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The classical correlation limits the 
ability of the measurement-induced 
average coherence
Jun Zhang1, Si-ren Yang2, Yang Zhang2 & Chang-shui Yu2

Coherence is the most fundamental quantum feature in quantum mechanics. For a bipartite quantum 
state, if a measurement is performed on one party, the other party, based on the measurement 
outcomes, will collapse to a corresponding state with some probability and hence gain the average 
coherence. It is shown that the average coherence is not less than the coherence of its reduced density 
matrix. In particular, it is very surprising that the extra average coherence (and the maximal extra 
average coherence with all the possible measurements taken into account) is upper bounded by the 
classical correlation of the bipartite state instead of the quantum correlation. We also find the sufficient 
and necessary condition for the null maximal extra average coherence. Some examples demonstrate 
the relation and, moreover, show that quantum correlation is neither sufficient nor necessary for the 
nonzero extra average coherence within a given measurement. In addition, the similar conclusions are 
drawn for both the basis-dependent and the basis-free coherence measure.

Quantum coherence originating from the quantum superposition principle is the most fundamental quantum 
feature of quantum mechanics. It plays an important role in various fields such as the thermodynamics1–6, the 
transport theory7–10, the living complexes11–13 and so on. With the resource-theoretic understanding of quan-
tum feature in quantum information, the quantification of coherence has attracted increasing interest in recent 
years14–19 and has also led to the operational resource theory of the coherence20.

The quantitative theory also makes it possible to understand one type of quantumness (for example, the coher-
ence) by the other type of quantumness such as the entanglement and the quantum correlation, vice versa21–31. 
For example, for a bipartite pure state, the maximal extra average coherence that one party could gain was shown 
to be exactly characterized by the concurrence assisted by the local operations and classical communication 
(LOCC) with the other party21. Ref. 22 showed that the maximal average coherence was bounded by some type 
of quantum correlation in some particular reference framework. In the asymptotic regime, ref. 23 showed that 
the rate of assisted coherence distillation for pure states was equal to the coherence of assistance under the local 
quantum-incoherent operations and classical communication. Quite recently, a unified view of quantum correla-
tion and quantum coherence has been given in ref. 24. In addition, if only the incoherent operations are allowed, 
the state with certain amount of coherence assisted by an incoherent state can be converted to an entangled 
state with the same amount of entanglement32 or a quantum-correlated state with the same amount of quantum 
correlation33.

In this paper, instead of the quantum correlation, we find, it is the classical correlation of a bipartite quantum 
state that limits the extra average coherence at one side induced by the unilateral measurement at the other side. 
We also find the necessary and sufficient condition for the zero maximal average coherence that could be gained 
with all the possible measurements taken into account. Besides, we show, through some examples, that quantum 
correlation is neither sufficient nor necessary for the extra average coherence subject to a given measurement. We 
have selected both the basis-dependent and the basis-free coherence measure to study this question and obtain 
the similar conclusions. In particular, one should note that all our results are valid for the positive-operator-valued 
measurement (POVM), even though we only consider the local projective measurement in the main text.
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Results
The upper bound on the extra measurement-induced average coherence. Coherence meas-
ure. To begin with, let’s first give a brief review of the measure of the quantum coherence14. If a quantum state δ̂ 
can be written as

∑δ δ=ˆ i i ,
(1)i

i

δ̂ is incoherent with respect to the basis {|i〉 }. Let   denotes the set of incoherent states, then the operator K̂n is the 
incoherent operation if it satisfies ⊂ˆ ˆ †K Kn n  . Thus a good coherence measure C(ρ) of a d-dimensional state ρ 
should be:

 (p1) Nonnegative-i.e., C(ρ) ≥  0 and C(ρ) =  0 if and only if the quantum state ρ is incoherent.
 (p2) Monotonic-i.e., ρ ρ≥ ΛC C( ) ( ( )) for any incoherent operation ρ ρΛ = ∑ ˆ ˆ †K K( ) n n n; and strongly mono-

tonic if ρ ρ≥ ∑C p C( ) ( )n n n  with ρ ρ= ˆ ˆ †p K Kn n n n.
 (p3) Convex-i.e., ρ ρ∑ ≤ ∑C p p C( ) ( )i i i i i i .

Even though there are many good coherence measures such as the coherence measures based on l1-norm, 
trace norm, fidelity, the relative entropy and so on14–19, in this paper we will only employ the relative entropy to 
quantify the quantum coherence, i.e.,

C
I

ρ ρ δ ρ ρ= = − .
δ∈

∗S S S( ) min ( ) ( ) ( ) (2)

where ρ σ ρ ρ ρ σ= −S ( ) Tr log Tr log  is the relative entropy, ρ ρ ρ= −S ( ) Tr log  is the von Neumann 
entropy and ρ∗ is the diagonal matrix by deleting all the off-diagonal entries of any ρ (we will use this notation 
throughout the paper). For simplicity, we will restrict ourselves in the computational basis throughout the paper. 
In contrast, the basis-free coherence (or the total coherence)34 is quantified by


ρ ρ ρ=










= − .S

d
d S( ) log ( )

(3)
T d

Note that ρ( )T  quantifies the maximal coherence of a state with all the bases taken into account.

The Classical correlation as the upper bound. Now let’s turn to our game sketched in Fig. 1. Suppose two players, 
Alice and Bob, share a two-particle quantum state ρAB and Alice performs some projective measurement Π Π: { }i  
on her particle and sends her outcomes to Bob. Bob isn’t allowed to do any operation. Based on Alice’s outcomes, 
Bob will obtain the state  ρ ρ= Π ⊗ Π ⊗ p( ) ( )/i

B
i
A

B AB i
A

B i with the probability  ρ= Π ⊗ Π ⊗p Tr( ) ( )i i
A

B AB i
A

B . 
Thus in the computational basis, the measurement-induced average coherence (MIAC: Bob’s average coherence 
induced by Alice’s measurement Π) is given by

∑ ∑ρ ρ ρ δ= = .
δ

Π
∈

p p S( ) ( ) min ( )
(4)

P
B

i
i i

B

i
i i

B
i
B

i

C C
I

Similarly, the measurement-induced average total coherence (MIATC: Bob’s average total coherence induced 
by Alice’s measurement Π) is

∑ ∑ρ ρ ρ= = −Π p d p S( ) ( ) log ( ),
(5)

T
B

i
i

T
i
B

i
i i

B 

with d denoting the dimension of Bob’s space. With Alice’s measurement Π, the Bob’s average coherence is usually 
different from the coherence of ρ ρ= TrB A AB. The extra MIAC ∆ Π( )P  and the extra MIATC ∆ Π( )T  can be defined 
as

Figure 1. Illustration of the two-player game on the measurement-induced average coherence. 
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ρ ρ∆ = −Π Π( ) ( ), (6)
P P

B B  

  ρ ρ∆ = − .Π Π( ) ( ) (7)
T T

B
T

B

It is obvious that ∆ ≥Π 0P T/  which is impied by the convexity of the coherence , that is,  ρ ρ∑ ≥p ( ) ( )i i i
B

B  
with ρ ρ= ∑ pB i i i

B.
Thus our main results can be given by the following theorems.

Theorem 1: For a bipartite quantum state ρAB, the extra MIAC ∆ Π
P  is not greater than the extra ∆ Π

T , i.e.,

 ∆ ≤ ∆ .Π Π (8)P T

Proof. Based on Eq. (4), we have

∑

∑

∑

∑

∑

∑

ρ ρ

ρ δ

ρ ρ

ρ ρ

ρ ρ ρ

ρ ρ ρ

=

=

≤

= −

− −

= − +

Π

∗ ∈

p

p S

p S

S p S

S p

S p S

( ) ( )

min ( )

( *)

( ) ( )

( ) Tr log *

( ) ( ) ( ),
(9)

P
B

i
i i

B

i
i i

B
i
B

i
i i

B
B

B
i

i i
B

B
i

i i
B

B

B
i

i i
B

B

i
B

C C

C

I

with ρ ρ= TrB B AB. Substituting the definition of MIATC (Eq. (5)) into Eq. (9), we can obtain the

  







ρ ρ

ρ ρ

ρ ρ

∆ = −

≤ + −

= − −

= ∆ .

Π Π

Π

Π

Π

S d

d S

( ) ( )

( ) ( ) log

( ) [log ( )]

(10)

P P
B B

B
T

B
T

B B
T

The inequality holds if all Bob’s states ρB and ρi
B have the same diagonal entries. The proof is completed.        

Theorem 2: For a bipartite quantum state ρAB, the extra MIAC ∆ Π
P  is upper bounded by the classical correlation 

of ρAB, that is,

∆ ≤ ΩΠ B( { }), (11)P
i
AC J

where the classical correlation is defined by

 ρΩ = − Ω
Ω

B S S B( { }) ( ) min ( { }),
(12)i

A
B i

A

{ }i
A

with ρΩ = ∑S B q S( { }) ( )i
A

i i i
B  and ρq{ , }i i

B  defined by

 ρ ρ= Ω ⊗ Ω ⊗ q( ) ( )/ , (13)i
B

i
A

B AB i
A

B i

and the corresponding probability

 ρ= Ω ⊗ Ω ⊗ .q Tr( ) ( ) (14)i i
A

B AB i
A

B

Eq. (11) saturates if ρi
B induced by the measurement Π achieves the classical correlation  ΩB( { })i

A  and ρ ∗( )i
B ’s 

are the same for all i. An example is the pure state ϕ λ= ∑ ⊗ ˜U j jAB j j A B A B
 where UA is unitary, |j〉 , j̃  are the 

local computational basis.

Theorem 3: The extra MIATC ∆ Π
T  for a bipartite quantum state ρAB is upper bounded by the classical correlation 

ΩB( { })i
A  of ρAB, i.e.,

C J∆ ≤ Ω .Π B( { }) (15)T
i
A

The equality holds for the pure ρAB.
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Proof. From the classical correlation, we have

 ∑

∑

ρ ρ

ρ ρ

Ω = −

≥ − .

Ω
B S q S

S p S

( { }) ( ) min ( )

( ) ( )
(16)

i
A

B
i

i i
B

B
i

i i
B

{ }i

Substituting Eq. (5) into Eq. (16), one can arrive at

ρ ρ

ρ ρ

Ω ≥ − + +

= − −

= ∆ .

Π

Π

Π

B d S

d S

( { }) log ( ) ( )

( ) [ log ( )]

(17)

i
A

B
T

B
T

B B
T

J C

C

C

Since both  ρΩ =B S( { }) ( )i
A

B  and ρ =S ( ) 0i
B  hold for pure ρAB

35, the inequality (16) saturates for the pure 
quantum state ρAB. The proof is finished.   

All the above three theorems hold for any projective measurement, so if we specify the particular measure-
ment such that the maximal extra MIAC or MIATC can be achieved, the three theorems are also valid, which can 
be given in a rigorous way as:

Corollary 1. For a bipartite state ρAB with the reduced density matrix ρB, the maximal extra MIAC and the max-
imal extra MIATC satisfy

 ∆ ≤ ∆ , (18)P T
max max

and

C C C Jρ ρ∆ = − ≤ ΩB( ) ( ) ( { }), (19)
P P

B B i
A

max max

C C C Jρ ρ∆ = − ≤ Ω .B( ) ( ) ( { }) (20)
T T

B
T

B i
A

max max

with

ρ ρ= .
Π

Π( ) max ( ) (21)
P T

B
P T

Bmax
/ / 

If ρB is incoherent, we have

C C Jρ ρ≤ ≤ Ω .Π B( ) ( ) ( { }) (22)
P T

B
P T

B i
A/

max
/

Proof: It is obvious from theorem 1, 2 and 3.  

Corollary 2: If ρAB satisfies ρ ρ ρ− =S S S( ) ( ) ( )B A AB , then

 ρ∆ ≤ .Π S ( ) (23)
P T

A
/

Proof. If the initial quantum state ρAB satisfies the ρ ρ ρ− =S S S( ) ( ) ( )B A AB , we have36

ρ ρ= .S( ) ( ) (24)A AB A

w h e r e   ρ( )A AB  i s  t h e  q u a nt u m  d i s c o r d  d e f i n e d  by  D I Jρ ρ= − ΩB( ) ( ) ( { })A AB AB i
A  w i t h 

ρ ρ ρ ρ= + −S S S( ) ( ) ( ) ( )AB A B AB . Thus one can easily show ρΩ =B S( { }) ( )i
A

A  which completes the proof. 

Theorem 4: Taking all Alice’s possible measurements into account, no extra MIAC is present if and only if the 
state ρAB is block-diagonal under Bob’s computational basis or a product state.

Proof. Consider the computational basis {|i〉 B}, the state ρ = ∑ ⊗ + ∑ ⊗≠M i i M i jAB ii ii
A

B i j ij
A

B
 where Mii

A 
is Hermitian and positive and ρ ρ= = ∑ MTrA B AB i ii

A. It is obvious that if =M 0ij
A  for all ≠i j, the states Bob 

obtains are always diagonal subject to {|i〉 B}. That is, no extra MIAC can be obtained. If ρAB is a product state 
which implies  Ω =B( { }) 0i

A , it means that the upper bound of the extra MIAC is zero based on Theorem 2. So 
no extra MIAC could be obtained.

On the contrary, no extra MIAC includes two cases: one is that the final average coherence is zero, and the 
other is that the final nonzero average coherence is not increased compared with the coherence of ρ ρ= TrB A AB. 
The first case means that Alice performs a measurement π π| 〉 〈 |{ }i A i  (optimal for the maximal average coherence) 
such that Bob obtains an ensemble ρp{ , }i i

B  where ρ ρ= ∑ pB i i i
B with all ρi

B diagonal. Thus ρAB can be written as
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∑ρ π π ρ π π= ⊗ + 〈 | ⊗ +
≠

( )p M N ,
(25)

AB
i j

i i A i i
B

i A j ij
B

ij
B

where Mij
B is diagonal and Nij

B has no nonzero diagonal entries. Assume there is at least one nonzero matrix Nij
B 

among all i, j, then one can always select a projector ϕ ϕ  such that ϕ π π ϕ∑ 〈 | 〈 | 〉 ≠≠ N 0i j i j ij
B . This means that 

Bob can get a state with some coherence. In other words, π π| 〉 〈 |{ }i A i  is not the optimal measurement, which is a 
contradiction. So we have =N 0ij

B . Under this condition, one can find from Eq. (25) that ρAB is block-diagonal 
subject to Bob’s basis {|i〉 B}. The second case implies that there exists a decomposition ρp{ , }i i

B  (optimal for the 
maximal average coherence) with ρ ρ= ∑ pB i i i

B such that ρ ρ= ∑ p( ) ( )B i i i
B   which, however, is only satisfied 

when all ρi
B are the same for nonzero ρ∑ p ( )i i i

B , since  is a convex function. Thus we have ρ ρ=B
i
B which leads 

to ρ ρ= ∑S p S( ) ( )B i i i
B . Now we claim that ρp{ , }i i

B  is also optimal for the classical correlation. This can be seen as 
follows. If there exists another decomposition ρ′ ′p{ , }i i

B  for the classical correlation, ρ ′i
B cannot be the same, which 

will lead to the larger average coherence due to the convexity of . This is a contradiction. So ρp{ , }i i
B  is the opti-

mal decomposition for the classical correlation, that is, ρ ρΩ = − ∑ =B S p S( { }) ( ) ( ) 0i
A

B i i i
B  which implies ρAB 

is a product state. The proof is finished.  

Theorem 5: Consider all Alice’s possible measurements, no extra MIATC is present if and only if the state ρAB is 
a product state.

Proof. A product state has no classical correlation, i.e.,  Ω =B( { }) 0i
A  which implies that the upper bound of the 

extra MIATC is zero in terms of Theorem 3. Thus no extra MIATC could be obtained.

On the contrary, no extra MIATC implies that ρ ρ ρ ρ∆ = − = − ∑ =Π Π S p S( ) ( ) ( ) ( ) 0T T
B

T
B B i i B

i   , namely 
ρ ρ= ∑S p S( ) ( )B i i B

i . Similar to the proof of theorem 4, one can find that ρ ρΩ = − ∑ =B S p S( { }) ( ) ( ) 0i
A

B i i i
B  

which corresponds to a product state ρAB. The proof is finished.                     

Examples. The above theorems mainly show that, even though the coherence is the quantum feature of a quan-
tum system, in the particular game as sketched in Fig. 1, the extra average coherence obtained by Bob with the 
assistance of Alice’s measurement is well bounded by the classical correlation of their shared state, instead of the 
quantum correlation. However, one can find that the necessity for all the attainable bounds is to share the pure 
states which happen to own the equal quantum and classical correlations. Therefore, one could think that the clas-
sical correlation is trivial in contrast to the quantum correlation (e.g., quantum correlation serves as a tight upper 
bound, but is less than classical correlation). The following examples show that it is not the case.

Example 1. The extra average coherence could be induced in classical-classical states. Suppose a bipartite state is 
given by

ρ = ⊗ + + + ⊗ − −( )1
2

0 0 1 1 , (26)AB A B A B

with |±〉 = | 〉 ± | 〉( 0 1 )1
2

, the reduced quantum state ρ ρ= =A B 2
2  is incoherent. So the classical correlation is 

equal to the total correlation, i.e.,

ρ ρ ρ ρ= + − = .S S S( ) ( ) ( ) ( ) 1 (27)AB A B AB

If the subsystem A is measured by the projective measurements Π | 〉〈 | | 〉〈 |: { 0 0 , 1 1 }, subsystem B will collapse 
to the state ρ = ± ±B  with the probability =±p 1

2
. The extra MIAC and the extra MIATC subject to the meas-

urement Π can be calculated as

   ρ ρ ρ∆ = + − =Π + + − −p p( ) ( ) ( ) 1, (28)
P

r
B

r
B

B

 ∑ ρ ρ∆ = − − = .Π d p Slog ( ) ( ) 1
(29)

T

i
i i

B T
B

If the subsystem A is measured by the projective measurement Π + + − −: { , }, subsystem B will col-
lapse to the state ρ ρ= =+ − /2B B

2  with the equal probability. So there is no extra MIAC and MIATC. This example 
shows that the extra average coherence is well bounded by the classical correlation. In particular, it also shows that 
the extra average coherence could exist even though not any quantum correlation is present.

Example 2. No extra average coherence could be induced in the classical-quantum state. Set the classical-quantum 
state as

ρ ρ ρ= | 〉 〈 |⊗ + | 〉 〈 | ⊗ .
1
2

0 0 1
2

1 1
(30)AB A

B

A

B
1 2

with ρ = + +B
1  and ρ = 0 0B

2 . The reduced quantum states are given by
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ρ ρ=











=












.

0

0
,

(31)
A B

1
2

1
2

3
4

1
4

1
4

1
4

Since there is no quantum correlation subject to subsystem A, the corresponding classical correlation is 
directly determined by the total correlation as

∑ρ ρ ρΩ = + − = −
± ±

.
±

B S S S( { }) ( ) ( ) ( ) 2 2
4

log 2 2
4 (32)i

A
A B AB

Suppose that the projective measurement Π + + − −: { , } is performed on subsystem A while the sub-

system B will collapse on the state ρ =











±
B

3
4

1
4

1
4

1
4

 with the equal probability = =+ −p p 1
2

. It is obvious that there is 

no extra average coherence ∆ =Π( 0)P T/  gained by this measurement. However, if the projective measurement is 
selected as Π | 〉〈 | | 〉〈 |: { 0 0 , 1 1 }, subsystem B will be at the state ρ B

1  and ρ B
2  with the equal probability. Therefore, the 

nonzero extra average coherence can be obtained as

C J∆ = Ω + + +Π B( { }) 1
2

1
4

log 1
4

3
4

log 3
4

, (33)
P

i
A

∆ = ΩΠ B( { }), (34)T
i
AC J

with  ΩB( { })i
A  given by Eq. (32). This example shows that an improper measurement could induce no extra 

average coherence even though quantum correlation is absent.

Example 3. No extra average coherence could be induced in the quantum-classical state. Suppose the 
quantum-classical state is given by

ρ ρ ρ= ⊗ |+〉 〈+|+ ⊗|−〉 〈−|
1
2

1
2

,
(35)AB

A
B

A

B
1 2

with ρ = + +A
A1  and ρ = 0 0A

A2 . It is easy to see that the reduced quantum state ρ = /2B 2  is incoherent, 
i.e., ρ =( ) 0B . The classical correlation is

∑Ω = +
± ±

.
±

B( { }) 1 2 2
4

log 2 2
4 (36)i

A

If the projective measurement Π: { 0 0 , 1 1 } is used on subsystem A, subsystem B will be on the states 
ρ = + + + − −B

1
1
3

2
3

 and ρ = + +B
2  with the corresponding probability =p1

3
4

 and =p2
1
4

. Thus a 
simple calculation can show

 ∆ = ∆ = + + .Π Π 1 1
4

log 1
3

1
2

log 2
3 (37)

P T

However,  i f  we  se lec t  another  projec t ive  measurement  ψ θ φ ψ θ φΠ ± ±: { ( , ) ( , ) } where 
ψ θ φ θ θ= + φ+ e( , ) cos 0 sin 1i  and ψ θ φ θ θ= − φ− e( , ) sin 0 cos 1i  with cot2 θ =  cos φ, subsystem 
B will collapse to

ρ = + + + − −± ± ±a b , (38)
B

B B

where ψ θ φ= +±
±

±a p( , ) /
2

 and ψ θ φ=±
±

±b p( , ) 0 /
2

 with the probability =
θ θ θ

+
+ +φ

p ecos sin cos
2

i 2 2
 

and =
θ θ θ

−
− +φ

p esin cos sin
2

i 2 2
. It is easy to demonstrate that a± =  b± for cot2 θ =  cos φ which further leads to 

ρ =±
B

2
2 . Thus there is no extra average coherence can be gained in terms of this measurement constraint, that is,

 ∆ = ∆ = .Π Π 0 (39)P T

Similar to the second example, an improper measurement could induce no extra average coherence even 
though quantum correlation is present.

Example 4. The classical correlation can be tighter than the quantum correlation. Consider a Bell-diagonal state

  ∑ρ σ σ=





⊗ + ⊗





=
c1

4
,

(40)
AB

j
j j j2 2

1

3

where σ σ σ σ=�� ( , , )x y z  is the Pauli matrices. ρAB is symmetric under exchanging the subsystems. The classical 
and the quantum correlations are respectively given by ref. 37
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∑ρ =
±

±
±

c c( ) 1
2

log (1 ),
(41)AB

ρ = − − − − − −

+ − + + − + +
+ + − + + − +
+ + + − + + −

−
−

− −
+

+

c c c c c c

c c c c c c
c c c c c c
c c c c c c

c c c c

( ) 1
4

[(1 ) log(1 )

(1 ) log(1 )
(1 ) log(1 )
(1 ) log(1 )]
1

2
log(1 ) 1

2
log(1 ),

(42)

A B AB/ 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3



with c =  max{|c1|, |c2|, |c3|}.
Supp o s e  t h e  pro j e c t i ve  m e a s u re m e nt  ψ θ ϕ ψ θ ϕΠ Π =± +{ }: ( , ) ( , ) ,  Π = − Π− +1  w i t h 

ψ θ ϕ = +θ ϕ θe( , ) cos 0 sin 1i
2 2

 is performed on subsystem A, subsystem B will collapse, with the equal 
probability =±p 1

2
, on the states

ρ =







±
± −

± +







θ θ
ϕ ϕ

θ
ϕ ϕ

θ

±



c s s c s ic s

s c s ic s c s

1
2 2

( )

2
( ) 1

2

,

(43)

B

3
1 2

1 2
3

where sx =  sin(x) and =s xcos( )x . In addition, it is obvious that the reduced quantum states ρ = /2A B/ 2  which 
implies  ρ =( ) 0A B/ . So the extra average coherence can be directly given by the MIAC or MIATC as

∑ρ ρ∆ = =
± ∆ ± ∆

−
± ±θ θ

Π Π
±

c s c s( ) ( ) 2
4

log 2
4

1
2

log 1
2 (44)

P
B

P
B

3 3 

  ∑ρ ρ∆ = = +
± ∆ ± ∆

Π Π
±

( ) ( ) 1 2
4

log 2
4

,
(45)

T
B

T
B

with ∆ θ ϕ θ= + + − + − + − +c c c c c c c c c c2 ( 2 ) cos 2 2( )( ) cos 2 sin1
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In Fig. 2, we plot the quantum and classical correlations and the extra average coherence with the varying c1. 
The parameters are chosen as θ =  2π/3, ϕ π= /2 and c2 =  0.33, c3 =  0.22. The solid line, dotted-dashed line, dotted 
line and dashed line correspond to the classical correlation, the quantum correlation, the MIATC and the MIAC, 
respectively. One can find that the classical correlation serves as the good upper bound for both the (extra) 
MIATC and the (extra) MIAC and meanwhile, the (extra) MIATC is always greater than the (extra) MIATC. 
However, the quantum correlation crossing the classical correlation, the (extra) MIATC and the (extra) MIAC 
with the increasing c1 cannot act as a good bound.

Discussion
Before the end, we would like to emphasize that all the results in the paper are valid for the POVMs, since it was 
shown38 that the classical correlations always attained by the rank-one POVM. In addition, we have claimed that 
Bob isn’t allowed to do any operation, which is mainly for the basis-dependent coherence measure. In fact, when 
we consider the basis-free coherence measure, it is equivalent to allowing Bob to select the optimal unitary oper-
ations on his particle. In this case, theorem 3 implies that for pure states the extra MIATC is the exact quantum 

Figure 2. The classical correlation ρJ( )AB  (solid line), the quantum correlation ρD ( )B AB  (dotted-dashed 
line), the (extra) MIATC ρΠC ( )T

A  (dotted line) and the (extra) MIAC ρΠC ( )P
A  (dashed line) versus c1 for the 

Bell-diagonal state.
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entanglement of their shared state (von Neumann entropy of the reduced density matrix). Thus the coherence 
also provides an operational meaning for the pure-state entanglement under LOCC.

To sum up, we employ the basis-dependent and basis-free coherence measure to study the extra average coher-
ence induced by a unilateral quantum measurement. Despite that the coherence is the most fundamental quan-
tum feature, we find that the extra average coherence is limited by the classical correlation instead of the quantum 
correlation. In addition, we find the necessary and sufficient condition for the zero maximal average coherence. 
We also show that the quantum correlation is neither sufficient nor necessary for the extra average coherence by 
some examples.

Methods
Proof of Theorem 2. We will give the main proof the theorem 2. in the main text. Following Eq. (9), we have

C C J∑ρ ρ ρ ρ− ≤ − ≤ ΩΠ S p S B( ) ( ) ( ) ( ) ( { }),
(46)

P
B B B

i
i i

B
i
A

where the second inequality holds due to the optimal Ω{ }i
A  implied in Eq. (12). So Eq. (11) is satisfied.

In addition, Eq. (11) saturates if both Eqs (9) and (15) saturate. Eq. (15) means that ρi
B induced by the meas-

urement Π achieves the classical correlation ΩB( { })i
A  and Eq. (9) implies ρ ∗( )i

B ’s are the same for all i. In order 
to find an explicit example, suppose σ ϕ ϕ=AB AB

 with

∑ϕ λ= ⊗ ˜U j j ,
(47)AB

j
j A B A B

with the real λj satisfying λ∑ = 1j j
2 . It is obvious σ σ λ= = ∑ ˜ ˜j jTrB B AB j j B

2  is incoherent with respect to the 
basis |

= …
j̃{ } j d1,2, ,

. It means

σ = .( ) 0 (48)B

In order to select a proper measurement, Alice first applies a unitary operation ′UA such that

∑ ω′ =
ω

π ω

=

−
U U j

N
e1 ,

(49)A A A

N ij
N A

0

1 2

with N denoting the dimension of the subsystem A. Thus ϕ AB
 becomes

∑ ∑ϕ λ ω′ = .
ω

π ω

=

−
˜

N
e j1

(50)AB
j

j

N ij
N A B

0

1 2

Now Alice performs the projective measurement ω ωΩ | 〉〈 |: { } on ϕ′ AB
, Bob will obtain his state as

∑φ λ=ω ω

π ω
˜p

N
e j1 ,

(51)
B

j
j

ij
N B

2

with the probability pω corresponding to the measurement outcome ω. Bob’s MIAC can be given by

 ∑

∑

∑ ∑

σ ρ δ

ρ ρ

λ λ
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=
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 − 




=





−







=
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ω δ ω ω
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ω ω ω
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( ), (52)

r B
B B

B B

j
j j

B

2 2

B

with ρ φ φ=ω ω
B B . For the pure state ϕ AB

, it can prove that the classical correlation  ΩB( { })i
A  is exactly given 

by

 σΩ = .B S( { }) ( ) (53)i
A

B

Eqs (48), (52) and (53) show that Eq. (11) saturates for the pure state given by Eq. (47). The proof is finished. 
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