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Light Control of Ferromagnetism in 
ZnO Films on Pt Substrate at Room 
Temperature
Jihao Xie1, Hongwei Qin1, Yanming Hao2, Bin Cheng1, Weikang Liu1, Liang Liu1, 
Shaoqing Ren1, Guangjun Zhou1, Ziwu Ji1 & Jifan Hu1

The control of ferromagnetism by light at room temperature is essential for the development of some 
optical-magnetic coupling devices, data storage and quantum computation techniques. In the present 
work, we demonstrate that the ferromagnetism of a semiconducting ZnO film on Pt substrate can be 
controlled by nonpolarized ultraviolet or violet light. The illumination of light with sufficiently high 
frequency photons could excite photogenerated electron-hole pairs in the semiconducting ZnO film. 
The amount of oxygen vacancies in the ZnO film and the appearance of built-in electric field due to the 
heterostructured ZnO/Pt may play important roles in the light-induced changes in the ferromagnetism 
of the ZnO film.

The control of magnetism using a non-magnetic field is one of the most attractive research subjects due to its 
potential applications in modern information technology. In addition to using electric fields and electric cur-
rents1–7, using light to control magnetism is one possible method that requires low energy consumption. The 
manipulation of magnetic properties by ultrashort laser pulses (including subpicosecond magnetization 
reversal8–10, optical generated coherent magnetic precession11,12 and laser-induced spin reorientation13,14) has 
attracted significant attention. Polarized light plays an essential role in the manipulation of the magnetic prop-
erties at the femtosecond time scale15. In fact, tuning the spin states by nonpolarized light has also been studied 
for a long time. A variation of the initial permeability under infrared radiation was observed in silicon-doped 
yttrium iron garnet at 20 K16, which is possibly due to the light-irradiated charge transfer from Fe2+ to Fe3+. The 
photo-induced ferromagnetism was observed in p-(In,Mn)As/GaSb and in several metal-organic assemblies, 
both at low temperatures17–21. For p-(In,Mn)As/GaSb, the carrier-mediated ferromagnetic interaction between 
the Mn ions is enhanced by the illumination of light through the generation of excess holes in the (In,Mn)As 
layer17. For metal-organic assemblies, the photo-induced ferromagnetism was attributed to either light-induced 
metal-to-metal charge transfer effect or light-induced excited spin-state trapping effect18–21. The optical control 
of anisotropic magnetoresistance in La1/2Sr1/2MnO3-δ manganite was also investigated below 50 K22. It should be 
noted that these findings of nonpolarized light-controlled magnetism were observed at low temperatures16–22.

On the other hand, room temperature ferromagnetism has been found in many pure semiconducting or insu-
lating oxides containing nonmagnetic elements in the forms of thin films or nanograins23–29. The observed room 
temperature ferromagnetism is called d0 ferromagnetism, which is believed to originate from some vacancies in 
the surface of the films or nanograins. Zinc oxide (ZnO), a direct wide-band-gap semiconductor, is suitable for 
use in a wide range of optical and electronic applications, such as solar-cell devices, based on the photovoltaic 
effect30–37. Room temperature ferromagnetism has been found in undoped ZnO38–43, which is attributed to oxygen 
defects, especially singly ionized oxygen vacancies, Vo

+39,41,43. Here, we demonstrate that the ferromagnetism of 
ZnO thin film on Pt substrate could be enhanced by nonpolarized ultraviolet or violet light at room temperature. 
The enhancement of ferromagnetism in ZnO/Pt is possibly correlated with the enhancement in the amount of 
singly ionized oxygen vacancies, Vo

+, due to parts of doubly ionized oxygen vacancy, Vo
++, turning into singly 

ionized oxygen vacancies, accompanying the trapping of electrons from photogenerated electron-hole pairs. The 
built-in electric field due to the heterostructured ZnO/Pt is essential to the light-induced change in the ferro-
magnetism of ZnO. The built-in electric field not only separates the photo generated electron-hole pairs but also 
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induces the displacement of electrons in ZnO. The enhancement of ferromagnetism could be observed when 
violet light (the photon energy with wavelength of λ  =  380 nm is lower than the intrinsic band gap of ZnO, ∼ 
3.37 eV) is used for illumination, as the effect of impurity energy states associated with the oxygen vacancies in 
ZnO effectively narrow the band gap44. We also find that the ferromagnetism for ZnO thin film on MgO substrate 
under light illumination does not significantly change, which is mainly due to the ultrafast recombination of pho-
togenerated electron-hole pairs with the absence of a built-in electric field. Usually, a stronger photovoltaic effect 
in ZnO is obtained when oxygen annealing is performed37, in which the oxygen vacancies and carrier concentra-
tions are reduced. However, in the present work, we find that the variation of ferromagnetism was not evident for 
ZnO thin film annealed in an oxygen atmosphere, even at the illumination of ultraviolet light with λ  =  365 nm, 
which is mainly ascribed to the lack of sufficient doubly ionized oxygen vacancy (Vo

++) for the oxygen annealed 
ZnO. Our present work demonstrates a novel route to control the ferromagnetism of undoped semiconductors 
with nonpolarized light at room temperature.

Results and Discussion
Ferromagnetism of ZnO films on Pt substrate without light illumination. The X-ray diffraction 
(XRD) pattern of ZnO films grown on Pt/Ti/SiO2/Si by rf magnetron sputtering is shown in Fig. 1(a). A (0 0 2) 
peak from the hexagonal wurtzite ZnO structure can be observed in the figure. The morphology of the cross-sec-
tion for the ZnO film grown on Pt/Ti/SiO2/Si substrate is shown in Fig. 1(b). The thickness of the ZnO film is 
approximately 200 nm. The magnetic field (H) dependence on the room temperature magnetization (M) after 
diamagnetism correction for the ZnO film as deposited on the substrate of Pt/Ti/SiO2/Si is shown in Fig. 2, where 
the magnetic field is applied parallel to the surface of the film (in-plane). The inset in the figure shows the M-H 
curve for the Pt/Ti/SiO2/Si substrate, which is diamagnetic (or nonmagnetic). The magnetic hysteresis loop of 
the ZnO film can be observed, showing the ferromagnetism at room temperature. The value of the saturation 
magnetization (Ms) is approximately 1.35 emu/cm3. The observed ferromagnetism of the undoped ZnO film 
belongs to d0 ferromagnetism induced by vacancies38–43. The role of cation or anion vacancies in introducing the 
d0 ferromagnetism is usually determined through the comparison of magnetization values between the air and 
vacuum or oxygen atmosphere annealing24,25,27. We have examined the effects of oxygen atmosphere annealing 
and vacuum annealing on the room temperature ferromagnetism of the ZnO film deposited on Pt/Ti/SiO2/Si. 
As shown in Fig. 2, the room temperature ferromagnetism of the ZnO film enhances after vacuum annealing at 
700 °C for 1 hour, but reduces after oxygen annealing at 700 °C for 2 hours. In general, oxygen vacancies occur 
in high density for ZnO films when vacuum annealing, but are difficult to form in the case of annealing under a 
high pressure oxygen atmosphere. Our present results show that the observed room temperature ferromagnetism 
of the ZnO film deposited on Pt/Ti/SiO2/Si should originate from oxygen vacancies. Figure 3(a) shows the room 

Figure 1. The (a) XRD pattern and (b) SEM cross-section photo of the ZnO film on the (1 1 1) Pt/Ti/SiO2/Si 
substrate. The (c) XRD pattern and (d) SEM cross-section photo of the ZnO film on the (1 0 0) MgO substrate.
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temperature photoluminescence (PL) spectra for three types of ZnO films (as deposited, vacuum annealing and 
oxygen annealing) on Pt/Ti/SiO2/Si substrates. Gaussian fitting is performed on each spectrum for the three types 
of ZnO films, as shown in Fig. 3(b,c) and (d). Three peaks in the visible band frequently occur at approximately 
504 nm, 550 nm, and 614 nm for the ZnO film. The emissions with 504 nm and 550 nm are related to the singly 
(Vo

+) and doubly ionized oxygen vacancies (Vo
++), and the emission approximately 614 nm originates from the 

intrinsic defects of the oxygen interstitials (Oi)39. Figure 3(e) shows the peak areas of the photoluminescence 
emissions of the ZnO film with different conditions (as deposited, vacuum annealing and oxygen annealing). 
Generally, the oxygen vacancies of semiconductor oxide thin films tend to be filled by oxygen molecules from the 
environment after heat-treatment in an oxygen atmosphere. Comparing the cases of the as deposited and oxygen 
annealing samples shown in Fig. 3(e), it can be observed that both the oxygen vacancy contents, Vo

++ and Vo
+, in 

the ZnO film on the Pt substrate decrease after oxygen annealing. In contrast, the vacuum annealing leads to the 
sharp increase of Vo

+, as shown in Fig. 3(e). Comparing these results, one could determine that there is a positive 
correlation between the amount of Vo

+ vacancies and the strength of the saturation magnetization (Ms). It could 
be suggested that the ferromagnetism of the ZnO film originates from the singly ionized oxygen vacancies (Vo

+). 
Similar results have also been obtained for ZnO films deposited on quartz wafers or for ZnO nanoparticles39,41,43.

Light control of ferromagnetism for ZnO film on Pt substrate. In the following, we demonstrate 
that the ferromagnetism of ZnO films on Pt substrate can be controlled by light. Figure 4(a) shows typical M-H 
curves measured at room temperature for the ZnO film under different lighting conditions. Compared with the 
dark case, the saturation magnetization (Ms) has an evident increase under violet light illumination (λ  =  380 nm, 
PLight =  94μ W/cm2). The Ms values of the ZnO film on Pt under green light illumination (λ  =  529 nm, PLight =   
180μ W/cm2) and red light (λ  =  625 nm, PLight =  216 μ W/cm2) remain almost the same as compared with the 
dark case (without light illumination). We also find that the magnetization of the ZnO film on Pt depends on the 
illumination intensity. The saturation magnetization (Ms) of the ZnO/Pt increases with an increase in the illumi-
nation intensity of violet light, as shown in Fig. 4(b).

The dynamic response and recovery of magnetization to violet light illumination (λ  =  380 nm, PLight =  625 
 μ W/cm2) for the ZnO film on Pt substrate under an applied magnetic field H =  1 T is shown in Fig. 5(a).The 
ferromagnetism of the ZnO film on Pt substrate increases sharply from 1.35 emu/cm3 to 3.1 emu/cm3 when the 
violet light is on. When the light is turned off, the gradual reduction of the ferromagnetism lasts approximately 
3 minutes, indicating that getting the device back to the initial magnetic state will take some time.

The after-effects of light illumination on the magnetic properties are also investigated. The magnetization 
loop of the ZnO film on Pt substrate is measured after the sample was first irradiated by a strong ultraviolet light 
(λ  =  365 nm) for 3 minutes outside the magnetic measurement device. The starting time of the magnetic meas-
urement is approximately 1 min after the light is turned off. As shown in Fig. 5(b), the saturation magnetization 
(Ms) of the ZnO/Pt can be adjusted by the presence of ultraviolet light (λ  =  365 nm).

The mechanism of light controlled ferromagnetism for ZnO films on Pt substrate. Now, we 
discuss the mechanism of nonpolarized light controlled ferromagnetism for the ZnO film on Pt substrate. The 
photon energy larger than the band gap of 3.37 eV (i.e., λ  <  368 nm) could induce the intrinsic absorption of light 
in ZnO. The electron-hole pairs can be generated in ZnO by the illumination of ultraviolet light (λ  =  365 nm). 
However, various defects occur in ZnO film, and various (deep or shallow) impurity energy states are inevi-
tably present in the gap, allowing the impurity absorption of light with lower frequencies, such as violet light 
(λ  =  380 nm).The transmittance and absorbance of the ZnO film on sapphire substrate was measured, and the 
results are shown in Fig. 6. Based on the curve of (α hν ) 2-hν  (where α  is the absorption coefficient, and hν  is the 
photon energy), the band gap (Eg) of our ZnO film can be derived45as 3.24 eV, narrower than the corresponding 
value of intrinsic ZnO. This is associated with effects of the oxygen vacancies in ZnO44. The photon energy with 

Figure 2. Room temperature ferromagnetism of ZnO films. The curves of the magnetic field (H) vs. the 
magnetization (M) after diamagnetism correction for the ZnO film on Pt/Ti/SiO2/Si substrate under three 
different conditions (as deposited, vacuum annealing and oxygen annealing) at room temperature, where the 
magnetic field is applied parallel to the surface of the film. The inset shows the M-H curve for the Pt/Ti/SiO2/Si 
substrate.
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Figure 3. Photoluminescence of ZnO films. (a) The room temperature photoluminescence spectra of the 
ZnO films on Pt/Ti/SiO2/Si substrate under different conditions (as deposited, vacuum annealing and oxygen 
annealing). (b-d) Show the Gaussian fits of the photoluminescence spectra of the ZnO films with the three 
different conditions. (e) The peak areas of the photoluminescence emissions correlated with three oxygen-
related defects (the singly ionized oxygen vacancies (Vo

+), the doubly ionized oxygen vacancy (Vo
++) and the 

intrinsic defects of oxygen interstitials (Oi)) for the ZnO films under the three conditions (as deposited, vacuum 
annealing and oxygen annealing).
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our violet light (wavelength λ  =  380 nm) is larger than the band gap of our ZnO film; therefore, electron-hole 
pairs can be generated in the ZnO by the illumination of violet light. The derived penetration depths (d0 =  1/α ) of 
different photons with λ  =  365, 380, 529 and 625 nm are 166, 470, 2460 and 2730 nm, respectively. The thickness 
of the film is 200 nm, and the penetration depth of ultraviolet light (λ  =  365 nm) is smaller than 200 nm. That 
means most of the ultraviolet light is absorbed. The penetration depth of violet light (λ  =  380 nm) is larger than 
200 nm, meaning limited violet light is absorbed. As for the green (λ  =  529 nm) and red light (λ  =  625 nm), the 
penetration depths are much larger than 200 nm, indicating that most of the light passes through the film.

It is well known that the interface of ZnO and Pt will form a Schottky contact because of their different work 
functions46. Since the work function of Pt is larger than ZnO, electrons in the contact surface of the ZnO film will 
flow to Pt and gather on the contact surface. Then, there will be a positive space charge region near the contact 
surface of the ZnO film due to the loss of the electrons. The direction of the built-in electric field inside the ZnO 
film is from the body to the surface. In the dark case, oxygen molecules in the air are adsorbed onto the surface of 
the ZnO film, forming the oxygen species O2

-(ad) or O-(ad) by capturing electrons from the n-type semiconduc-
tor47–49, thereby creating a depletion layer near the outer-surface. When the ZnO film on Pt substrate is illumi-
nated by an ultraviolet light, the photogenerated electron-hole pairs are separated by the built-in electric field. The 
holes will move to the depletion layer near the outer-surface induced by the built-in electric field. These holes are 
trapped by the surface adsorbed oxygen species O2

-(ad) or O-(ad), and oxygen molecules are released. Meanwhile, 
electrons tend to move towards the Pt due to the built-in electric field. In this process of electron displacement, 
electrons could be captured by doubly ionized oxygen vacancy (Vo

++), which will make doubly ionized oxygen 
vacancies (Vo

++) become singly ionized oxygen vacancies (Vo
+). The increasing amount of singly ionized oxygen 

vacancies (Vo
+) enhances the ferromagnetism of the ZnO film. From Fig. 4(a), one can observe the enhancement 

of the ferromagnetism induced by the violet light (wavelength λ  =  380 nm), where the photon energy of the light 
is lower than the intrinsic band gap of ZnO. These enhancements are associated with the presence of impurity 
energy states in the original band gap of ZnO and are associated with the oxygen vacancies, effectively narrowing 
the band gap44. As shown in Fig. 4(b), the ferromagnetism of ZnO film increases evidently under more powerful 
light illumination. It is understood that high illumination intensity light has more photons, which could excite 
more photogenerated electron-hole pairs and produce more singly ionized oxygen vacancies (Vo

+), enhancing 
the ferromagnetism.

When the light is turned off, the magnetization (M) of the ZnO/Pt drops to its dark value but with a longer 
recovery time of approximately 3 min, as shown in Fig. 5(a). In the present case, during the re-adsorption process 
of oxygen molecules on the ZnO outer-surface, the oxygen species O2

-(ad) or O-(ad) would occur through trap-
ping the electrons from the ZnO, accompanying the formation of holes in the ZnO. These holes would recombine 
with the electrons trapped by the Vo

+, accompanied by parts of Vo
+ turning into Vo

++. The longer recovery time 

Figure 4. Light controlled ferromagnetism of ZnO film. (a) The in-plane ferromagnetism dependence on the 
light illumination with different wavelengths and intensities for the ZnO film on Pt/Ti/SiO2/Si substrate at room 
temperature. (b) The in-plane ferromagnetism dependence on the illumination intensity of violet light for the 
as deposited ZnO film on the Pt/Ti/SiO2/Si substrate at room temperature. The corrections of the diamagnetic 
signals from the substrate have been made.
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is associated with the re-adsorption process of oxygen species on the outer-surface of the ZnO film. It has been 
found that the external environment of sample can affect the re-adsorption process of the oxygen species48. The 
oxygen atmosphere could accelerate the oxygen re-adsorption process. It can be expected that the recovery time 
could be shortened by increasing the oxygen pressure of sample environment.

As shown in Fig. 7(a), after the ZnO film on Pt substrate was annealed in an oxygen atmosphere of 0.1 MPa 
at 700 °C for 2 hours, the ferromagnetism remains nearly constant under violet light illumination and has only a 
small change under the ultraviolet light illumination. From Fig. 3(e), we can see a sharp decrease in the content 
of Vo

++ after annealing in the oxygen atmosphere. That means that a significant amount of oxygen vacancies, 
including Vo

++, were filled after annealing in the oxygen atmosphere, and there is not enough Vo
++ to trap the 

electrons from the photo generated electron-hole pairs. Simultaneously, the amount of Vo
+ does not vary widely 

when the oxygen annealed ZnO film is under the illumination of ultraviolet light. In addition, the oxygen anneal-
ing removes the impurity energy states and widens the band gap. The photon energy of violet light would thus 

Figure 5. The dynamic response and recovery of magnetization. (a) The curves of the magnetization (M) 
vs. time (t) for the as deposited ZnO film on Pt/Ti/SiO2/Si substrate at room temperature under a square wave 
violet light (λ  =  380 nm) with an illumination intensity of PLight =  625 μ W/cm2, where a magnetic field of 1 T is 
applied. (b) The curves of the magnetization (M) vs. the magnetic field (H) for the as deposited ZnO film on 
Pt/Ti/SiO2/Si substrate after being exposed outside under a higher illumination intensity of ultraviolet light 
(λ  =  365 nm). The corrections of the diamagnetic signals from the substrate have been made.

Figure 6. Optical properties of ZnO films. Transmittance and absorbance of the undoped ZnO film on 
sapphire substrate in the ultraviolet and visible-light regions. The inset shows a square of the absorption 
coefficient as a function of the photon energy.
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be insufficient to excite the electron-hole pairs. This is why the ferromagnetism of the oxygen annealed ZnO film 
remains nearly constant under violet light illumination.

To explore more about light controlled ferromagnetism, ZnO films grown on (1 0 0) MgO single crystal 
substrates were investigated. The XRD patterns for the ZnO film on MgO substrate is shown in Fig. 1(c), and 
the morphology of the cross-section for the ZnO film on MgO is shown in Fig. 1(d). The ferromagnetism of the 
ZnO film on MgO is nearly constant under light illumination, as shown in Fig. 7(b). It appears that the built-in 
electric field due to the heterostructured ZnO/Pt is essential to the light induced changes in the ferromagnetism 
of ZnO. For the ZnO/MgO heterostructure, the built-in electric field is too small to reduce the recombination of 
electron-hole pairs. The fast recombination of the electron-hole pairs produces no obvious change of the satura-
tion magnetization of the ZnO film on MgO substrate.

In summary, we have reported the light controlled ferromagnetism of ZnO films on Pt substrate at room 
temperature. The illumination of light with sufficiently high frequency photons could excite the photogenerated 
electron-hole pairs in the ZnO film. The enhancement of the ferromagnetism is possibly correlated with the 
enhancement in the quantity of singly ionized oxygen vacancies (Vo

+), due to the photogenerated electrons trans-
ferring to the doubly ionized oxygen vacancies (Vo

++). The built-in electric field due to the interface in the het-
erostructured ZnO/Pt not only separates the photogenerated electron-hole pairs but also induces the increased 
movement of electrons into the ZnO. When the light is turned off, the magnetization (M) of the ZnO/Pt drops to 
its dark value, but with a longer recovery time. This means that the ferromagnetism can be reversibly controlled 
by light with a sufficiently high frequency. The longer recovery time is associated with the re-adsorption process 
of oxygen species on the outer-surface of the ZnO film. To obtain an improved device, a large oxygen pressure of 
sample environment may be needed to accelerate the re-adsorption process of the oxygen species and reduce the 
recovery time. We expect that a similar phenomenon of light controlled ferromagnetism may also occur in other 
solar energy oxide thin films with noble metal substrates.

Methods
ZnO films were grown on (1 1 1) Pt/Ti/SiO2/Si substrates (5 mm ×  3 mm ×  0.5 mm) using rf magnetron sput-
tering of pure ZnO in an argon-oxygen atmosphere at a 4:1 ratio. During the sputtering process, the working 
pressure was 1 Pa, and the substrate temperature was 600 °C. After deposition, the films were then annealed 
in situ at 600 °C for 60 min for better crystallization and then cooled to room temperature. The ZnO films 
grown on (1 0 0) MgO single crystal substrates (5 mm ×  3 mm ×  0.5 mm) and sapphire single crystal substrates 
(30 mm ×  10 mm ×  0.5 mm) were prepared using the same method and conditions. The crystal-structure of the 
films was examined with X-ray diffraction (XRD) at room temperature. The cross-sectional morphology of the 

Figure 7. Invariable ferromagnetism of some ZnO films under light illumination. The in-plane magnetic 
hysteresis loops with and without the light illumination for (a) ZnO film on Pt/Ti/SiO2/Si substrates annealed in 
an oxygen atmosphere of 0.1 MPa at 700 °C for 2 hours and (b) the ZnO film on MgO substrate. The corrections 
of the diamagnetic signals from the substrate have been made.
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ZnO films were observed by scanning electron microscopy (SEM). The photoluminescence (PL) spectra were 
also obtained at room temperature, where the excitation wavelength was 325 nm (He-Cd laser). Magnetization 
measurements were carried out using a VersaLab (Quantum Design). All measurements were carried out at room 
temperature. The light sources used in the experiment were light emitting diodes (LED) with different wave-
lengths (365 nm, 380 nm, 529 nm and 625 nm).For the direct measurement of the magnetic hysteresis loop for the 
ZnO film, the signals of the ZnO/substrate samples and the substrate were measured separately, and a subtraction 
was performed. For themeasurement of the magnetic hysteresis loop with an LED in the light-off state (dark con-
ditions) in the VersaLab, the signal for the ZnO/substrate can be extracted from the measurement of the signals 
of the device with and without the ZnO/substrate. For the measurement of the magnetic hysteresis loop with a 
LED in the state of light-on (under the illumination condition) in VersaLab, the signal of the ZnO/substrate can 
be extracted from the measurement of the signals of the device with and without the ZnO/substrate. In this way, 
we could rule out both the effects of the LED and the current of the LED in our final results. The after-effects of 
light illumination on the magnetic properties were also determined, where the magnetic hysteresis loops were 
directly measured (without LED) with the VersaLab, after the illumination of the LED with the high illumination 
intensity on the sample outside of the VersaLab. In our measurements, the signal of the ZnO film was extracted 
after correcting for the substrate signal.
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