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Protein interaction evolution from 
promiscuity to specificity with 
reduced flexibility in an increasingly 
complex network
T. Alhindi1, Z. Zhang1, P. Ruelens1, H. Coenen1, H. Degroote1, N. Iraci2 & K. Geuten1

A key question regarding protein evolution is how proteins adapt to the dynamic environment in which 
they function and how in turn their evolution shapes the protein interaction network. We used extant 
and resurrected ancestral plant MADS-domain transcription factors to understand how SEPALLATA3, 
a protein with hub and glue properties, evolved and takes part in network organization. Although 
the density of dimeric interactions was saturated in the network, many new interactions became 
mediated by SEPALLATA3 after a whole genome triplication event. By swapping SEPALLATA3 and its 
ancestors between dimeric networks of different ages, we found that the protein lost the capacity of 
promiscuous interaction and acquired specificity in evolution. This was accompanied with constraints 
on conformations through proline residue accumulation, which made the protein less flexible. SHORT 
VEGETATIVE PHASE on the other hand (non-hub) was able to gain protein-protein interactions due 
to a C-terminal domain insertion, allowing for a larger interaction interface. These findings illustrate 
that protein interaction evolution occurs at the level of conformational dynamics, when the binding 
mechanism concerns an induced fit or conformational selection. Proteins can evolve towards increased 
specificity with reduced flexibility when the complexity of the protein interaction network requires 
specificity.

Whether it is a receptor on the surface of the cell sensing the environment1–4, the movement of muscles5, cell dif-
ferentiation and development6–9, metabolic pathways or switching genes on and off almost every biological aspect 
of living organisms involves protein-protein interactions10–12. The complexity of protein-protein interactions is 
described using networks and a complete understanding of these networks can only be achieved through knowl-
edge of the chemical and physical properties of the involved proteins. These physicochemical properties deter-
mine how proteins fold into the right structure, which parts are involved in the interaction with other proteins 
and what conditions facilitate or disturb the protein interactions they are involved in. Hubs for instance, proteins 
that have many interactions, achieve these interactions through a variety of means. Multi-hubs have multiple 
interaction interfaces, while promiscuous hubs maintain a degree of structural disorder, a different folding upon 
binding or a nonspecific interaction interface. Date-hubs by contrast interact at different times or locations13,14.

A valuable tool to further our understanding of protein interactions is to study how they originate and dis-
appear in evolution. This viewpoint allows to answer questions of a different nature. How come some proteins 
evolve towards molecular promiscuity yet others evolved to be specific15,16. When does protein flexibility increase 
in evolution to ensure protein interaction17,18? In complex protein networks, is there selection on conserving a 
specific tertiary structure or does selection on protein dynamics exist affecting the energy landscape of com-
plex formation? To help answer these questions we focused on MADS-domain transcription factors, one of 
the essential protein families in the development of eukaryotic organisms that has been extensively studied in 
plants19–21. (MADS-domain proteins were named after the first members discovered in different species, MCM1 
in S.cerevisiae, AGAMOUS in A.thaliana, DEFICIENS A.majus and SRF in H.sapiens).

MADS-domain transcription factors are involved in numerous developmental processes in eukaryotic organ-
isms. In plants the MIKC clade plays a key role in regulating reproductive development, including transduc-
ing environmental temperature and light signals to regulate flowering time, establishing floral organ identity 
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and regulating seed and fruit development22–25. The MIKC clade contains four distinct domains, a MADS-DNA 
binding domain, an Intervening domain, a Keratin-like domain and a C-terminal domain, hence MIKC, (see 
Fig. 1A), Comparative analysis of their sequences in the context of genomes indicates that this gene family ampli-
fied through a number of large scale duplication events8,26–28. After duplication, the duplicated genes are retained 
by the dosage balance theory, were genes are conserved in equal dosage not to disturb balance in protein net-
work28–31, one scenario is that a copy of the gene becomes redundant, placing it under less negative selection so 
that it can accumulate neutral mutations to gain a new function or loose an old one. Alternatively, the two copies 
can partition functions. Such scenarios can explain the retention of the duplicated genes after each major dupli-
cation event followed by rewiring of the resulting protein networks29–37.

MADS-domain proteins form both homo- and heterodimers and in the floral quartet model22,23,38 they are 
considered to function as tetramers that recruit DNA regulatory elements to control gene expression through 
DNA looping21,38–41. Some MADS-domain proteins have come to function as hubs, interacting with many other 
MADS-domain proteins. Other proteins can be considered as islands, having very few protein-protein inter-
actions26,37,42,43. Our understanding of the molecular mechanisms involved in positioning these proteins into 
their protein-protein interaction networks is far from complete. The E lineage protein SEPALLATA3 (SEP3) has 
been previously found to have both hub properties and glue properties, in that it interacts with many other 
MADS-domain proteins in dimeric complexes as determined by using yeast-two-hybrid, but also mediates inter-
actions between many protein combinations as a glue, as determined by using yeast-three-hybrid assays42,43. 
MIKC-type MADS-domain proteins have a characteristic four domain structure, in which the M-domain func-
tions in DNA binding, the I-domain has no clearly defined one function but it plays a role in dimerization, the 
K-domain functions in protein-protein interactions through dimer and tetramer formation, and the C-domain 
again has no clearly defined single function but it can contain a transactivation domain21 (Fig. 1A). Recently, a 
partial crystal structure of the SEP3 keratin-like domain (K-domain) has been published44, the crystal structure 
showed the partial protein in tetramer conformation (Fig. 1B), where the three K-subdomains (K1, K2, K3) 
form two major α​-helices interrupted by a loop allowing them to fold into dimer/tetramer conformations. Two 
different full-length models of SEP3 dimers can be predicted by combining the K-domain crystal structure with 
homology modeling of the MADS-domain (M-domain) based on crystal structure templates of either SERUM 
RESPONSE FACTOR (SRF) or MYOCYTE ENHANCER FACTOR-2 (MEF2)45,46 (Fig. 1A, right side).

In this study we sought to integrate data from the network level down to the structural level to understand 
how molecular evolution can explain the evolution of specificity of proteins in their protein interaction networks.
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Figure 1.  SEP3 structural information. (A) Left: MIKC-type subdomains and their reported functions, 
right: possible dimer conformations based on available MADS-domain protein 3D structure of SRF and MEF2 
homology modeling. (B) Resolved X-ray crystal structure of the SEP3 K-domain, with its subdomain K1, K2 
and K3 and their role in oligomerization44.
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Results
The SEP3-mediated network increased in density after the gamma whole genome triplica-
tion.  In two previous studies, we inferred and resurrected ancestral sequences for plant MADS-domain pro-
teins which made it possible to characterize these ancient proteins using current laboratory methods37,47. We were 
able to reconstruct the networks of their protein interactions as dimers, using the yeast-two-hybrid method, at 
different time points in evolution. One striking observation was that the gamma whole genome triplication at the 
origin of core eudicots induced strong rewiring of this dimeric MADS-domain protein interaction network37. 
While this major event also added many new interactions, the density of the network, i.e. the ratio of observed 
interactions and potential interactions, did not significantly change during evolution. This suggested that the rel-
ative number of actual protein-protein interactions in these networks was saturated (in term of network density). 
However, storage of more information could have become possible through higher order complex formation, 
mediated by the glue property of SEP3.

To have a better understanding of the origin and evolution of the glue capacity of SEP3 to mediate 
protein-protein interactions between other MADS-domain proteins, we reconstructed two yeast-three-hybrid 
(Y3H) protein interaction networks (PIN) at different time points (Supp. Fig. 1). A first network was recon-
structed at 120 mya (million years ago), at the origin of eudicots before the gamma whole genome triplication 
named pre-PIN and a second at 109 mya at the split of the Asterids and Rosids, named post-gamma PIN or 
post-PIN. In addition, we applied the same methodology to investigate the extant protein networks of Arabidopsis 
thaliana (Ara-PIN) and Solanum lycopersicum (Sol-PIN)37. The interactions were quantitatively determined and 
the two-hybrid network was subtracted. We therefore defined a positive three-hybrid interaction as an inter-
action that was not present in two-hybrid or was significantly enhanced by the presence of SEP3 using the 
β​-galactosidase assay (For Miller units of each interaction see Supp. Table 1).

Our results show that after the gamma triplication many more interactions were mediated by SEP3 and the 
network became denser (Fig. 2A,B), To compare pre-PIN to post-PIN, which have different sizes, the pre-PIN 
was triplicated (all interaction conserved), then the redundant nodes were removed, resulting in a transition net-
work with the same network size as post-PIN. This increased density persisted after this major event, suggesting 
that although dimeric interactions in the network were reaching saturation, higher order complex formation 
provided a way to incorporate more novel interactions (Fig. 2B). Most novel SEP3-mediated interactions were 
gained between pre-PIN to post-PIN (Fig. 2C) where SEP3 strongly gained importance as a higher order complex 
glue protein through the gamma triplication and retained this function from then onwards37. The gain rate was 
balanced by the loss rate later in evolution and the overall network densities remained similar from post-PIN to 
Ara-PIN and Sol-PIN. This suggests that after the gamma triplication, a certain degree of complexity was reached 
in the SEP3-mediated network (possibly with a functional advantage) after which the network stabilizes and 
rewires rather than expands.

SEP3 evolved from promiscuity to specificity.  From the comparison of successive ancestral and 
extant protein-protein and SEP3-mediated protein-protein interaction networks, it becomes evident that after 
the gamma triplication the MADS-box interaction network underwent substantial rewiring resulting in novel 
dimeric and higher order complexes. We wanted to understand to which proteins in the network this rewiring 
can be attributed. In the case of the hub protein SEP3: the hub can evolve to affect many interactions, the other 
proteins in the network of SEP3 can evolve or both the hub and the other proteins can co-evolve. We selected 
two additional cases for comparison. One is the B lineage protein APETALA3 (AP3), which maintains few inter-
actions and therefore can be considered an island and the other is SHORT VEGETATIVE PHASE (SVP), an 
intermediate between a hub and an island37. To investigate whether the protein or its partners evolved, we per-
formed a reciprocal swapping experiment in which the interaction pattern of the ancestral and extant proteins 
from pre-PIN and Ara-PIN, in addition to an older network at 180 mya, at the origin of angiosperms, before 
the whole genome duplication event (epsilon) named ePIN47, were evaluated. More specifically, SEP3, AP3 and 
SVP from Arabidopsis were placed in ePIN and pre-PIN networks, pSEP3, pAP3 and pSVP24 ancestors were 
placed in the more ancient ePIN and the extant Ara-PIN network and finally the ancestor of SEP3 in the ePIN 
network (ancE) and AP3 in the ePIN network (ancB), were placed in the more recent pre-PIN and Ara-PIN net-
works (Fig. 3A–C). The most striking observation was that ancE, the oldest ancestral SEP3 protein, can bind to 
all MADS-domain proteins in all evolutionary networks. This indicates it acted as a promiscuous hub with low 
specificity (Fig. 3A). Although pSEP3 already lost some of its promiscuous binding ability to form dimers and 
SEP3 engages in the fewest protein interactions, both proteins still represent hubs in their respective networks 
yet with more specificity. This indicates that specificity of SEP3 was gained throughout the evolution of SEP3 and 
it evolved from a promiscuous hub to a specific hub. It is worth mentioning that ancE seems to have undergone 
subfunctionalization, since the total number of ancE interactions in pre-PIN is 9 which is equal to the sum of 
pSEP3 and pSEP124 interactions (6 +​ 3) respectively, and in Ara-PIN ancE has 17 interactions while SEP1,2,3 and 
4 has 14 interactions (8 +​ 4 +​ 2 +​ 0) respectively37. This is a good example of protein subfunctionalization through 
evolution as an adaptation to increase in network complexity, and as a means of gaining interaction specificity.

The fact that the anceE protein was able to bind to every other protein in each network suggests that the hub 
property of ancE can be attributed to itself, rather than to its interaction partners. ancE encodes this property 
because when placed in more recent networks with different interaction partners, this promiscuity is retained. It 
therefore must be embedded in the tertiary structure of the protein. To control for the idea that all ancestral pro-
teins have this same property, possibly because their structure can fold into multiple conformations, we verified 
whether also ancB and to a lesser extent, pSVP24 or pAP3 could interact promiscuously. We observed that ancB 
was only able to interact with five Arabidopsis MADS-domain proteins, similar to pAP3 (seven weak interac-
tions) and AP3 (five interactions). pSVP24 interacted with only one other protein in both pre-PIN and Ara-PIN 
networks (Fig. 3B top, 3C top). This shows that promiscuity as in ancE is not universal among ancestral proteins. 
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To further verify the functionality of the ancE protein, we tested whether it was able to mediate higher complex 
formation in a three-hybrid assay, like its descendant protein SEP3. We tested two known interactions that can-
not form dimers in two-hybrid and require SEP3 to mediate the interaction in three-hybrid but now used ancE 
as the interaction mediator (Fig. 3D). In addition, we tested two interactions SEP3 cannot mediate. Our results 
showed that ancE was able to mediate both types of interactions. More broadly interpreted, if SEP3 is the “glue” of 
MADS-domain proteins43, ancE could be the “super-glue”.

SEP3 lost conformational flexibility by acquiring prolines in the I domain.  Because it is plausible 
that promiscuity in the SEP3 lineage can be attributed to SEP3, rather than to its interaction partners, we wanted 

Figure 2.  Evolution of SEP3 as a network hub. (A) Yeast three-hybrid (Y3H) assays of reconstructed ancestral 
and extant networks with (pSEP3, gSEP3, SEP3 and TM5) mediating ternary complexes formation. Black and 
green lines indicate conserved and novel gained ternary interactions respectively through comparison from 
pre-gamma PIN to post-gamma PIN and from post-gamma PIN to AraPIN and to Sol-PIN. An example 
is presented in the gray box where PI-AP3 and SEP3-SOC1 interactions are mediated by SEP3, which is 
represented by a line in network, and where AG-AG and SOC1-SOC1 interactions are mediated by SEP3, which 
is represented by a looped line in network. (B) Increase of network densities in yeast-three hybrid compared 
to yeast-two hybrid networks, total number of edges is shown above the graph line (orange: Y3H, blue: Y2H). 
(C) Total amount of conserved, gained and lost interactions in addition to the gain and loss rate (per edge per 
mya) between networks (gain and loss rate was defined as gained or lost interactions divided by number of 
potential interactions in networks times the divergence time). (D) Multiple sequence alignment of SEP3 and its 
resurrected ancestors in addition to its homolog in tomato TM5. Red boxes indicate proline accumulation in the 
I-domain. For Miller units of each interaction see Supp. Table.1.
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to understand how the evolution of promiscuity to specificity occurred and which structural changes explain this. 
The fact that ancE was able to bind to all proteins in every network makes it more likely that an overall tertiary 
structure property such as disordered flexible regions was involved and not a specific domain-domain interac-
tion. The folding of monomer proteins is a highly dynamic process, that involves the equilibrium between several 
conformational states. Once an interaction partner comes close enough, some of these conformations will fold 
into the dimer conformation, which represents a lower -more favourable- energy state, and the more flexible the 
monomer is the larger the difference between free and bound conformations48–50.

We noticed that the M-domain of SEP3 did not change at all throughout its evolution (Fig. 2D), indicating 
that residues in the M-domain which contributes to DNA binding specificity are under strong purifying selection. 
Substitutions were mainly in the I, K and C domains. For these regions, we focused on the linker regions between 
more structured domains, the I-domain and K1-K2 loop region, where a mutation might have a greater effect on 
the overall conformational dynamics by orienting the more structured domains. Proline residues characteristi-
cally increase the backbone rigidity due to their alpha-amino group bond to the side chain and we noticed the 
accumulation of proline residues in the I-domain in the SEP3 lineage. To evaluate the role of flexibility of the SEP3 
I-domain for protein interaction, we back-substituted the proline residues 78, 80 and 83 in Arabidopsis SEP3 into 
the amino acid states present in ancE to Q T S respectively using site-directed mutagenesis. We hypothesized 
that substituting these residues would release the physical constraints on the I-domain folding and give it more 
flexibility, which would increase the conformational space and therefore increase the number of interactions. We 
indeed observed an increase in the number of interactions from 8 to 13 out of 17 interactions tested (Fig. 3E). 
To further investigate the link to flexibility in silico, we studied two peptides representing the I-domain of extant 
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SEP3 (NYGAPEPNVPS), and the promiscuous-hub ancE (NYGAQETNVSS) for the number of low energy local 
minima conformations they can assume and we estimated their conformational entropies as flexibility descrip-
tors. As expected, the SEP3 I-domain had the smallest conformational space (number of low energy local min-
ima: 269) and the lowest conformational entropy (2.90 cal/K). The I-domain of ancE showed around 2.5 fold 
increase in conformational space (number of low energy local minima: 645) and higher conformational entropy 
(3.72 cal/K), which correlated with the number of interactions observed in our two-hybrid assay. The lowest 
energy state of ancE might be close to SEP3 state, but it is possible that the energy barriers between the states that 
bind other partners are lower compared to SEP3, allowing for fast inter conversion between the various binding 
conformations.

This accumulation of proline residues was observed in E-lineage proteins along their evolution, in Arabidopsis 
SEP3 and its paralogs SEP1 and SEP2, which can complement the sep3 mutant51, as well as in the tomato SEP3 
homolog TM5. As these prolines are not ancestral (not present in ancE), this suggests a similar molecular evo-
lutionary strategy being utilized to reduce the hub property of these homologous and redundant hubs. Proline 
residues were also present in linker regions of other clades of MADS-domain proteins, and this seems to be a gen-
eral evolutionary strategy of reducing flexibility in linker regions which affects the specificity of protein-protein 
interactions (Supp. Fig. 2). Together, these findings highlight the importance of structurally disordered domains 
in MADS-domain proteins, and the role of prolines in adjusting this flexibility between different domains, which 
is consistent with what has been observed for other hub proteins52–54.

Large conformational changes between bound and free SEP3 K-domains.  We noticed that the 
flexibility of SEP3 plays an important role in its capacity to bind to different partners in the network so that it 
can function as a hub. Protein crystal structures usually do not give a complete picture regarding flexibility and 
conformational changes in solution, like a cellular environment. Such information can be predicted using molec-
ular dynamics simulations (MDS), where protein atoms are allowed to move dynamically under certain physic-
ochemical conditions. Utilizing the recently published SEP3 K-domain crystal structure44, we carried out two 
MDS runs, one for the homo tetramer complex and one run for a monomer. We followed the movement of Cα​ 
atoms of the protein backbone during the simulation time (48 ns), and the root mean square deviation (RMSD) 
was reported as a function of time (Fig. 4A–E). One clear observation was that, once the tetramer complex is 
formed, it is quite stable, while the monomer, as expected, shows a large deviation from the dimer/tetramer con-
formation in the crystal structure (Fig. 4A). This points to a large conformational change induced upon binding. 
To understand this in more detail, we monitored the RMSD of individual subdomains. K1 residues (98–111) were 
previously reported to be involved in dimerization through a coiled-coil interaction. In the monomer simulation, 
the α​-helix of the K1 subdomain was deformed, while the structure was more stable in the tetramer complex 
(Fig. 4B). The K2 and K3 subdomains α-helices formed a single continuous α-helix in the crystal structure, the 
K2 α​-helix showed stability both in the monomer and in the tetrameric complex (Fig. 4C). The K3 α​-helix, which 
was reported to be involved in tetramerization, was unstable as a monomer and deviated from the tetramer con-
formation (Fig. 4D), again pointing to an induced and stabilized conformation upon binding. The loop region 
between K1 and K2 subdomain residues (117–123) was predicted to lower the energy needed for dimers to bind, 
due to the presence of a proline residue, which helps to establish the 90° angle between K1 and K2 α​-helices and 
expose the hydrophobic surface55. Also this region showed a small deviation during the simulation between 
bound and free K-domains (Fig. 4E). Finally, we monitored the solvent accessible surface area (SASA) of one 
bound (in tetramer) and one free SEP3 K-domain. Again the tetramer showed a stable conformation with a more 
open exposed surface, while the monomer folded on itself, which reduces the solvent accessible surface area 
(Fig. 4F). These large conformational changes between bound and free states support the importance of protein 
dynamics in oligomerization (Supp. Fig. 4), and it strengthens our previously mentioned results regarding the 
flexibility of SEP3, and probably other MADS-proteins in the network.

SEP3 K domain loop conformational dynamics fine tune its hub property.  Based on protein 
sequence alignments, the seven amino-acid loop between the K1 and K2 subdomains, seems to be a conserved 
feature in all type II MADS-domain proteins (Suppl. Fig. 2) and therefore it is likely important for their function. 
In wild-type SEP3, this loop has sequence GEDLGPL residues 117–123, and it was previously suggested55 that 
the presence of glycine-proline residues in class E SEP proteins forces the K1 and K2 subdomain α​-helices apart 
to expose the hydrophobic residues, making dimerization more entropically favourable and contributing to the 
hub property of these proteins. Here we wanted to investigate this conserved region for its importance for protein 
interactions in our yeast two-hybrid networks.

To better understand its role in protein interaction, we first investigated the conformations the loop takes in 
bound versus unbound states. In the bound state, the last four residues, LGPL form a type IV β​-turn (ϕi +​ 1 =​ −​50. 
ψ​i +​ 1 =​ −​51, ϕi +​ 2 =​ −​62, ψ​i +​ 2 =​ −​20) with a hydrogen bond between i and i +​ 3 of 2.34 Å. The angles in 
this turn, though it has a proline with cis configuration at i +​ 2, are different from regular type VIa1, VIa2 and 
VIb β​-turns56,57. This turn structure contributes to the stability of the bound conformation. The first three more 
conserved residues in the loop, GED have no clear turn structure, but a salt bridge connects D119 (2.16 Å) and to 
a lesser extent E118 (3.68 Å) with R113 in the K1 subdomain. When the bound state switches to the monomeric 
unbound state in the molecular dynamics run, the loop structure goes through hydrogen bond rearrangement 
and loses the (LGPL) β​-turn. Instead, two alternative turns are formed, a β​-turn (GEDL) and pseudo-γ​-turn 
(GPL). The salt-bridges between D119-R113 and E118-R113 remain present in both bound and unbound 
conformations.

To understand the contribution of these loop structure conformations to the protein interaction specificity 
of SEP3, we introduced a number of mutations in the loop through site directed mutagenesis (Fig. 5A,B). We 
observed that these mutant proteins cannot take on the energetically more favourable conformation of the bound 
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wild-type loop. A single P122A mutation resulted in 50% loss of protein interactions in yeast-two-hybrid. Because 
of its position, it is unlikely that proline 122 would be directly involved in protein interaction through intermolec-
ular residue-residue contacts, but it can have an effect on the dynamics of dimerization. In this mutant, the β​-turn 
(LGPL) was not present and no other β​-turns were observed. The loop was more open and extended, placing the 
K1 and K2 subdomains further apart. The D119-R113 interaction was present and a new D119-R110 interaction 
formed (Fig. 5F). Therefore, the loss of interactions in the P122A mutant can be explained by the absence of the 
β​-turn and the more extended loop structure, while the salt bridges help in maintaining the remaining interac-
tions by keeping the K1-K2 subdomains away from each other, which is required for proper dimerization as seen 
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Figure 4.  Molecular dynamics simulations of SEP3 K-domain tetramer (black lines) and monomer (red 
lines). (A) Complete K-domain RMSD calculations. (B) RMSD calculations for K1 subdomain residues 98–111. 
(C) RMSD calculations for K2 subdomain residues 129–146. (D) RMSD calculations for K3 subdomain residues 
150–1171. (E) RMSD calculations for loop region between K1-K2 subdomains residues 117–123. (F) Solvent 
accessible surface area (SASA) calculations for one SEP3 K-domain in bound -tetramer complex- (black line) 
and free monomer (red line).
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Figure 5.  The role of SEP3 loop structure on PPI: (A) SEP3 loop sequence (GEDLGPL 117–123) located 
between the end of K1-subdomain and the beginning of K2-subdomain, underlined residues indicate 4Ala 
and 3Ala mutations while the star shows P122, and K-subdomain partial Crystal structure44. (B) Y2H assay 
for native SEP3 and three SEP3 mutants (SEP3(P122A), SEP3(G121A/P122A/L123A) and SEP3(G117A/
D118A/E119A/L120A)). Protein interactions were shown by the straight lines. Relative interaction strength was 
illustrated by different colors (black, orange and grey) based on the values of Miller Units for all interactions. wt: 
wild type; m: mutant. (C) EMSA results show the binding affinities of native SEP3 and three SEP3 mutants with 
AG by SEP3 and SEP3 mutants titrations. Black triangles represent the concentration gradient of SEP3 and SEP3 
mutants from highest to lowest comparing with constant concentration of AG in each group. The concentration 
ratios between AG and SEP3 or SEP3 mutants were demonstrated inside the black bars (1:1, 1:0.75, 1:0.50 and 
1:0.25). Cartoons on the left side along the bands show the supposed quartet complex forming (top) and the 
dimerized forming (bottom) binding on the probe. The probe was a SEP3 promoter fragment containing two 
CArG boxes (see Methods) which was illustrated as double straight or bend lines harboring white and black 
bars in cartoons. (D) Loop dynamics, loop region in dimer conformation in resolved crystal structure (PDB: 
4Ox0). And at 48 ns of MDS run of, (E) Native SEP3 K-domain (F) P122A mutant, (G) GEDLAAA mutant, (H) 
AAAAGPL mutant. Color codes (blue: K2 subdomain, red: K1 subdomain, green: loop region, magenta: K2 
extended in GEDLAAA mutant, dark blue lines: represent possible hydrogen or polar bonds numbers next to 
it shows distance in angstrom). (I) RMSD of K1 residues 98–111 and K2 residues 129–146 as function of MDS 
time of native and loop mutants in monomer and tetramer states.
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in the crystal structure. The second mutant constituted of three alanine substitutions resulting in a GEDLAAA 
loop sequence. Again, about half of protein interactions were lost. The alanine residues formed an extension of the 
α​-helix of the K2 subdomain, the β​-turn was absent, D119-R113 was absent and a new D119-R110 had replaced 
it (Fig. 5G). This again suggests that the loss of protein interactions was due to the absence of the β​-turn and the 
retention of interactions can again be attributed to D119-R110.

The third mutant with sequence AAAAGPL resulted in 75% loss of protein interactions and loss of all strong 
interactions (in Miller units) in comparison to the other two mutants. Interestingly, here the β​-turn (LGPL) was 
rearranged into a pseudo-α​-turn (AAAAG: ϕi +​ 1 =​ −​89, ψ​i +​ 1 =​ 10, ϕi +​ 2 =​ −​80, ψ​i +​ 2 =​ −​55, ϕi +​ 3 =​ −​151,  
ψ​i +​ 3 =​ 30). The D119-R113 interaction was lost and it was not replaced with R110. A large hydrophobic sur-
face was formed between the K1 and K2 subdomains. The RMSD calculations of K1 residues 98–111 and K2 
residues 129–146 in the molecular dynamics simulations (Fig. 5I) show that the wild type SEP3 K-domain mon-
omer escapes the dimer/tetramer conformation more slowly than the mutants, suggesting a relative stability 
of its bound conformation. The stability of these two helices and their relative orientation is largely altered in 
GEDLAAA and AAAAGPL mutants. Although the GEDLGAL mutant showed less deformation, it still deviated 
from both wild type monomer and tetramer conformations (for more details see Supp. Fig. 3).

The SEP3 mutants behaved somewhat differently in electrophoretic mobility shift assays (EMSA) with 
AGAMOUS, which allowed to test the interaction on DNA (Fig. 5C). At higher protein concentrations such as in 
EMSA, the effect of the mutations was reduced, and dimer/tetramer complexes still formed. Only the AAAAGPL 
mutant showed a very poor (only at high concentration) hetero tetramer formation with AG. The effect of high 
concentration is similar to what we observe in the crystal structure of SEP3, where homo dimer/tetramers were 
able to form, though SEP3 does not form homo dimer/tetramer in yeast-two and yeast-three hybrid assays (It 
could be that the interaction is too weak to be detected).

Together, we can conclude from these observations that the loop structure contributes to allow the SEP3 
K-domain to take on its energetically most favourable conformation for binding. The presence of positively 
charged residues at the end of the K1 domain (4 residues away from the loop region) contributes to dimer forma-
tion through binding to a negatively charged residue within the loop. This position indeed is very conserved (94% 
R and 6% K, Supp. Fig. 2). The rigidity of the loop region and the involvement of proline 122 seems not to be the 
main factor determining SEP3 its ability to dimerize. Even the wild type SEP3 loop monomer goes through con-
formational changes and molecular dynamics results show some conformational stability after 20 ns of simulation 
time. Indeed, the P122A mutant is still able to interact in Y2H and EMSA assays, but less favourably. Also other, 
non E class proteins like CAULIFLOWER (CAL), have a proline residue at the same position but has only one 
interaction in the two-hybrid assay and its homolog FRUITFULL (FUL), which does not have a proline in its loop 
region, has 9 interactions in yeast-two hybrid assays37. Overall, these results point to the combined importance of 
conformational dynamics for binding in addition to residue-residue contacts on the interaction surface between 
the proteins. This has to be taken into account when addressing questions such as what makes certain proteins 
hubs and others isolated islands.

Not all MADS-domain proteins are equal.  In the case of the SEP3 clade, the number of protein inter-
actions may have been controlled through adjusting the dynamics of protein folding by accumulating proline 
residues in the linker regions between different domains. A question is now whether this strategy was also uti-
lized in a different clade, for instance SVP and whether alternative processes exist. From the multiple sequence 
alignment of SVP, AGL24 and their common ancestor pSVP24 (Fig. 6A), we noticed the presence of proline 
residues in the I-domain in all three proteins. However, pSVP24 has only one protein interaction in pre-PIN and 
in Ara-PIN, while SVP has eight interactions in Ara-PIN and five interactions in pre-PIN, which is a number 
similar to the hub SEP3 in both networks respectively (see Fig. 3). If the same molecular evolutionary process 
was behind this gain of interactions, we would expect a substitution of the proline in the I-domain, but that 
was not the case. The main differences in the SVP I-domain were the insertion of a valine residue at position 
89 and an insertion of a methionine at position 80 in AGL24. The second linker loop region between the K1 
and K2 subdomains was also conserved. Yet, a prominent difference between SVP and AGL24 is an insertion in 
SVP of 21 unique amino acids at positions 176–196 (between K3 subdomain and the C-domain, Fig. 6C) with 
sequence TEENERLGMQICNNVHAHGGA. In addition, SVP has a small two amino acid deletions at 220–221 
in the C-domain, Tyr-Glu. While there are more differences between SVP and AGL24, we chose to focus on the 
importance of the above mutations for their effect on interactions of SVP. To verify whether the mutations could 
explain the gain of interactions observed in SVP, we introduced them through site-directed mutagenesis. Each 
of the mutant SVP proteins was assayed for interaction with SEP3, SOC1 and FLC, which are known interaction 
partners of wild-type SVP in two-hybrid assays (Fig. 6B).

The behavior of the mutants varied greatly, starting with I-domain mutations. Del89V showed a minor (6%) 
but significant increase in interaction strength with SEP3, but decreased FLC binding by 44%, and SOC1 bind-
ing by 86%. While ins80M had almost no effect on SOC1 binding, it decreased binding of both FLC and SEP3 
by ~64%. The K2-subdomain mutation Q127R decreased SEP3 binding by 73%, but increased binding to both 
FLC and SOC1 by ~40%. The C-domain insertion 220–221 YD had no significant effect on FLC binding, but 
decreased SEP3 and SOC1 binding by 22% and 28% respectively. This variation between different SVP heterodi-
mers suggests that these mutations are on the protein-protein interaction interface, rather than being mutations 
that affect an overall tertiary structure fold as in the case of proline mutations in SEP3. By contrast, the deletion 
of the SVP unique C-domain insertion 176–196 had a global effect, reducing all binding to FLC, SEP3 and SOC1 
by ~84–95%. This mutation was not expected to have such a strong effect, since the C-domain was thought not to 
play a significant role in dimerization, but rather to affect tertiary complex formation. The C-domain contains the 
activation domain for some of the MADS-domain transcription factors58, but in case of SVP this extra C-domain 
insertion is apparently essential for dimerization as well. Interestingly, it was the most prominent feature that 
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distinguishes SVP from its ancestor pSVP24. De novo modeling using servers Quark59 and CABS-fold60,61 pre-
dicted an α​-helix structure for this insertion (Fig. 6C). Since the main interaction interfaces in MADS-domain 
proteins are between α​-helices, we can argue that the major gain of interactions observed in SVP is mainly due to 
an extension of the α​-helix, through this unique extra C-domain insertion. This supports the idea that there are 
multiple evolutionary strategies being utilized during MADS-domain protein evolution. Also it points to different 
dimerization interfaces between MADS-domain proteins. An elongated dimer conformation was suggested55 for 
the AG homodimer where the loop between K1 and K2 subdomains form a 180° angle instead of 90°. While SEP3 
does not require the C-domain, SVP does, and the proper folding to dimer conformation is highly affected by M, 
I and C domains, at least in case of SVP and SEP3.

Discussion
In this study we investigated the molecular mechanisms and evolutionary trajectories behind the evolution of 
hub and non-hub proteins in the network of MADS-domain transcription factors. We noticed that when the 
density of dimeric interactions in the network reached saturation, the glue protein SEP3 had an important role 
in increasing network density. This persisted after the major whole genome duplication event gamma, suggesting 
that higher order complex formation provided a way to incorporate more novel interactions from the gamma 
triplication onwards. We highlighted the importance of structural flexibility in hub proteins, a property that 
allows them to adopt different structural conformations upon binding to targets (induced fit model), and/or by 
lowering the energy barrier between different the conformations of the free state proteins, allowing for a higher 
rate of inter conversion between conformations (conformational selection model), boosting their binding capac-
ity, and keeping a degree of interaction promiscuity.

This structural flexibility seems to be a key hub property, not only in large hubs but in small hubs as well, 
rather than surface residues charges as a main contributor to their interaction capacity. We followed the evolu-
tionary history of the hub protein SEP3 and found that its ancestor at 180 mya (ancE) had a very high promiscuity 
level and was able to bind to all other MADS-domain proteins in every protein network. This universal hub prop-
erty was largely due to its structural flexibility, as it was lost through its evolution through accumulation of proline 
residues in linker regions between its subdomains. Also, ancE seems to have undergone subfunctionalization 
along its evolution, as the number of its interacting partners adds up approximately to the number of interacting 
partners of SEP1,2,3 and 4 in each network. This evolutionary strategy of having multiple specific hubs instead 
of super-hubs may provide a higher level of network robustness, since a failure in hubs with lower numbers of 
interactions will have less effect than a central hub failure. We also illustrated that the high number of interactions 
of hubs was determined mainly by the hubs themselves, rather than by their interaction partners.

It appears that specificity evolved through selection of conformational folding states by controlling the degree 
of disorder, followed by fine tuning through electrostatic/hydrophobic residue-residue interaction on the inter-
action interface. We also noticed the presence of proline residues in linker regions between protein domains 
(I-domain, K1-K2 loop region) in MADS proteins. This may have led to reduced flexibility along their evolution, 
an observation that seems to be an exception to what has been reported before17, where evolutionarily more 
recent subunits were generally more flexible than evolutionarily older subunits.

It is worth mentioning that yeast-two hybrid assays in general might increase the number of observed 
protein-protein interaction due to unnatural high expression level of the cloned genes, thus the in vivo total 

Figure 6.  SVP site-directed mutagenesis Y2H assay, and C-domain insertion de novo modeling. (A) 
Multiple sequence alignment of pSVP24, SVP and AGL24, red squares indicate mutation sites. (B) Mutant SVP 
two-hybrid relative to wtSVP two-hybrid (red base line 1 =​ 100%). (C) Top de novo models of SVP C-domain 
insertion using Quark and Cα​β​S servers.
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number of interactions could be lower than the yeast two/three hybrid reported interactions. But the trend of an 
increasing or decreasing number of interacting partners would not be affected.

Dimerization in MADS-domain proteins requires proper folding at the event. The molecular dynamic sim-
ulation showed that this fold is induced (dynamic) rather than a priori existing in the monomer state (induced 
fit). After allowing the crystal structure to relax we observed rearrangements in the loop region in addition to 
the α​-helices of K1, K2 and K3 subdomains. The wild type SEP3 escaped the dimer conformation more slowly 
than the mutants. The second case we studied was SVP, which evolved from not being a hub and gained more 
protein interactions in evolution. We illustrated that it used a different molecular strategy during its evolution. 
An additional α​-helix C-terminal insertion was gained through its evolution, increasing the number of protein 
interactions with other MADS-domain proteins in the network. Surprisingly this extra helix seems to be cru-
cial for heterodimerization, since the deletion mutants of this unique 21 residues lost their capacity to dimerize 
through MIK-Cmut domains, while SEP3 dimerization does not require the C-domain44,62. Therefore previously 
reported MADS-domain proteins with altered C-domains63,64, which resulted in neo-functionalization might be 
functionally explained by protein-protein interaction (dimerization in addition to tetramerization). This adds to 
the idea that protein-protein interaction is a complex process. At least in networks of MADS-domain proteins, 
each couple may have a unique mode of dimerization and each member its ability to interact may have evolved 
uniquely, even though MADS-domain proteins have high sequence similarity. Resolving full length 3D structures 
of different homo/hetero-dimers/tetramers of this family will help to further advance our understanding of such 
complex molecular mechanisms and of protein-protein interaction network evolution.

Methods
Ancestral gene reconstruction of different MADS-box protein networks.  Ancestral genes from 
ePIN were used from Ruelens et al. (unpublished)47. Ancestral genes from pre-PIN and post-PIN were used from 
Zhang et al. (unpublished data)37. Protein sequences were obtained from available databases Genbank, OneKP, 
Phytozome, or from the Gunnera maniacata and Pachysandra terminalis RNAseq dataset from (Vekemans, D. 
et al.)28. Sequences were initially aligned with MUSCLE65 and manually curated in McClade 4.0866. Phylogenies 
were constructed using PhyML 3.0 as implemented in Geneious 5.4 or by RAxML67–69 using the GTR substitution 
model. All phylogenies were manually improved up until the order level to match with the angiosperm phylog-
eny70,71. Branch lengths were estimated on these manually curated trees using RAxML 7.0.472 with the JTT +​ G 
or JTT +​ I +​ G models of protein evolution, as determined by ProtTest 2.473. The indel history of the sequence 
alignments was manually reconstructed. All insertions that occurred after the gamma-event were deleted from 
the matrix. Next, the nucleotide sequence alignments were translated to proteins. The optimized gene trees with 
branch lengths, the protein alignments and best-fit model of evolution were then used for maximum likelihood 
marginal reconstruction implemented in PAML4.474. Ancestral sequences were estimated at the last node before 
the γ​ triplication (after the divergence of Buxales and before the divergence of Gunnerales) and at the Asterid-
Rosid split. Finally, the obtained ancestral protein sequences were converted to nucleotide sequences, codon 
optimized for yeast S.cerevisiae and A. thaliana and synthesized by Genscript USA.

Site directed mutagenesis.  Mutations were introduced in the expression vectors through PCR using 
Phusion polymerase (initial denaturation 98 °C 3 min, denaturation 98 °C 60 s, annealing 55 °C 60 s, elongation 
68 °C 30 s/kb of plasmid, 18 cycles) and the following primers:

SEP3 P78,80,83-QTS (TGGAGCACAAGAAACCAATGTGTCTTCAAGAGAGGCCT)
SEP3 P122A (GGAGAAGATCTTGGAGCGCTAAGTACAAAGGAG)
SEP3 GEDLAAA (GGAGAAGATCTTGCGGCGGCGAGTACAAAGGAG)
SEP3 AAAAGPL (CAAAGGAATCTGTTGGCGGCGGCGGCGGGACCTCTAAGTACAAAG)
SVP 80 M-insertion (AA AGAACTTGGAGAAGCTTATGGATCAGCCATCTCTTGAG)
SVP 89 V-deletion (ATCTCTTGAGTTACAGCTGGAGAACAGTGATCACGCC)
SVP 175–195 deletion (CAAGGAACGCAACTAGAATCGGAGAACGCTG)
SVP 220 Y-221 D insertion (CCGGAAACTCTTATGATACCGGAGCGCCTGTT)
SVP Q127R (GACATTGAAGAGCTTCAGAGACTAGAGAAGGCCCTTGAAACT)

After the PCR reaction, 1 μ​l DpnI enzyme (NEB) was added to each PCR reaction tube and incubated at 37 °C 
overnight, followed by column purification using Wizard®​ SV Gel and PCR Clean-Up System from which 5ul 
was transformed in Top10 chemically competent cells. Successful mutagenesis was confirmed by sequencing.

Yeast-two and yeast-three hybrid assays.  For yeast two hybrid (Y2H), recombinant pGADT7 AD 
Vector and pGBKT7 BD vectors (Clontech) containing MADS-box genes, were co-transformed into Y187 yeast 
strain. Successful transformation was confirmed by selective growth on Synthetic Defined (SD) 2% agar plates 
lacking essential amino acids Leu and Trp. For yeast three hybrid (Y3H), to detect the ternary complex formation, 
a third recombinant pTFT1 vector75, containing SEP3 or an ancestor SEP3 (ancE/pSEP3/gSEP3) in Arabidopsis 
thaliana network or TM5 in Solanum lycopersicum network, was co-transformed in addition to the AD and BD 
vectors, the successful transformation was confirmed by selective growth on Synthetic Defined (SD) 2% agar 
plates lacking Adenine and essential amino acids Leu and Trp. All yeast transformations were carried out follow-
ing the LiAc-mediated yeast transformation as described in Clontech Yeast Protocols Handbook. Auto-activation 
was tested through recombinant BD vector containing MADS-box gene, co-transformed with empty AD vector 
in Y2H, while in Y3H auto-activation was tested by, co-transformation of recombinant pTFT1 vector containing 
either SEP3 or an ancestral SEP3 in Arabidopsis thaliana networks, or TM5 in Solanum lycopersicum networks, 
and empty AD vector. Co-transformation of empty BD vector with empty AD vector in Y2H, and empty BD 
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vector with empty AD vector and empty pTFT1 vector in Y3H, was used as internal reference control of reporter 
gene leakiness. To analyze the protein-protein interaction quantitatively, β​-galactosidase activity was detected 
using ortho-Nitrophenyl-β​-galactoside (ONPG) as a substrate37. Y2H reads were subtracted from Y3H results, 
to get the true positive interaction which has been enhanced via SEP3. Positive values represent gain/conserved 
interactions through Y3H, while negative values represent lost/false positive interactions.

EMSA.  A dsDNA oligonucleotide probe was cloned into pGEM-T vector (Promega). The DNA probe contain-
ing two CArG boxes, was derived from SEP3 promoter region in Arabidopsis thaliana41, the probe was amplified 
and double-labeled with 5′​ end-biotin, using PCR with 5′​ end-biotin labeled specific primers:

Forward: (5′​ end-biotin-CATGGCCGCGGGATT-3′​),
Reverse: ( 5′​ end-biotin-GCGGCCGCACTAGTGATT-3′​)
EMSA 5′​ end-biotin double-labeled Oligonucleotide Probe Sequence (CArG-boxes are underlined):
�(CATGGCCGCGGGATTTTGACGATAACTCCATCTTTCTATTTTGGGTAACGAGGTCCCCTTCCCAT
TACGTCTTGACGTGGACCCTGTCCGTCTATTTTTAGCAGAATCACTAGTGCGGCCGC).

Then the probe was purified on 1% agarose gel (Promega). Mutant SEP3 genes generated in previously 
described site-directed mutagenesis step, in addition to AG gene, were amplified via PCR, then cloned down-
stream of an SP6 RNA polymerase promoter into a pSPUTK in vitro translation vector. Proteins synthesis was 
carried out using TNT®​ SP6 High-Yield Wheat Germ Protein Expression System (Promega), into a total volume 
of 10 μ​l according to the ratio of the reaction components of the manufacturer. It contained a 6 μ​l TNT®​ SP6 
High-Yield Wheat Germ Master Mix and a total of 1 μ​g plasmid DNA in each tube. Reaction mix was incubated 
for 2 hours at 25 °C. The binding reaction mixt has total volume of 12 μ​l, containing 1.13 mM EDTA (pH 8.0), 
0.024% BSA, 7.2 mM HEPES-NaOH (pH 7.3), 0.72 mM DTT, 57.72 μ​g/ml salmon sperm DNA, 1.27 mM spermi-
dine, 2.5% CHAPS, 8% glycerol, 40 fmol double-labeled oligonucleotide probe and 2 μ​l in vitro expressed proteins, 
according to the previous described mixture75. The binding reaction was incubated on ice for 30 min and then 
loaded on a native 5% polyacrylamide gel. After 3 hours of gel running at 75 V, the gel was blot to the BrightStar®​
-Plus positively charged nylon membrane (Ambion®​) overnight. The DNA band shift was detected using chemi-
luminescent nucleic acid detection module (Thermo Scientific).

Homology modeling.  SEP3 M-domain was homology modeled based on available (SRF, MEF2) crystal 
structures, two separate models were obtained for SEP3 M-domain using (SWISS-MODEL Server)76–79. The 
I-domain was added as an extended amino acids, followed by superpositioning the K-domain 4OX0 to the 
I-domain manually, structures were refined via (GalaxyWEB Server:GalaxyRefine method)80,81, then structures 
were docked using (SwarmDock Server)82–85 and refined again via GalaxyWEB Server (GalaxyRefine method)80,81.

In silico Loop mutagenesis.  SEP3 (GEDLGAL), SEP3 (AAAAGPL) and SEP3 (GEDLAAA) tetramer 
structures were modeled by manually mutating the residues of wtSEP tetramer experimental structure (PDB 
ID 4OX0)44, through the Maestro interface86. Mutated loops were refined through Prime software87 using the 
extended serial loop sampling method. VSGB88 was used as implicit solvation model. No constrain was applied 
and no limit was set to Cα​ movements. All side chains within 10 Å from the loop residues were optimized.

Molecular dynamics simulations.  Molecular dynamics simulations of WT SEP3, SEP3 (GEDLGAL), 
SEP3 (AAAAGPL) and SEP3 (GEDLAAA) were run in explicit solvent, using the TIP4P89 water model in a 
Periodic Boundary Conditions orthorhombic box. Analogous to recently published studies90,91, Desmond MD 
system92,93 was used to set up and run the MD simulations. The simulated environments were built using the 
system builder utility, with the structures being neutralized by Na+​ and Cl−​ ions, which were added until a con-
centration of 0.15 M was reached. A series of minimizations and short MD simulations were carried out to relax 
the model systems, by means of a relaxation protocol consisting of six stages: (i) minimization with the solute 
restrained; (ii) minimization without restraints; (iii) simulation (12 ps) in the NVT ensemble using a Berendsen 
thermostat (10 K) with non-hydrogen solute atoms restrained; (iv) simulation (12 ps) in the NPT ensemble using 
a Berendsen thermostat (10 K) and a Berendsen barostat (1 atm) with non-hydrogen solute atoms restrained; 
(v) simulation (24 ps) in the NPT ensemble using a Berendsen thermostat (300 K) and a Berendsen barostat 
(1 atm) with non-hydrogen solute atoms restrained; (vi) unrestrained simulation (24 ps) in the NPT ensemble 
using a Berendsen thermostat (300 K) and a Berendsen barostat (1 atm). At this point, 48 ns long MD simulations 
were carried out at a temperature of 300° K in the NPT ensemble using a Nose-Hoover chain thermostat and a 
Martyna-Tobias-Klein barostat (1.01325 bar). Recording intervals for trajectories was set to 4.8 ns. Trajectories 
were analyzed using Desmond Simulation Event Analysis94 and VMD95.

Conformational searches and conformational entropy prediction.  NYGAPEPNVPS and 
NYGAQETNVSS peotides were investigated for their conformational behavior in solution using the MacroModel 
software96. The two peptides were sketched using the Maestro86 interface, capped with ACE and NMA residues, 
and were submitted to 500000 steps of mixed torsional/large-scale low mode sampling conformational search. 
GB/SA97 was used as implicit solvation model. Each generated conformation was minimized using a maximum 
of 2500 steps of Polak-Ribière conjugate gradient minimization, using a gradient threshold of 1.0 Kcal/mol as 
convergence criterion during the conformational search. A gradient threshold of 50 cal/mol was instead used as 
convergence criterion for the final minimization of the conformational sets. Assuming a Boltzmann distribution, 
probabilities for each conformer were calculated from potential energies. Conformational entropies were com-
puted from conformer probabilities98,99 using the equation:
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where kB is the Boltzmann constant, and Pi is the probability of the ith conformer.
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