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Linear filtering reveals false 
negatives in species interaction 
data
Michiel Stock1, Timothée Poisot2, Willem Waegeman1 & Bernard De Baets1

Species interaction datasets, often represented as sparse matrices, are usually collected through 
observation studies targeted at identifying species interactions. Due to the extensive required sampling 
effort, species interaction datasets usually contain many false negatives, often leading to bias in 
derived descriptors. We show that a simple linear filter can be used to detect false negatives by scoring 
interactions based on the structure of the interaction matrices. On 180 different datasets of various 
sizes, sparsities and ecological interaction types, we found that on average in about 75% of the cases, 
a false negative interaction got a higher score than a true negative interaction. Furthermore, we show 
that this filter is very robust, even when the interaction matrix contains a very large number of false 
negatives. Our results demonstrate that unobserved interactions can be detected in species interaction 
datasets, even without resorting to information about the species involved.

Biological data such as microscopy images, environmental sensor readings and species incidence counts are 
inherently noisy. Often a simple linear transformation can be applied to obtain a denoized re-estimation of the 
data1. For instance, a noisy image can be rectified by applying a filter that exploits the fact that adjacent pixels 
in an image tend to have similar values2. Similarly, species interaction values are not randomly distributed, but 
exhibit structures such as nestedness3,4, modularity5 or low-dimensional embedding6. Since these interactions are 
largely determined by evolved traits of both partners7–9, a filter for these types of data could take this information 
into account.

Machine learning methods, often based on kernels, have been applied with great success in similar cases, 
for example to predict interaction values between biomolecules based on sequence information10–12, but seem 
to have remained absent from an ecological context. If no side information such as traits or phylogeny of the 
individual species is available, only the structure of the interaction dataset can be exploited. This can be realized 
by letting the filtered interaction values not only depend on the observed interaction, but also on the degree to 
which the two species in the interactions are involved in other interactions. Let Y =  [Yij] be the sparse n ×  m 
matrix of interaction values, either a binary matrix or a matrix of positive real numbers expressing interaction 
strength. We refer to the non-zero values, i.e. detected interactions, as positive interactions, and to the zero val-
ues, i.e. absent interactions, as negative interactions. In ecological literature, ‘positive interaction’ is often used to 
refer to an interaction in which both species benefit (e.g. symbiosis), while ‘negative interaction’ is used for an 
interaction where one of the species has a disadvantage (e.g. parasitism). In this work, we use the term positive 
(resp. negative) interactions to refer to an observed (resp. unobserved) interaction, regardless of the nature of the 
interaction. This is more consistent with standard statistical terminology.

The filtered interaction matrix F =  [Fij] can be obtained as the following weighted average of averages:
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4 . The first term is proportional to the interaction value, while the 
last term is proportional to the average of all interaction values in the matrix. The second (resp. third) term is 
proportional to the average of the values in the corresponding column (resp. row), i.e. relative to the promiscuity 
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of the individual species. The parameters α1, α2, α3 and α4 act as weighting coëfficiënts. This filter is illustrated on 
a toy dataset in Fig. 1(a–c).

Usually, interaction datasets are sampled by monitoring one of the species types and observing the number 
of interactions with the species of the other type13 (e.g. studying the fecal matter of predators to assess their preys 
or keeping track of pollinators landing on plants). As a consequence, these interaction matrices are often under-
sampled and some zeros might be false negatives rather than true negative interactions14,15. This can lead to some 
serious biases in descriptors derived from such matrices13,16–18. To assess whether a particular interaction between 
species i and species j is likely to occur in reality according to the dataset, one should ideally not make use of the 
observed interaction value Yij. We therefore impute this interaction value, further on denoted as β, in such a way 
that when it is passed through the filter, it remains unchanged. This embodies the rationale that we want to impute 
the interaction value to closely match the rest of the data according to the filter. Consider Eq. (1) using a copy of 
Y where Yij is replaced by β, then it should hold that:

∑ ∑ ∑β
α α α

α
α α α

β= + + +


 + + +





≠ ≠ ≠
n

Y
m

Y
nm

Y
n m nm

(2)k i

kj

l j

il

k l i j

kl
2 3 4

( , ) ( , )

1
2 3 4

k l k l,

α
α α α

α
α α α

β=






−


 + + +










+



 + + +



 .F

n m nm
Y

n m nm (3)ij ij1
2 3 4

1
2 3 4

This is illustrated in Fig. 1(d–f) for the toy dataset. Solving for β, we obtain
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This imputation does not depend on the original value of Yij, as can be gleaned from Eq. (2). Only the other 
interaction values in the dataset contribute to the imputation. The process of imputing the interaction values one 
by one is known as leave-one-out (LOO) imputation. Equation (4) is a special case of the well-known LOO short-
cut19 and provides a computationally efficient way of performing LOO imputation.

Figure 1. (a) A small binary interaction dataset Y of four by five species. (b) Example of how to calculate the 
filtered value for Yij. The filter in Eq. (1) computes a weighted average of the observed value itself, the column 
and row averages and the average of all interaction values in the matrix. (c) The filtered dataset F corresponding 
to Y. (d) The dataset Y where one value is to be imputed, indicated in orange. The imputation of this interaction 
value should be independent of the original, possibly wrong, value. (e,f) The value β of the imputed interaction 
does, by definition, not change when passing through the filter.
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As a simple method to detect false negatives in interaction matrices, we suggest to score negative interactions 
in datasets using LOO imputation and rank the negative interactions according to this score. The last term in 
Eq. (1), i.e. the average interaction value, will not influence the ranking of interactions. However, if the goal is to 
impute the interaction value to some degree of accuracy, this term provides an essential contribution. Negative 
interactions that receive high scores during imputation are potential false negatives and should be closer exam-
ined. In the experiments we will demonstrate, first, that imputations of positive interactions will on average result 
in higher scores than negative interactions and, second, that false negatives in turn receive higher scores than true 
negatives, making this a suitable method for false negative discovery. The proposed linear filter will be compared 
to the use of a low-rank approximation of the interaction matrix, obtained through singular value decomposition 
(SVD), a popular method to impute missing values in collaborative filtering20,21. The re-estimation using SVD 
is obtained by retaining only the leading eigenvalues of the matrix Y after decomposition. Since the eigenvalue 
spectrum of the interaction dataset is related to the nestedness of the network22, it seems sensible that this method 
could work well for nested interaction networks. Our filter works demonstratively better than SVD in most cases 
and remains performant even with very high rates of false negative interactions. Finally, we illustrate that when 
forbidden links (i.e. true negatives) are known, the performance can be increased slightly.

Material and Methods
In our experiments we used a series of species interaction datasets obtained from the Interaction Web DataBase 
(https://www.nceas.ucsb.edu/interactionweb/resources.html) and Web of Life database (http://www.web-of-life.
es/). We only withheld datasets with at least ten rows and ten columns, leaving us with 180 datasets describ-
ing anemone-fish, host-parasite, plant-ant, plant-herbivore, plant-seed dispensers, plant-pollinator and 
predatory-prey interactions. We have chosen such a diverse catalogue of datasets to illustrate that the proposed 
method is broadly applicable. Some datasets contained only binary absence-presence information, others con-
tained valued interactions, such as frequency of visits. Our method can be applied regardless. All datasets were 
quite sparse, with an average positive interaction density ρ of 0.15 ±  0.12 (average value ±  standard deviation 
calculated over the different datasets).

In this work we investigate whether the scores of imputed interaction values can be used to discriminate 
between unobserved positive and negative interactions. As a performance metric, we will use the area under the 
ROC curve (AUC), calculated as
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with Fij the imputed score, + (resp. − ) the set of the positive (resp. negative) interactions and H(·) the Heaviside 
step function. The AUC can be interpreted as the probability that a randomly chosen positive interaction receives 
a higher score than a randomly chosen negative interaction.

The LOO imputations of the interaction datasets were computed using Eq. (4). Since we use AUC to evaluate 
the imputations, we are not interested in the exact values. Rather, positive interactions should on average receive 
higher imputed values compared to negative interactions. A small explorative study on a couple of datasets has 
shown that our ranking-based evaluation using AUC is quite insensitive to the exact values of the parameters of 
the filter. Hence, we have set all parameters equal, i.e. (α1, α2, α3, α4) =  (0.25, 0.25, 0.25, 0.25), meaning that each 
of the four averages in Eq. (1) has the same weight. The filter is thus reduced to a standard average. If the filter 
would be used to estimate the probability of interaction or the interaction strength, we recommend to do some 
tuning of the parameters to the dataset at hand, for example, using cross-validation to minimize squared loss.

Results
First, we show that a positive interaction receives a higher score than a negative interaction. For each dataset, we 
calculated the LOO imputation and compared the scores of the positive and the negative interactions. The average 
AUC was found to be 0.77 ±  0.10, meaning that on average there is about 77% chance that a missing positive 
interaction will receive a higher score than a missing negative interaction. Intriguingly, we found that using the 
strength of the interactions tends to decrease the performance. When datasets containing strength of interactions 
were binarized by setting positive values to one, the performance increased on average with 3.5% ±  4.4%. A paired 
t-test showed that this increase in average AUC is significant at the 0.01 level ( −

p 10 10, n =  94 datasets). This 
implies that in many cases the strength of interaction is too noisy to be exploited by the filter. This was to be 
expected, as quantitative interaction strength depends on local conditions23,24, and is therefore more susceptible 
to noise. Hence, making the interaction matrix binary often leads to more robust filtering.

Four sizeable datasets representing different types of interactions25–29 were studied in more detail, see Fig. 2. In 
Fig. 3(a) the ROC curves illustrate that usually a large fraction of the positive interactions can easily be detected 
without obtaining many false positives. This is important for practical applications, as these high-scoring inter-
actions should be used to decide which interactions are promising for validation in the field. The top-scoring 
interactions are strongly enriched with positives, as illustrated in Fig. 3(b), which shows the precision (fraction 
of top-scoring positive interactions) as a function of the size of the top. Although the individual patterns vary 
with the density, distribution and sampling effort of the interaction datasets, here one can observe also a clear 
trend that making the datasets binary results in higher precision. On average, for all datasets, the precision at the 
top-10 was 0.69 ±  0.27, which is substantially higher than the average density of 15%, the expected precision of a 
random scoring.

Since most species interaction datasets are obtained through observation studies, negative interactions may 
either indicate that the species do not interact in practice or that their interaction is not observed during the study. 
To show that linear filtering can reveal false negatives, we created variants of each dataset, each with exactly one 

https://www.nceas.ucsb.edu/interactionweb/resources.html
http://www.web-of-life.es/
http://www.web-of-life.es/
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Figure 2. Heat maps of four valued species interaction datasets with the corresponding density ρ. The 
brightness of the color corresponds to the value of the interaction.

Figure 3. Results of the imputation experiments using the four datasets shown in Fig. 2. (a) ROC curves 
for the scores of the LOO imputation. (b) The precision of detecting true interactions as a function of the size 
of top-scoring interactions. In both plots full lines represent experiments where the intensity of the interactions 
was used and broken lines represent experiments where the interaction dataset was binarized.
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positive interaction made negative, and did this for every positive interaction. Subsequently, all negative interac-
tions were scored using LOO imputation and the score of the false negative was compared with the scores of the 
true negatives (Fig. 4). The average AUC for detecting these false negatives was 0.78 ±  0.098, averaged over all the 
180 datasets. Again, when the interaction datasets containing strength of interaction were binarized, the perfor-
mance increased with on average 4.0% ±  4.4%. Using a paired t-test, this increase in average AUC was also found 
to be significant at the 0.01 level ( −

p 10 10, n =  94 datasets). Whereas the previous experiment showed that 
positive interactions receive higher scores than negative interactions, this experiment demonstrates that within 
the negative interactions, false negatives tend to receive higher scores than true negatives. Table 1 summarizes the 
AUC scores obtained for the two described experiments.

Even when many interactions are missing, our method remains performant. In an additional experiment, first, 
we illustrate how the performance of the linear filter changes with larger fractions of false negatives and, second, 
we compare the linear filter to the use of a low-rank approximation of the interaction matrix Y obtained by SVD. 
SVD can be used to obtain the closest approximation in terms of mean squared error of a matrix for a given rank. 
The rank was chosen as the lowest rank such that the approximated dataset retained at least 75% of the variance of 
the original dataset. The re-estimated matrix was evaluated the same way as the matrix obtained by LOO imputa-
tion using the linear filter. Experiments using both the linear filter and the SVD approximation were performed 
on the four datasets in Fig. 2, by randomly setting 5%, 10%, 20%, 50% or 90% of the positive interaction values to 
zero. Using AUC, we assessed how well the re-estimated interaction values could be used to discriminate between 
true and false negatives. Re-estimation was done using both the original interaction datasets and versions of 
the datasets where the interaction values were binarized. Each experiment was repeated 100 times. The perfor-
mances are listed in Table 2. For three datasets, the linear filter clearly shows a better performance. Interestingly, 
SVD seems to work really well on the predator-prey dataset, a large dataset with visually a strong structural pat-
tern. Nevertheless, using the linear filter usually leads to a good performance, especially since most interaction 
matrices are rather small. This filter also seems to be still able to detect false negative interactions even when the 

Figure 4. (a) A small binary interaction matrix Y of three by four species. (b) The corresponding matrix where 
each value is computed by LOO imputation. The score of each interaction is calculated only based on the values 
of all other interactions, without its original value. (c) To test if a false negative can be detected, each positive 
interaction is made negative one by one, indicated in orange. For each of these changed datasets, all negative 
interactions are scored using loo imputation. The negative interactions are sorted by their scores and the 
position of the false negative, indicated by an orange frame, is determined.

Density ρ

Imputation AUC False negative recovery AUC

[0, 0.1] [0.1, 0.25] [0.25, 1] [0, 0.1] [0.1, 0.25] [0.25, 1]

#Interactions

[0, 50] 0.8187 0.6119 0.7180 0.8443 0.6489 0.7426

[50, 100] 0.7561 0.7194 0.8017 0.7696 0.7341 0.8190

[100, 1000] 0.8259 0.7857 0.8002 0.8301 0.7925 0.8088

[1000, 10000] 0.8219 0.8423 — 0.8232 0.8429 —

[10000, + ∞ ] 0.8482 — — 0.8486 — —

Table 1.  Average AUC, aggregated for different densities ρ and different total numbers of positive 
interactions in all the different datasets. The first part gives the results for the imputation experiments, the 
second part presents the results for the false negative recovery experiments. All datasets with interaction 
strengths were binarized for these experiments.
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percentage of false negatives is very high, in contrast to using the low-rank approximation. This indicates that our 
method is quite robust, even when the datasets contain many missing values.

Finally, we performed a small experiment where true negatives or forbidden links are known. To this end, we 
use the 25-by-25 seed-dispersal network of Olesen and coauthors30. It consists of 156 observed positive inter-
actions and 228 forbidden interactions due to phenological uncoupling or morphological constraints. We used 
the linear filter to perform LOO imputation on the interaction matrix. Figure 5 shows the distributions of the 
imputed values for the positive interactions, true negative interactions and negative interactions that are potential 
false positives. The AUC for discriminating between positive and negative interactions (both true negatives and 
false negatives) using LOO imputation was found to be 0.8270. When only trying to discriminate between true 
positives and true negatives, the AUC was 0.7981. Upon removing the true negatives, the AUC improved slightly 
to 0.8543. For this dataset, it seems that the true negatives are somewhat harder to identify than the negatives in 
general. When true negatives are known, it is best to only search for false negatives within the potentially positive 
interactions.

FN fraction

Binarized 

Host-parasite Plant-ant Pollination Predator-prey

No Yes No Yes No Yes No Yes

method

0.05
SVD 0.6139 0.5672 0.6129 0.4876 0.5672 0.4967 0.8642 0.9031

filter 0.6801 0.7110 0.8596 0.8799 0.7988 0.8131 0.7997 0.8405

0.10
SVD 0.5863 0.5611 0.6029 0.4931 0.5671 0.4957 0.8202 0.8514

filter 0.6729 0.7178 0.8611 0.8629 0.8019 0.8074 0.7996 0.8390

0.20
SVD 0.5825 0.5563 0.5833 0.4962 0.5542 0.4863 0.7618 0.7705

filter 0.6720 0.7149 0.8653 0.8620 0.7965 0.8059 0.7974 0.8343

0.50
SVD 0.5493 0.5284 0.5520 0.4947 0.5274 0.4897 0.6525 0.6326

filter 0.6615 0.7017 0.8476 0.8438 0.7881 0.7971 0.7937 0.8246

0.90
SVD 0.5026 0.5008 0.5025 0.5022 0.5015 0.4978 0.5159 0.5089

filter 0.6168 0.6342 0.7511 0.7366 0.7215 0.7255 0.7532 0.7599

Table 2.  Comparison of the linear filter with SVD for an increasing fraction of randomly assigned false 
negatives (FN) for four datasets. The AUC is given for both the original dataset and a binarized version. Each 
performance is an average of 100 repetitions. In most cases the linear filter is better than SVD. The performance 
of the latter deteriorates quickly with an increasing number of false negatives. The performance of the linear 
filter remains relatively high, even with 90% of false negatives.

Figure 5. Histogram of the imputed values for the positive interactions, forbidden interactions and 
negative interactions, which are potential false positives. The positive interactions are on average imputed 
with a higher score than both kinds of negative interactions.
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Discussion
Evidently, the latent information in the interaction matrices can be used to detect unobserved (false negative) 
interactions. We are convinced that techniques such as linear filtering may allow to either directly ameliorate an 
interaction dataset or can be used to suggest promising interactions that can subsequently be verified in the field. 
Making use of in silico predicted interaction scores to suggest experiments in vitro is already commonplace in 
domains such as drug discovery31 and can be seen as part of the broader paradigm of recommender systems32,33. 
Negative interactions with high scores are natural targets for increased sampling effort, as they are most likely to 
occur in reality.

Standard algorithms for recommender systems make recommendations by exploiting structures in the data, 
e.g. low-rankness of the interaction matrix34. This idea could be applied to predict the value of missing interac-
tions. For example, it has been used successfully to predict the joint growth between heterotrophic and meth-
anotrophic bacteria35. Other methods for filtering a network could be based on different principles, for example 
the stochastic block model36. In essence, the simple linear filter of Eq. (1) and the associated imputation formula 
(4) only use information on row and column counts to do an imputation. We can motivate the use of this filter 
in three ways. Firstly, it is a very simple first method to try to infer false negatives. Although despite having four 
parameters, their exact value is less important if one is only interested in ranking interactions, so not much tuning 
is required. Secondly, the filter is very robust and works demonstratively well on small datasets and with a very 
large fraction of false negatives. Finally, using the shortcut for LOO cross validation, it is very easy and compu-
tationally efficient to get a realistic estimate of the performance of the filter for a given dataset. More complex 
methods are expected to yield better performance, but require to be tuned more carefully to the dataset at hand.

Often, one has information about the individual species, such as geographical location, morphology or phy-
logeny, which can also be incorporated to predict interaction8,37,38. Using such side information, denoted as 
content-based filtering in recommender systems32, can improve the accuracy of the prediction as well as explain 
the interactions based on species traits, if used in combination with model selection tools. As we have not incor-
porated such information in our method, the performances presented in this work can be seen as a lower bound 
for detecting missing interactions.
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