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Continuously Varying Critical 
Exponents Beyond Weak 
Universality
N. Khan1, P. Sarkar2, A. Midya1, P. Mandal1 & P. K. Mohanty1

Renormalization group theory does not restrict the form of continuous variation of critical exponents 
which occurs in presence of a marginal operator. However, the continuous variation of critical 
exponents, observed in different contexts, usually follows a weak universality scenario where some of 
the exponents (e.g., β, γ, ν) vary keeping others (e.g., δ, η) fixed. Here we report ferromagnetic phase 
transition in (Sm1−yNdy)0.52Sr0.48MnO3 (0.5 ≤ y ≤ 1) single crystals where all three exponents β, γ, δ 
vary with Nd concentration y. Such a variation clearly violates both universality and weak universality 
hypothesis. We propose a new scaling theory that explains the present experimental results, reduces to 
the weak universality as a special case, and provides a generic route leading to continuous variation of 
critical exponents and multi-criticality.

Study of critical phenomena is based on two concepts: one is universality1,2 which states that the associated critical 
exponents and scaling functions are universal up to symmetries and space dimensionality, and another is scaling 
theory3 that describes the general properties of the scaling functions and relates different critical exponents. In the 
renormalization group approach4, the critical point is a fixed point governed by a unique set of relevant operators 
with scaling dimensions (critical exponents) which are fully independent of irrelevant operators. While a relevant 
perturbation may take the system to a new fixed point, the marginal one brings a possibility of continuous varia-
tion of exponents. Although the concept of universality has been verified experimentally time and again, starting 
from early 40s5 to present6, a continuous variation is rarely observed. A clear example is provided by Baxter7 who 
solved the eight vertex model8 (EVM) exactly, and Kadanoff and Wegner9 who provided a mapping of EVM to a 
two-layer Ising system with a marginal four-body interaction between the layers10 (similar to Ashkin Teller 
model11–13) that drives the continuous variation. In later years, Suzuki14 proposed a weak universality (WU) sce-
nario where critical exponents (like β, γ, ν in EVM) change continuously but their ratios (β

ν
γ
ν

,  and consequently 
δ= + γ

β
1 ) remain invariant. This WU scenario has been observed in frustrated spin systems15,16, interacting 

dimers17, magnetic hard squares18, Blume-Capel models19, reaction diffusion systems20, absorbing phase transi-
tions21, percolation models22,23, fractal structures24, quantum critical points25, etc. The generic nature of the mar-
ginal interaction that leads to weak universality in all these different systems remains unclear.

To the best of our knowledge, most systems which show continuous variation of critical exponents obey weak 
universality - a few exceptions include criticality in Ising spin glass26, micellar solutions27,28, frustrated spin sys-
tems29, strong coupling QED30 etc. Experimentally, the continuous evolution of critical exponents with chemi-
cal substitution has been observed in URu2−xRexSi2 (0.2 ≤  x ≤  0.6) single crystals31. With decreasing x, both γ 
and δ decrease linearly keeping β fixed [(β, γ, δ) =  (0.8, 1.0, 2.25) for x =  0.6 and (β, γ, δ) =  (0.8, 0.18, 1.23) for 
x =  0.2]. By extrapolation, it has been shown that γ →  0 and δ →  1 at x =  0.15 at which quantum phase transition 
occurs. Recently, Fuch et. al.32 have observed the linear variation of exponents in the polycrystalline samples of 
Sr1−zCazRuO3 from (β ≈  0.5, γ ≈  1, δ ≈  3) for z =  0 to (β ≈  1, γ ≈  0.9, δ ≈  1.6) for z =  0.6. They have suggested that 
the evolution of exponents may be originating from orthorhombic distortions or additional quantum fluctua-
tions associated with quantum phase transition at z =  0.7 However, whether there is a quantum critical point in 
Sr1−zCazRuO3 at z =  0.7 is still under debate33–37.

Anomalous ferromagnetic (FM) transition has also been observed in mixed valance manganites, 
RE1−xAExMnO3 (RE: rare earth ions, AE: alkaline earth ions) either as a discontinuous transition or a con-
tinuous transition with a set of critical exponents that does not belong to any known universality or the weak 
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universality38–49. In manganites, the nature of phases and transitions strongly depend on the bandwidth and 
disorder (namely quenched disorder) arising due to the size mismatch between A-site cations50,51. Such disorder 
reduces the carrier mobility and the formation energy for lattice polarons52, in effect TC reduces, rendering the 
FM transition towards first-order. A system with narrow bandwidth and large disorder such as Sm1−xSrxMnO3 
shows a sharp first-order FM transition for x =  0.45 −  0.4842–45. The first-order transition is however extremely 
sensitive to external pressure, magnetic field, A-/B-site substitution, oxygen isotope exchange, etc. - with the 
application of external and internal pressure (chemical substitution) beyond a critical threshold, the transition 
becomes continuous43–45,53.

In this paper, we report two important results (i) a thermodynamic transition (i.e. FM phase transition in 
(Sm1−yNdy)0.52Sr0.48MnO3) where critical exponents β, γ, δ vary continuously, and (ii) a new scaling theory that 
explains the present experimental results and reduces to the weak universality as a special case. We propose that, 
to obey the scaling relations consistently, the variation of critical exponents are constrained to have specific forms. 
This scaling hypothesis naturally leads to two special cases which have been realized earlier, namely the weak uni-
versality14 (where δ is fixed) and the strong coupling QED30 (fixed γ). A more generic scenario is the one which 
allows simultaneous variation of all the critical exponents in an intrigue way, leading to a multi-critical point 
where the phase transition becomes discontinuous. This scenario is verified experimentally in a comprehensive 
and systematic study of FM phase transition in (Sm1−yNdy)0.52Sr0.48MnO3 single crystal. For higher doping con-
centration y >  0.4 the FM transition is found to be continuous, but to our surprise, the critical exponents exhibit 
continuous variation with Nd concentration y, starting from (β, γ, δ) =  (0.16, 1.27, 9.30) at y =  0.5 to (0.36, 1.38, 
4.72) at y =  1. Within error limits, y =  1 belongs to the universality class of Heisenberg model in three dimension 
(HM3d). The proposed scaling hypothesis successfully explains the continuous variation of exponents in the 
present system, and predicts that the transition is discontinuous for doping y ≲  0.37 which has been observed 
experimentally43,44.

Results and Discussion
Critical temperature and exponents. Let us set notations by reminding that in absence of magnetic field 
(H) the spontaneous magnetization of the system vanishes as MS(0, ε) ~ (− ε)β and the initial susceptibility 
diverges as χ ε ε γ−~(0, ) ( )0  as the critical point is approached, i.e., when (T/TC −  1) ≡  ε →  0. Again at T = TC, the 
magnetization varies as M(H, TC) ~ H1/δ54. To estimate the critical exponents β, γ and δ, we need to know TC accu-
rately. To do so, we exploit the linearity in Arrott-Noakes equation of state55

ε






 = +

γ
βH

M
a bM ,

(1)

1/
1/

where a, b are non-universal constants. The correct choice of β and γ can make the isotherms of M1/β versus 
(H/M)1/γ a set of parallel straight lines with one unique critical isotherm that passes through the origin. This is 
explained in Fig. 1(a) for y =  0.5 and the self consistency is achieved for the values β =  0.16, γ =  1.30. The isotherm 

Figure 1. (a) Modified Arrott plot [M1/β vs γH M( / )1/ ] isotherms (185 K ≤  T ≤  199 K in 1 K interval) of 
(Sm1−yNdy)0.52Sr0.48MnO3 (y =  0.5) single crystal. Solid lines are the high-field linear fit to the isotherms. The 
isotherm (at T =  192 K) closest to the Curie temperature (TC =  192.3 K) almost passes through the origin in this 
plot. (b) Temperature dependence of spontaneous magnetization, MS (square) and inverse initial susceptibility, 
χ −

0
1 (circle). Solid lines are the best-fit curves. (c) Kouvel-Fisher plots of MS and χ −

0
1. Inset shows log scale plot 

of M(H) isotherm at T =  TC (d) Scaling collapse of M −  H curves following Eq. (2), indicating two universal 
curves below and above TC.
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T =  192 K passes almost through the origin. From the intercepts of these parallel straight lines on M1/β and 
(H/M)1/γ axes, we obtain MS and χ −

0
1 for different temperatures which are shown in Fig. 1(b). The best power-law 

fit gives β =  0.16, γ =  1.26 and TC =  192.3 K. These estimates are in fact consistent with Kouvel-Fisher criteria56 

which predict that in the scaling regime, both 
−( )MS

dM
dT

1
S  and χ









χ−
−−d

dT0
1

1
0

1
 are proportional to T with propor-

tionality constants β−1 and γ−1 respectively; which is shown in Fig. 1(c). Another critical exponent δ is found 
from M-H isotherm at T TC (here T =  192 K). The log-scale plot of M vs. H, as shown in the inset of Fig. 1(c), 
is linear with slope δ =  9.3 Following the same method, we have determined the critical exponents and TC s’ for 
y =  0.6, 0.8 and 1.0 (see section I of Supplementary information for details) which are listed in Table 1 along with 
the critical exponents for HM3d. In the present system, the variation of TC with y can be explained in terms of 
bandwidth and A-site cation size disorder51 of the system. With increasing y, the bandwidth increases whereas 
disorder decreases; both of these effects enhance TC (see section II of Supplementary information for details). It is 
clear from the Table 1 that the exponents for y =  1 are very close to that of HM3d, whereas they deviate substan-
tially and vary systematically when y is decreased. Clearly, β decreases by two-fold whereas δ increases almost by 
the same amount as one goes from y =  1 to y =  0.5 At the same time, the Widom scaling relation β +  γ =  βδ is 
satisfied for each y =  0.5, 0.6, 0.8, 1. This indicates that the change in γ has to be minimal, as observed here (see 
section IV of Supplementary information for details). The variation of critical exponents with respect to a system 
parameter contradicts universality, moreover it violates WU as δ varies along with β and γ. The focus of current 
work is to address this issue in details, but first let us ask whether the scaling hypothesis, crucial for the descrip-
tion of near critical systems, is valid here.

For a thermodynamic system near FM transition, magnetization M depends on H and ε and follows a univer-
sal scaling form54

ε ε ε= β β γ
±

+M H F H( , ) ( / ), (2)

where F+ is for T >  TC and F− is for T < TC. The utility of universal scaling function lies in the fact that the M −  H 
curves obtained for different T (near TC) can be collapsed onto a single curve when one plots ε βM/  versus 

ε .β γ+H/  This scaling collapse is shown in Fig. 1(d) for y =  0.5 (and in section I of Supplementary information, 
for other values of y); the two branches in this curve correspond to super- and sub-critical phases. For y =  0.6, 0.8 
and 1.0, the data collapse is also shown in Fig. 2(a), where we use an alternative but equivalent form of Eq. (2),

ε ε ε= .β β γ− − +M H F H( , ) ( ) (3)1/ 1/( )

y TC (K) β γ δ

0.5 192.3 ±  0.3 0.16 ±  0.01 1.27 ±  0.03 9.30 ±  0.2

0.6 222.5 ±  0.3 0.23 ±  0.01 1.30 ±  0.02 6.31 ±  0.1

0.8 241.3 ±  0.2 0.31 ±  0.01 1.32 ±  0.01 5.14 ±  0.03

1.0 265.3 ±  0.2 0.36 ±  0.01 1.38 ±  0.01 4.72 ±  0.01

HM3d − 0.365 1.386 4.82

Table 1.  Critical exponents of (Sm1−yNdy)0.52Sr0.48MnO3. Error bars are derived from the least squares fitting 
analysis.

Figure 2. (a) Scaling collapse of M −  H curves for y =  0.6, 0.8 and 1 following Eq. (3). Although they appear 
different, the scaling functions for y =  0.5, 0.6, 0.8, 1 can be collapsed onto each other (shown in (b)) by 
rescaling of axis. The values of (A, B) are (1080, 2.8), (7.2, 1.6) and (1, 1) for y =  0.6, 0.8 and 1, respectively.
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It is advantageous to use this form as the two branches of Eq. (2) are now merged to a single function F with its 
argument ε= β γ− +x H 1/( ) extending from the sub-critical (x <  0) to the super-critical (x > 0) regimes. A very 
good quality data collapse confirms that the scaling hypothesis is in place and the estimated value of TC and crit-
ical exponents obtained through several prescriptions are unambiguous and self-consistent.

The scaling hypothesis. In the following, we propose a new scaling ansatz which explains the experimental 
findings presented here. Since diverging fluctuations are known to be the origin of power-laws (see ref. 57 for a 
proof for non-equilibrium systems, which also holds trivially for equilibrium), we start with a scaling relation that 
relates the exponents of energy and magnetic fluctuations (i.e., α and γ) with that of diverging correlation length 
associated with criticality:

α ν γ δ
δ

− = =
+
−

d2 1
1

, (4)

where ν and α are exponents associated with correlation length ξ ε ν−~  and specific heat ε α−~Cv , respectively 
and d is the dimension. The first relation relates the diverging correlation length to the energy fluctuation whereas 
the second relation relates the same to the magnetic fluctuation (χ ε γ−~AC  and χ δ−~ HDC

1/ 1). If a set of expo-
nents originates from one underlying universality class then they must relate to the exponents of the parent uni-
versality (α0, ν0, γ0, δ0) as
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0

so that the universal scaling relation [Eq. (4)] remains valid. Here, λ is the marginal parameter that drives the 
continuous variation and ω and κ are parameters yet to be determined. In Eq. (5), the variation of δ and γ are 
considered to be independent and equivalently one may vary η and ν independently and deduce the variation of 
other exponents from scaling relations (see section III of Supplementary information for details).

Clearly κ =  0 =  ω is the parent universality class having unscaled (λ =  1) exponents. Other special cases are 
when κ or ω vanishes. When κ =  0, the continuous variation is governed by c =  λω, In this case, we may set ω =  1 
without loss of generality and identify c ≡  λ as the physical parameter that drives a continuous variation
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γ
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β α γ β
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This scenario is already known as weak universality where δ δ= + =γ
β

1 0 and η η= − =γ
ν

2 0 are universal 
as in the old universality argument14. Another special case is ω =  0 and κ is set to be unity. Here γ remains invar-
iant and
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This variation, with λ being the gauge coupling constant, has been observed in strong coupling QED30. Now 
we turn our attention to the generic case where κ >  0 and ω is set to unity (generality is not compromised); the 
consequent variation of critical exponents is given by
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This generic variation of exponents satisfies Widom scaling relation δ =  1 +  γ/β for any λ, provided the parent 
universality class also obeys the same.

We further include a possibility that this generic variation may lead to β →  0, a special limit where the phase 
transition becomes discontinuous. At this multi-critical limit, the usual scaling theory demands γ →  1 and δ−1 →  058. 
The first requirement can be met if the multicritical point occurs at λ =  γ0 and the second requirement determines

κ
γ

δ
δ

=
+
−

.
1

ln
ln 1

1 (9)0

0

0

For the present experimental system, the parent class is HM3d (at y =  1) and accordingly κ =  1.29 (from 
Eq. (9) and Table 1). At doping y =  1, we may set λ =  1, but a general correspondence between y and the marginal 
parameter λ can not be obtained unless we know the correct interaction Hamiltonian. The best choice of λ that 
matches the exponents for y =  0.5, 0.6, 0.8 and 1 turns out to be 1.165, 1.087, 1.03 and 1.001 respectively. The best 
fit between λ and y with λ λ= − ⁎y A( )a yields A =  0.26, λ* =  0.97 and a =  − 0.4, which is shown in Fig. 3(b). This 
functional form λ λ= − ⁎y A( )a is used further in Eq. (8) to get continuous variation of β, γ and 1/δ with respect 
to y (shown as solid line in Fig. 3(c)). Moreover Eq. (8) suggests that the transition becomes discontinuous if 
λ >  γ0 =  1.386 which corresponds to y ~ 0.37. In fact, a very sharp growth in the ordered moment just below TC 
along with thermal hysteresis (shown in Fig. 3(a)) has been observed in the present system for y <  0.444. In a 
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related system (Sm1−yNdy)0.55Sr0.45MnO3, where Sr concentration differs slightly, the FM transition remains first 
order for 0 ≤  y ≤  0.3343.

To emphasize that the new scaling hypothesis is indeed in work, we further investigate the scaling functions. 
If the critical behavior for different y is related to HM3d, one expects that the seemingly different universal scal-
ing functions F in Fig. 2(a) must collapse onto each other if x and y axes are scaled by suitable constants. This 
is described in Fig. 2(b) - a good collapse of scaling functions for y =  0.5, 0.6, 0.8,1 to a unique universal form 
further supports that the observed criticality is only a rescaled form of Heisenberg fixed point.

Conclusions
In conclusion, we have made a comprehensive study of critical phenomenon in (Sm1−yNdy)0.52Sr0.48MnO3 sin-
gle crystals with 0.5 ≤  y ≤  1. The values of critical exponents (β, γ, δ) measured for y =  1 are consistent with 
Heisenberg universality class in three-dimension, whereas the same for y =  0.5, 0.6, 0.8 are far from any known 
universality class. All these exponents vary continuously with y, but they seem to obey the standard scaling laws 
following a single equation of state. The variation of exponents is not new to critical phenomena as it can be 
generated by a marginal interaction, but most examples (though there are a few exceptions) in both theoretical 
and experimental studies satisfy the weak universality14 where (β, γ, ν) vary but (η, δ) are fixed. We argue that, 
to be consistent with scaling, the continuous variation must occur in specific ways. Two special cases are, (a) 
δ remains unchanged, which leads to the weak universality, and (b) γ is unaltered, which results in a kind of 
variation observed in strong coupling QED30. This generic universality scenario, which leads to a multi-critical 
point, explains the continuous variation of critical exponents observed in (Sm1−yNdy)0.52Sr0.48MnO3 and correctly 
predicts the possibility of a discontinuous transition for doping y ≲  0.37.

A marginal interaction that could provide variation of critical exponents beyond weak universality remains 
elusive. In particular, it is not clear, how or why a marginal operator is generated in all the above experimental 
conditions to drive continuous variations in specific ways. It is certainly challenging to devise a microscopic the-
ory to accommodate this phenomenon.

Experimental Methods
The single crystals of (Sm1−yNdy)0.52Sr0.48MnO3 with y =  0.5, 0.6, 0.8 and 1.0 were prepared by floating zone tech-
nique under oxygen atmosphere59,60. Single crystallinity was confirmed by the Laue diffraction. The dc magnetization 
measurements were performed using a Quantum Design magnetic property measurement system (MPMS SQUID 
VSM) in fields up to 7 T. The data were collected after stabilizing the temperature for about 30 minutes. External 
magnetic field was applied along the longest sample direction and data were corrected for the demagnetization effect.
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