique, and the 
weights do not vanish19. However, this situation has changed for the corresponding 1 relaxations Equations (15) 
and (16). These equations will generally have different solutions. Thus, how to set the weights (wi) as free param-
eters in the convex relaxation is important to improve signal reconstruction.

We set the weights (wi) inversely to the magnitude of θi, as follows:

θ ε
=

+
w 1 ,

(19)
i

i

where parameter ε >​ 0 to provide stability and ensure that a zero-valued component in θi does not strictly prohibit 
a nonzero estimate at the next step. Thus, wiθi ≈​ 1 and θ θ≈

 

W
1 0

. Thus, Equations (14) and (15) present 
slight difference.

An iterative algorithm that alternates between estimating θ and redefining the weights is proposed in ref. 19. 
We have an updated algorithm of θi and wi as follows:

1. The initial value of iteration count  is set to zero, and weights are set to = = … .w i m1, 1, ,i
(0)

2. The weighted 1 minimization problem is solved as follows:

θ θ θ= = Φ 



W subject xargmin to (20)
( ) ( )

1

3. The weights are updated, such that for each = …i m1, , ,

θ ε
=

+
.+



w 1

(21)
i

i

( 1)
( )

4. When  attains a specified maximum number of iterations max or Equation (20) is terminated upon conver-
gence. Otherwise,  is incremented, and step 2 is reiterated.

In step 4, the parameter of max is the maximum number of reweighted iterations.

Maxdenominator Residual Error Function.  The sparse representation coefficient θ can be obtained 
using the iterative algorithm. Ideally, θ has a form similar to Equation (12) with nonzero entries corresponding 
to the class of the testing sample. However, modeling error and noise will inevitably lead to small nonzero entries 
corresponding to multiple object classes11. For a more robust classification, x is classified based on how well x 
can be reconstructed using the coefficients from each class34. For class i, we define a characteristic function  δi, as 
follows:

δ θ
θ

=






 = i
( )

,if y

0, otherwise (22)
i j

j j

where yj is the label of training sample Xj. This function is used to obtain the ideal coefficients of samples belong-
ing to class i and a new vector, as follows:

δ θ δ θ δ θϑ = … .[ ( ), ( ), , ( )] (23)i i i i c
T

1 2

In addition, the test sample is represented as the linear combination of the metagenes in sparse representation. 
Thus, a metagene from the same class of the test sample is very similar to the test sample. The sparse representa-
tion coefficient of this metagene is relatively large. Then, the relatively large coefficient is used to reduce the 
residual error.

Finally, a maxdenominator residual error function is defined, as follows:

= Φϑ − ϑx xr ( ) /max( ), (24)i i i2

where ϑmax( )i  yields the max coefficients of ϑi. Thus, the label ŷ of x can be estimated by minimizing the follow-
ing formula:

= = Φϑ − ϑ
= ...

ˆ x xy arg min r ( ) /max( ) (25)i c
i i i

1, , 2

The truncated Newton interior-point method23 is used to solve the optimization problem in Equation (17). 
The solution was performed using the − 1 s Matlab package available online (https://stanford.edu/~boyd/
l1_ls).

The complete classification algorithm of MRSRC is as follows:
Input: Training samples = … ∈ ×X X X X R[ , , , ]C

m n
1 2

https://stanford.edu/~boyd/l1_ls
https://stanford.edu/~boyd/l1_ls
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Testing samples x ∈​ Rm

Output: Label ŷ of x
Procedure
1. Columns of X are normalized to have unit − norm2 .
2. The metagenes of every class are extracted by SVD.
3. The initial value of iteration count  is set to zero, and weights are = = … .w i m1, 1, ,i

(0)

4. The weighted 1 minimization problem Equation (17) is solved to obtain the coefficient vectorθ ( ).
5. The weights are updated according to Equation (21), that is, for each i =​ 1, …​, m,.
6. �When  attains a specified maximum number of iterations max or Equation (20) is terminated upon conver-

gence. Otherwise,  is incremented, and step 2 is reiterated.
7. Count δ θ δ θ δ θϑ = … = … .i c[ ( ), ( ), , ( ), ] , 1, 2, ,i i i i c

T
1 2

8. The c classes residual errors are calculated, that is, Φ= ϑ − ϑ = … .x x i cr ( ) /max( ), 1, 2, ,i i i2
9. The label ŷ of x is estimated according to residual errors.
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