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Adiabatic Generation of N-quNit 
Singlet States with Cavity QED
Rong-Can Yang1,2,3, Li-Xiang Ye1,2, Xiu Lin1,2 & Hong-Yu Liu4

We present a theoretical scheme to generate N-quNit singlet states with N ⩾ 3 via adiabatic passage. In 
this protocol, the system may be robust against both experimental parameter fluctuations and 
dissipations along dark states. In addition, during the whole procedure, quantum information is almost 
fully transferred between atomic ground states. It reduces the influence of dissipations such as atomic 
spontaneous emissions and cavity decays. Thus, the presented proposal may be feasible based on 
current technologies.

Quantum entanglement, originally proposed by Einstein et al.1, plays a central role in the test of Bell’s theorem 
without inequalities2. It now has become an important resource for quantum information processing, quantum 
computation, quantum measurement, and so on3–8. Quantum entanglement can be divided into several categories 
mainly according to two parameters, e.g., subsystems’ numbers and dimensions. But even when the two param-
eters are same, quantum structure may be different, such as W and GHZ states for entanglement among three 
qubits9. It is now known that different types possess their own distinct properties in quantum society. Especially 
for multi-level (or called high-dimension) entangled states, they are more significant in testing quantum nonlo-
cality and realizing quantum informaiton processing than entangled qubits due to their richer structures2,10,11. 
Thereby, there are lots of documents to discuss the preparation and applications of multi-level entanglement. In 
this paper, we focus on a special one, i.e. a singlet state. It was put forward by Cabello in 2002 and considered to 
be robust against collective decoherence due to their total spins being equal to zero12, which makes it attractive. 
In other words, any an entangled state with total spin zero is called singlet states. So, singlet states involve several 
types. Here, what we are interested in is the N-particle-and-N-dimension singlet state, (i.e. N-quNit singlet state, 
or NNSS for short) whose distinctive characteristic is to realize an unknown unitary transformation13 and to 
solve several practical problems without classical solutions, including “N -strangers”, “secret sharing” and “liar 
detection”14. An NNSS can be mathematically expressed as
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where t is the number of transpositions of pairs of elements that must be composed to place the elements in 
canonical order.

Although singlet states may be significant for quantum computation, it is a great challenge to prepare NNSS 
when ⩾N 3 not only in theory but also in experiment. The reason is that it is hard to find a system including N 
particles with N dimensions and let them interact simultaneously. Until 2005, Jin et al. presented a scheme for the 
preparation of NNSS with N =​ 3 (33SS), attracting much attention15. After that, several scenarios were proposed 
for generating 33SS16–23, in which only two different methods were used. One method needs several steps to gen-
erate 33SS15, while the other one proposed by us needs only one step to generate 33SS from 22SS18 and it may be 
generalized for generating NNSS with N >​ 3 more easily than the first one. Based on the second method, Shao et al.  
suggested a model for a series of Λ​-like multilevel atoms interacting with a multi-mode cavity in 201024. However, 
in their work, high-dimension NNSS with N >​ 3 may be hardly realized because it need all atoms to interact with 
a (N −​ 1)-mode cavity. In 2016, the similar idea was discussed by Chen et al.25. Can we avoid the use of a 
multi-mode cavity for the generation of NNSS? Yes. An alternative scheme using Rydberg-blockade mechanism 
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and adiabatic-passage technology was reported by us also in 201626. But the scheme may be strongly influenced 
by spontaneous emission of ladder-type Rydberg atoms.

How can we realize storing an NNSS in ground states and avoid the use of a multi-mode cavity at the same 
time? In this paper, we suggest to generate NNSS for atoms with N −​ 1 excited states and N ground states in a 
single-mode cavity via adiabatic passage. The reason why we use adiabatic-passage technology is that it is insen-
sitive to the variation of experimental parameters27–29. Based on this technology or its further versions (such 
as transitionless quantum driving30 and invariant-based shortcut31), many suggestions are shown to realize 
multi-level entanglement, e.g. shown in the refs 22, 23, 25, 26 and 32.

This paper is organized as follows. Section II describes how to realize a 33SS on the basis of 22SS. Section III 
introduces how to generate NNSS. In Section IV, some numerical simulations and analysis are made to show the 
feasibility of the preparation of NNSS. Finally, we draw a conclusion is made in Section V.

Generation of atomic 33SS
Figure 1 illustrates three atoms are trapped in a single-mode cavity. Each atom has three ground states |g0〉​k, |g1〉​k, 
|g2〉​k and two excited states |e0〉​k, |e1〉​k with the subscript k representing the kth atom. The jth (j =​ 0, 1) laser pulse 
focuses on the transition | 〉 ↔ | 〉g ej k j k

 with time-dependent Rabi frequency Ωjk(t) and frequency detuning Δ​j+1, 
while the transition | 〉 ↔ | 〉+e gj k j k1

 is coupled to the cavity with coupling constant g(j+1)k and the frequency 
detuning Δ​j+1, meaning that each two adjacent ground states for each atom interact with laser and the cavity 
mode by the two-photon resonance. With the consideration of resolved sideband and rotating-wave approxima-
tion, the total Hamiltonian for this system, in the interaction picture, reads (ħ =​ 1)
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where a+ is a creation operator of the cavity mode and H.c. denotes Hermitian conjugate terms.
Taking into account of large detuning conditions, i.e. ∆ Ω+ j jk1 , =+g j( 0, 1)j k( 1) , we can adiabatically elim-

inate the excited states |ej〉​k, leading the interaction Hamiltonian to be
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The first term describes Stark shifts induced by classical lasers, the second one shows photon-number- 
dependent Stark shifts induced by the cavity mode, and the third denotes the interaction between the cavity mode 
and the transition of the two ground states | 〉 ↔ | 〉+g gj j1 .

For the sake of simplicity, we add another laser pulses for nonresonantly coupling to the atomic ground states 
so as to compensate atomic Stark shifts by laser pulses (the first term described in Eq. (3))33, then we have

Figure 1.  Schematic diagram for the generation of 33SS. (a) Atoms in a single-mode cavity; (b) Atomic level 
configurations.
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In addition, we suppose the second and the third atoms are identical, resulting in Xj3 =​ Xj2 =​ Xj, where X =​ Ω, 
g, Δ​, A, B, G and the Stark shifts for these three atoms induced by the cavity mode are equal, i.e. G0k =​ G1k =​ G. For 
the motivation to prepare 33SS, the system is initially in the state | 〉 | 〉 − | 〉 | 〉g g g g g( ) 02 1

1
2 0 1 1 0 23

, i.e. the first atom 
is initially in |g0〉​, the second and the third ones are prepared in 22SS, and the cavity is in the vacuum state |0〉​. To 
calculate the evolution of the system state and make it compact, we first define some states and operators:
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Reshaping the Eq. (7) in the matrix form and diagonalizing it, we can obtain a time-dependent dark state with a 
null eigenvalue, i.e.
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Now, we have prepared a 33SS on the basis of 22SS with the cavity mode always in the vacuum state.

Generalization for the preparation of NNSS
In this section, we generalize the above suggestion to prepare NNSS. Similarly, we need to trapped N atoms with 
N ground states and N −​ 1 excited states in a single-mode cavity. The atomic structure and transitions are shown 
in Fig. 2. We also consider the large-detuning condition to eliminate excited states and add another laser pulses to 
get rid of Stark shifts induced by laser pulses. For simplicity, we assume all atoms except the first one are identical 
and all Stark shifts induced by the cavity mode are same. In this situation, the effective Hamiltonian for these N 
atoms and the cavity mode is
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where G =​ Gjk, = ≠B B l( 1)j jl2  with Gjk, Bj1, Bjl being defined in Eq. (4). It should be pointed out although Stark 
shifts Gjk for all levels can not directly be equal, but we can use compensating technologies to let them be approx-
imately equal, which is sufficient for our proposal. We assume that the system is initially prepared in the state 

− −
−

…
g S 0N N

N
N1 1 1

1
23

, i.e. the initial state of the first atom (the other N −​ 1 atoms) is |gN−1〉​ | 〉−
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cavity mode is in the vacuum state |0〉​. Similar to Eq. (6), let us define some states and operators for all atoms 
except the first one, i.e.
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In order to demonstrate the relationship among logic states ζj m
N
,

 in the subspace and how to generalize the 
scheme to prepare NNSS with N >​ 3, we illustrate them in Fig. 3, where, for example, the lowest levels correspond 
to the system state with the cavity mode in the vacuum state. After a calculation to diagonalize the matrix 
described in Eq. (14), we found the system has a time-dependent dark state, i.e.
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For simplicity, we set Bl,s =​ χlB0,s(t) (l =​ 1, 2, …​, N −​ 2; s =​ 1, 2) with χl being time-independent. Then we 
design laser pulses satisfying

Figure 2.  Atomic level structure for NNSS. 
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In this situation, we have prepared an NNSS with the cavity mode always in the vacuum state.

Numerical analysis
According to Eq. (16), we design two time-dependent pulses to be ref. 28
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where Ω0 represents the time-independent amplitude and T (τ) the pulse width (delay) and then plot the fidelity 
ρ=F S t S0 ( ) 0N N

N
N
N  versus the variations of the interaction time t in Fig. 4, where the density matrix for 

the whole system ρ(t) satisfies the Schrödinger equation ρ ρ= −


i H[ , ]Ne  and HNe is shown in Eq. (11). In Fig. 4, 
we have only given the evolution for N =​ 3, 4, 5, 6 with the choice of =

Ω
T 800

0
, τ = T

2
, g =​ Ω0, Δ​ =​ 10 Ω0. It should 

be noted that there are similar results for larger N.
Results show that the fidelity for N =​ 3 to 5 can rise to the value close to 0.99, and the maximum fidelity for 

N =​ 6 can also reach about 0.97, meaning that a singlet state for three, four, five, or six atoms can be generated. 
And we can predict an atomic NNSS with ⩾N 7 can be realized if we have prepared (N −​ 1) (N −​ 1)SS.

However, we should admit that the fidelity will decrease with the increase of N when all parameters have been 
set. For example, the fidelity for 55SS is about 0.99, whereas the fidelity of 66SS is only 0.97. Why does it happen? 
Here, we would show that the increase of pulse width, pulse delay and required time may make it happen. Figure 5 
illustrates the fidelity of 66SS as a function of pulse width, where we set g =​ Ω0, Δ​ =​ 10 Ω0, τ = T

2
, t =​ 5T. It was 

clearly demonstrated that without consideration of the dissipation, the larger T is, the greater the fidelity F is, and 
the fidelity will finally reach a stable value which is close to 1. For instance, the fidelity raises from F =​ 0.946 to 
0.981 with the increase of T from 

Ω
600

0
 to 

Ω
1200

0
. Although we may improve the fidelity in this way, we should also 

accept the fact that it may result in some other problems, such as the effect of photon decay and spontaneous 
emission. Therefore, our protocol may only be feasible for limited number of atoms.

Figure 3.  Logic states and transitions for generating NNSS. A black solid line represents a system logic state 
ζj m

N
,

 defined in Eq. (13), a black dashed line gives an illustration for the detuning, and = … −j j N( 0, 1, , 1) 
on the right side is to show all the left logic states share the same cavity field |j〉​.
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Last but not the least, we take the effect of photon decay into account. We resort to the master equation 
expressed as

ρ ρ κ ρ ρ ρ= −
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2
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where κ denotes the decay rate of the cavity mode. In Fig. 6, we only depict the curve for the relationship of the 
fidelity versus the decay for ⩽ ⩽N3 6, where we have set g =​ Ω0, Δ​ =​ Ω0, =

Ω
T 800

0
, τ = T

2
, t =​ 5T. Figure 5 clearly 

shows that the fidelity of the generated singlet states is scarcely insensitive to cavity decay. For example, the fidelity 
for N =​ 3 only drops from F =​ 0.997 to 0.994 when the cavity decay rate increases from κ =​ 0 to 0.1, while the 
fidelity for N =​ 6 only drops from F =​ 0.965 to 0.957. It should be noticed that the system would be influenced by 
spontaneous emission of atoms, but this effect may be suppressed with all atoms only virtually excited.

Feasibility and conclusions
In this section, we first make a brief discussion on the feasibility. The atomic levels used in our proposal can easily 
be found in hyperfine states of natural or artificial atoms, such as Cs atoms. Of course, the scale for the generated 
singlet states may be limited by atomic structures. For example, if we choose hyperfine states 

= = − − …  F m4, 4, 3, , 4F  of 62S1/2 of 133Cs atoms to act as ground states | 〉 = …g j( 0, 1, , 8)j  and 
= = − − …F m5, 4, 3, , 3F  of 62P3/2 to act as excited states | 〉 = …e j( 0, 1, , 7)j , then we can only realize the 

generation of an N-quNit singlet state with N =​ 9 in an ideal condition. In addition, if we choose the parameters 

Figure 4.  The function of the fidelity of the generated singlet states for N = 3, 4, 5, 6 versus the 
dimensionless interaction time t/T with T = 800/Ω0, τ = T/2, g = Ω0, Δ = 10 Ω0. 

Figure 5.  Fidelity of the 66SS versus pulse width, where g = Ω0, Δ = 10 Ω0, τ = T/2, t = 5T. 
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κ πΓ = . .g MHz( , , )/2 (750, 2 3, 3 5)  which is predicted by Spillane et al.34, then the fidelities for the generated 
singlet states for N =​ 3, 4, 5, 6 are about 0.997, 0.993, 0.983, 0.965, respectively. Hence, our proposal may be feasi-
ble for generating singlet states of the limited number N of atoms.

In summary, a novel scheme has been proposed to generate NNSS with adiabatic passage, which may be suit-
able for arbitrary N in theory. Although the scale of a singlet state in the paper is restricted by atomic structures, 
it may open up a new idea for the generation of NNSS. In our scheme, quantum information is only transferred 
among atomic ground states, leading the system to be insensitive to atomic spontaneous emission and photon 
decays. In conclusion, the proposed scheme may be implemented with current techniques.
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