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Reconstruction of noise-driven 
nonlinear networks from node 
outputs by using high-order 
correlations
Yang Chen1, Zhaoyang Zhang2, Tianyu Chen1, Shihong Wang1 & Gang Hu3

Many practical systems can be described by dynamic networks, for which modern technique can 
measure their outputs, and accumulate extremely rich data. Nevertheless, the network structures 
producing these data are often deeply hidden in the data. The problem of inferring network structures 
by analyzing the available data, turns to be of great significance. On one hand, networks are often 
driven by various unknown facts, such as noises. On the other hand, network structures of practical 
systems are commonly nonlinear, and different nonlinearities can provide rich dynamic features and 
meaningful functions of realistic networks. Although many works have considered each fact in studying 
network reconstructions, much less papers have been found to systematically treat both difficulties 
together. Here we propose to use high-order correlation computations (HOCC) to treat nonlinear 
dynamics; use two-time correlations to decorrelate effects of network dynamics and noise driving; 
and use suitable basis and correlator vectors to unifiedly infer all dynamic nonlinearities, topological 
interaction links and noise statistical structures. All the above theoretical frameworks are constructed in 
a closed form and numerical simulations fully verify the validity of theoretical predictions.

In recent decades, the topic of dynamical complex networks has attracted great attention in interdisciplinary fields 
due to its theoretical importance and practical significance1,2. Network dynamics is determined in great extent 
by network structures, mainly classified by dynamics of local nodes and interactions between network nodes. In 
many practical cases, we can measure outputs of network nodes while structures of networks are often deeply 
hidden in the measured data. Therefore, it turns to be crucial to develop effective methods to infer network struc-
tures from the available data of nodes. This is the so-called inverse problem of network reconstruction, which 
has become one of the most important topics in the data analysis of complex networks in wide crossing fields, 
particularly in biological and social sciences3–7.

Various methods have been proposed to treat network reconstruction problems8. There are several typical 
difficulties in practice. First, in most of realistic cases diverse facts, such as noises, are involved in the data produc-
tion. These noises make the structure inference difficult because they are unknown on one hand, and essentially 
influence the data analysis on the other hand. Different statistical methods based on various correlation compu-
tations have been suggested to treat the noise problem9–14. Second, in almost all realistic network systems various 
nonlinearities play crucial roles in generating diverse characteristic features and significant functions. So far most 
of works in treating network inference have made approximations either neglecting noise influenc




es15–25, or con-

sidering linear dynamics and interactions9–14. These methods fail when both noise effects and nonlinearities of 
network structures are crucial for the data production. There have been few works treating the two difficulties 
jointly26–30, among which the Bayesian approach was used to estimate noise levels and dynamic parameters. In 
particular, a method of improved Bayesian method has been suggested for reconstruction of stochastic nonlinear 
dynamical model by iterating a number of coupled and nonlinear matrix equations with unknown dynamical 
parameters and noise statistical quantities28–30. The algorithm is analytical, but complicated if networks are large 
and noises at different nodes are coupled and multiplicative.

1School of Sciences, Beijing University of Posts and Telecommunications, Beijing, China. 2Faculty of Science, Ningbo 
University, Ningbo, China. 3Department of Physics, Beijing Normal University, Beijing, China. Correspondence and 
requests for materials should be addressed to S.W (email: shwang@bupt.edu.cn) or G.H (email: ganghu@bnu.edu.cn)

received: 22 August 2016

accepted: 06 February 2017

Published: 21 March 2017

OPEN

mailto:shwang@bupt.edu.cn
mailto:ganghu@bnu.edu.cn


www.nature.com/scientificreports/

2SCieNTiFiC ReporTS | 7:44639 | DOI: 10.1038/srep44639

In this presentation we consider the problem of reconstruction of noise-driven nonlinear dynamic networks. 
The key points in dealing with the difficulties are: We compute high-order correlations to treat possible nonlin-
ear structures; We use two-time correlations to separate the reconstructions of dynamical networks and noise 
statistics to two independent steps, and finally the computation of inference of noise-driven nonlinear networks 
has been converted to simple linear and algebraic matrix equations. In the first part of the section Results and 
Discussion, the idea and the method how to use high-order correlation computation (HOCC) to infer nonlinear 
dynamic networks are explained, including inferring all the internal node dynamics, mutual interactions and sta-
tistical structures of multiplicative noises. In the next part we first apply the HOCC method to a simple three-node 
network, the well known Lorenz equation, driven by white additive and multiplicative noises. And then large 
noise-driven complex networks with diverse nonlinear local dynamics and complicated links between nodes are 
considered. The effectiveness of the HOCC algorithm are well justified for both model networks. In the third part 
networks with complicated nonlinear phase dynamics, nonlinear interactions and nonlinear multiplicative noises 
are investigated. The HOCC method also works well in this more complicated case. To the end some conclusion 
and perspective of practical applications of the method are given. In the section of Materials and Methods, some 
details on the calculation of statistics of multiplicative noises are specified. Moreover, the problems how to treat 
measurement noises and colored noises and how reconstruction errors of the HOCC method depend on data 
length, system size and choice of basis sets are also briefly discussed (see Supplementary Information).

Results and Discussion
Inferring nonlinear networks by using high-order and two-time correlations: theory.  Let us 
consider a general noise-driven nonlinear network
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where T represents the operation of transposition. Dynamical noises Γ​i(t), i =​ 1, 2, 


, N, represent the impacts 
from microscopic world, and they are expected to have very short correlation time τd ≪​ 1, much smaller than the 
characteristic time of deterministic dynamics assumed to be of order 1. Then noises are approximated as white 
ones,

δΓ = Γ Γ ′ = − ′xt t t Q t t( ) 0, ( ) ( ) ( ) ( ) (2)i i j ij

with i, j =​ 1, 2, 


, N. It is emphasized that multiplicative noises have been seldom considered so far in the study of 
network reconstruction, though this type of noises exist extensively in practical circumstances31–34. In Eq. (1) we 
have all measurable data in our hand, namely, we measure
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With Δ​t ≪​ 1 we can compute velocities of x in Eq. (1) and with L 1 we have sufficiently large samples to 
perform statistical analysis. These conditions are not always available, but they do be available in many important 
practical experiments, or can be realized on purpose in case of need in many realistic measurements.

In Eq. (1) all functions fi, i =​ 1, 2, 


, N, are unknown. The noise statistic matrix =Q̂ x xQ( ) ( ( ))ij  is also 
unknown. Only the output variables (3) are available for analysis. The task is to specify dynamic functions fi, and 
noise statistics Qij, i, j =​ 1, 



, N.
First we assume fis can be generally expanded by a certain basis set16,24,30,35
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where all constant coefficients Ai,μ, μ =​ 1, 2, 


, Mi, , ∞​ are unknown, while all functions Yi,μ(x) called as bases 
are known. For treating nonlinearities in f(x), the chosen basis set should be complete for expanding field f(x). In 
Eq. (1) we give a freedom to use different basis sets for expanding different field f(x). It seems that the expansions 
of Eq. (4) should include infinite terms for arbitrary functions f(x). One has to truncate the expansion to finite 
terms. There is a systematical and self-consistent method, described in the following part to make such trunca-
tion. At present, we just assume a truncation at Mi for fi(x) expansion. Then Eq. (4) can be simplified as
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Without noise Γ​i(t), all the unknown coefficients can be solved by algebraic equations if sufficient data are 
accumulated16,21. With strong noises the inference computations are much more difficult. Here for network 
reconstruction we use a method to compute two-time correlations to filter noise effect11,14, together with using 
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high-order correlations of the chosen basis set to reconstruct interactions and nonlinearities of the networks and 
multiplicative noises.

For arbitrary node i in the network, multiplying Eq. (1) from the right side by a functional vector τ−Z x t( ( ))i
T

= Z x x x xZ Z Z( ) ( ( ), ( ), , ( )) (6)i i i i M
T

,1 ,2 , i

and computing all related correlations, we obtain a linear matrix algebraic equation
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Z1(x(t)), Z2(x(t)), 


, ZN(x(t)) are called correlators. They can be arbitrarily chosen for computing correlation 
matrix Ĉ i under the condition that their entries must not be linearly dependent on each other so that matrix Ĉ i 
has full rank, and is invertible. In Eq. (8) we should have 0 ≈​ τd ≪​ τ ≪​ 1 with τ being larger than the correlation 
time of dynamical noises τd, and much smaller than the characteristic times of deterministic network dynamics, 
previously assumed to be of order 1. Therefore, noises and correlators must be decorrelated

τ τΓ − ≈ >Zt t t( ) ( ) 0, for (9)i i
T

d

since the fast-varying noises of Eq. (2) have no correlation with any variable data of earlier times, disregarding 
any forms of multiplicative noises Qij(x). Now with the noise-decorrelation of Eq. (9), Eq. (7) can be reduced to
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T
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i
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where Bi(−​τ), Ĉ i and Ai are given in Eqs (8) and (5), respectively. We delete the notion (−​τ) in Ĉ i because τ ≪​ 1 
does not considerably change the values of Ci,μν. All elements of vector Bi(−​τ) and matrix Ĉ i can be computed 
with known output variables x(t), and thus all the unknown linear and nonlinear coefficients in Eq. (1) can be 
inferred with a simple and direct linear matrix equation (11), though the noise matrix Q̂ in Eq. (2) is unknown.

Statistical features of noises play crucial roles in the data production. Inferring noise statistics is also important 
for understanding the nature of data and for predicting the future data production in practical cases. It is desirable 
that noise matrix Q̂ x( ) can be also easily reconstructed from the variable data by HOCC algorithm similar to the 
above
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where qij,μ(x) are known bases for expanding Qij(x); Gij,μν are matrix elements computable from correlations of 
basis qij,μ and corresponding correlator ′

νqij , ; and Dij,μ are unknown coefficients to be inferred. The detailed deri-
vation of Eqs (13) and (14) is presented in Materials and Methods.
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For numerical simulation we can arbitrarily choose correlator vectors and in the following computations we 
simply take,

µ
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where qij,μ(x), μ =​ 1, 2, 


, Mij play role of vector bases for expanding multiplicative factor Qij(x), and Mij is the 
truncation in Qij(x) expansion like Mi for fi(x).

Now four points of the present method should be emphasized. (i) High-order correlations are used to recon-
struct nonlinear structure of networks without pursuing any linearization approximation; (ii) Two-time correla-
tions have been proposed to decorrelate noise effects, and the time difference τ can be adjusted to suit different 
noise conditions; (iii) Basis set Yi, qij and correlator set ′Z q,i ij can be freely chosen to construct correlation matri-
ces, suitable for different natures of practical networks. (iv) Multiplicative noises are taken into account in the 
study of network reconstruction problems, and multiplicative factors can be inferred together with the nonlinear 
fields and interaction structures. Unlike the multiple nonlinear algebraic equations of unknown matrices in ref. 30,  
where all network nodes fi, i =​ 1, 2, 



, N and matrix elements Qij, i, j =​ 1, 2, 


, N are coupled and should be con-
sidered as a whole, here for the same noise-driven systems, we have derived two independent linear matrix equa-
tions Eqs (11) and (13), separately for each node fi and each noise correlation element Qij(x). Each of them can be 
explicitly solved node by node and element by element with available variable data. This advantage can extremely 
simplify computations when networks are large and noises are coupled and multiplicative.

Inference of noise-driven networks by using power expansions.  We first consider a three-node 
nonlinear network, the Lorenz system, one of the most famous models in chaos study36,
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Though network (16) looks very simple and low-dimensional, it serves as one of the most prevalent prototypes 
for data analysis. We consider noises
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where we adopt absolute values |x|, |y|, |z| in Qii functions for Qii should be positive definite or zero from the defi-
nition of Eq. (2). In Eq. (16) both noise and nonlinearity essentially effect and noises with different multiplicative 
factors can produce considerably different data sets, as shown in Fig. 1 where trajectories for additive noises (Figs 
(a)(b)) and multiplicative noises (Figs (c)(d)) are presented. Now we apply the general algorithms Eqs (11) to this 
system. First we should choose bases for field expansion. Without particular information, power series can be 
naturally chosen as a candidate basis set. Then we assume the following bases with truncation M,

= = = = = Y Z Y Yi Y Y Y x y z x xy xz y yz z, 1, 2, 3; ( , , , ) (1; , , ; , , , , , ; ) (18)i i M
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Here we introduce an idea of self-consistent checking of the truncation. At first we take Mi
0 bases in Eq. (18), 

compute all elements of corresponding Ĉ i, Bi and obtain A M( )i i
0 . Then we further consider some more bases, i.e., 

>M Mi i
1 0 bases in Eq. (18), and obtain results of >A M M M{ ( ) }i i i i

1 1 0 . Mi
0 is concluded as a suitable truncation if 

the results satisfy two conditions. Condition (i): ≈µ µA M A M( ) ( )i i i i,
1

,
0  for all coefficients obtained with Mi

0 trun-
cation; Condition (ii): ≈µA M( ) 0i i,

1  for all coefficients of bases not included by Mi
0 truncation. If any of the above 

two conditions is not satisfied we should go on to include more bases in (18), >M Mi i
2 1, >M Mi i

3 2 and so on, till 
the two conditions are satisfied at Mi

k truncation. We then conclude −Mi
k 1 is the suitable truncation. Now we use 

the above method of truncations, successively from low orders to high orders of Eq. (18).
A self-consistent justification on correct truncation for Eq. (16) is illuminated in Fig. 2. In Fig. 2(a), it is 

apparent that Mi =​ 4 (bases: 1, x, y, z) is not a proper truncation, since the reconstruction of Mi =​ 4 is consid-
erably different from that of Mi =​ 10, where all bases of powers of the second order are taken into account. In 
Fig. 2(b) we compare the reconstruction results truncated by the second order (Mi =​ 10) with those of the third 
order (M =​ 20), and the above self-consistent checking conditions (i) and (ii) are both fulfilled. Therefore we can 
conclude it is enough to truncate the expansion at Mi =​ 10 with properly chosen bases in Eq. (18). In Fig. 1(c) we 
compare the reconstructed results for Mi =​ 10 with the actual Ai,μ, and the nonlinear and interactive structures of 
Eq. (16) are satisfactorily recovered indeed.

In principle, the derivations from Eq. (4) to Eq. (11) and the computations of Fig. 2 can be conducted generally 
without knowing any trace of the network dynamics. The trials of truncations can be performed order by order 
from lower powers to high powers until successful self-consistent checking. However, the number of tested bases 
K increases very quickly by increasing the truncation order. For large networks N ≫​ 1 we usually have K ≫​ N ≫​ 1, 
if we do not have any idea about the field f(x) and the truncation has to be performed at large expansion order. 
For a given sample number L the reconstruction errors increases quickly as L/K decreases. Therefore, effectively 
reducing the number of tested bases K can make reconstruction less time consuming and more precise. There 



www.nature.com/scientificreports/

5SCieNTiFiC ReporTS | 7:44639 | DOI: 10.1038/srep44639

Figure 1.  Time sequences and trajectories of noise-driven Lorentz system. Parameters are taken as σ =​ 10, 
ρ =​ 28, β =​ 8/3. (a,b) Additive noises Qij =​ 50δij are applied. (c,d) Multiplicative noises a1 =​ 20, a2 =​ 50, b1 =​ 25, 
b2 =​ 60, c1 =​ 15, c2 =​ 30 in Eq. (17) are applied. Data are chaotic and strongly random. The trajectory in (d), from 
which one cannot see any trace of Lorentz dynamics, is considerably different from that of (b) for different noise 
factors, though Lorentz dynamic field is not changed in all (a–d).

Figure 2.  Demonstration of self-consistent checking of HOCC method, and its application in inference 
computations of Eq. (16). Red circles are for additive noises while blue squares for multiplicative ones. (a) 
Reconstruction results obtained by Eq. (11) with the truncated bases of the zero and the first orders of powers 
(Mi =​ 4) plotted against those with power bases truncated up to the second order Mi =​ 10. (b) The same as (a) 
with power bases truncated at the third order (Mi =​ 17) plotted against those truncated at the second order 
(Mi =​ 10). The truncation at Mi =​ 10 is self-consistently confirmed to be suitable. (c) Inference results obtained 
by Eq. (11) with Mi =​ 10 plotted against the actual coefficients. All plots are around the diagonal line, indicating 
correct reconstruction at Mi =​ 10. (d) Dii,μ computed by Eq. (13) plotted against actual ones. Both sets coincide 
each other approximately.
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exist some methods to treat this problem. For instance, the compressive sensing method can exclude many zero 
coefficients from the inference computations and effectively reduce parameter number K37,38. This will not be 
discussed in the present paper.

For inferring noise statistics we construct expansion in the similar ways with bases Eq. (15)

=  q x y z x y z x xy y xy yz z( , , ) (1, , , , , , , , , , , )ij
T2 2 2

By applying Eqs (13) and (14) the coefficients of multiplicative factors of noises Dij,k can be computed. The 
results are shown in Fig. 2(d). It is remarkable that with the randomly behaved data of Fig. 1 only we can correctly 
explore not only the nonlinear fields and interaction structures, but also the detailed multiplicative behaviors of 
noises.

We can also use the inference results to reconstruct the Lorentz network, simulate the predicted deterministic 
equations (f only, without noise) and compare the trajectories with the original one with noise lifted (Fig. 3(a–d)). 
It is found that both reconstructed patterns match the original one well, though the two measured trajectories of 
Fig. 1(a–d) differ from each other considerably due to different multiplicative factors of noises. This coincidence 
justifies well the effectiveness of HOCC method. In Fig. 3(e,f) we produce variable data by simulating the recon-
structed networks with derived noises with the inferred multiplicative factors. The features of the noisy data are 
reconstructed perfectly as well for both additive and multiplicative noises.

Next we infer a network with much higher dimension and more complicated nonlinearities
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Equation (19) is very common in practical systems where local dynamic of each node is strongly nonlinear, and 
dynamic structures are diverse for different nodes. On the other hand interactions between nodes, the external 
facts for each node, are approximately linear. Expanding Φ​i(xi) by power series to a power xi

mi

∑ αΦ =
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µ
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and referring to Eqs (1) and (4), we have
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Then we can represent both unknown nonlinear structure and linear interaction topology unified as

Figure 3.  Comparisons of dynamics of reconstructed and original networks of noise-driven Lorentz 
system. (a–c) Comparison of the reproduced trajectories of the system reconstructed by our HOCC method 
((a,b) for additive and multiplicative noises, respectively) with that of the original Lorentz system (c). 
Agreement is striking since only the strongly noisy data of Fig. 1 are used for dynamics reconstruction, and 
the data in Fig. 1(a,b) are so different from those in Fig. 1(c,d). (d) x(t) time sequences of (a–c) from the same 
position of x =​ 1, y =​ 0.1, z =​ 1. Blue, green and red lines correspond to time sequences of x variables in (a–c), 
respectively. The three trajectories run together for certain time interval, justifying the correct dynamics 
reconstruction for both additive and multiplicative noises. They diverge from each other, however, as time 
goes on due to the chaoticity of the dynamics. (e,f) Reproduced trajectories by noise-driven models inferred 
by HOCC with corresponding additive (e) and multiplicative (f) noises. The different characteristics of data in 
Fig. 1(b,d) are reproduced convincingly in (e,f) respectively.
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Choosing correlator vector Zi as Zi =​ Yi, we can specify vector Bi(−​τ) and matrix Ĉ i as

τ τ τ− = − = −µ µ µν µ ν

ˆB x t Y t C Y t Y t( ) ( ) ( ) , ( ) ( ) (23)i i i i i i, , , , ,

Inserting Eq. (23) into Eq. (11) we can solve all the unknown elements, including all the nonlinear and linear 
terms.

In Fig. 4 we investigate a particular case with local dynamics

Φ = − + −x a x b x c e( ) (24)i i i i i i i
x3 i

with ai, bi, ci uniformly distributed as ai ∈​ (−​1, 1), bi ∈​ (2, 5), ci ∈​ (0, 2). The network has mutual interactions (i ≠​ j) 
positive Wij ∈​ (0.5, 1), i, j =​ 1, 2, 



, N, with 10% probability, negative ones  ∈​ (−​1, −​0.5) also with 10%, and Wij =​ 0 
otherwise. Simple additive white noises are used for this model:

δ∈ .Q (0 5, 1) (25)ij ij

with uniform probability distribution. We consider different truncations mi’s. It is obvious that the reconstruction 
has large errors for too small mi in Fig. 4(a,b) and they can be quickly improved by increasing mi, and saturate 
at sufficiently large mi (Fig. 4(c,d), mi =​ 3 is a fairly good approximation in our case). Unlike Eq. (16) where the 
power expansion of field f contains only powers lower than the third order and the truncation up to the second 
order is exact, the expansion of Eq. (24) has nonzero coefficients for infinitely large mi’s. And therefore, the sat-
isfactory reconstruction results of Fig. 4(d) convincingly confirm that the approach of self-consistent truncation 
works stably also for nonzero while convergent expansions.

Nonlinear network reconstruction by using different basis vectors.  For inferring linear networks, 
the basis vectors can be simply chosen as output variables Y =​ (x1, x2, , xN). For nonlinear networks, the ways to 

Figure 4.  The same as Fig. 2 with network (19) of N = 50 considered. Parameters are taken with uniform 
distributions in the intervals ai ∈​ (−​1, 1), bi ∈​ (2, 5) and ci ∈​ (0, 2) and additive noises Qij ∈​ δij(0.5, 1). The 
interaction intensities are Wij (i, j =​ 1, 2, 



, N, i ≠​ j) ∈​ (0.5, 1) with 10% probability for positive ones; ∈​(−​1,  
−​0.5) also with 10% for negative ones; and Wij =​ 0 otherwise. Power bases are organized from low-order to 
higher-order ones as described in Eq. (22). (a) Results of HOCC for mi =​ 2 plotted vs. those for mi =​ 1. Triangles 
are considerably away from the diagonal line, representing incorrect truncation at mi =​ 1. (b) The same as (a) 
with results of mi =​ 3 plotted with those of mi =​ 2. The truncation at mi =​ 2 is not suitable either. (c) Results for 
mi =​ 4 plotted vs. those for mi =​ 3. Both results coincide with each other fairly well, that self-consistently 
confirms the correctness of the HOCC method for sufficiently large mi, mi ≥​ 3. (d) The results of HOCC for 
mi =​ 3 plotted vs. the actual values of Aiμ. With suitable nonlinearity considered, all nonlinear and interacting 
structures are inferred correctly with certain fluctuations.
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choose basis vectors become diverse. In Eqs (18) and (22) power expansions are used for representing nonlinear 
functions. Different types of basis vectors can be used, depending on the nature of data and property of nonlinear 
dynamics. In many practical cases the inverse computations of networks can be much more simplified by select-
ing suitable basis vectors. Let us consider a network of coupled Kuramoto model25,26,28,29,39 that has been exten-
sively studied for describing oscillatory complex systems.

∑θ θ θ θ

θ π θ

= + Φ + Ψ − + Γ

+ = = ± ± ± =
≠

�

� � �

w t

k k p i N

( ) ( ) ( )

2 , 1, 2, , , , 1, 2, , (26)

i i i i
j i

N

ij j i i

i i

where θi, i =​ 1, 2, 


, N, represent phase angles of oscillators, and all Φ​i(θi), Ψ​ij(φ) are unknown nonlinear func-
tions with topology

θ π θ φ π φΦ + = Φ Ψ + = Ψk k( 2 ) ( ), ( 2 ) ( ) (27)i i i i ij ij

It is not convenient to approximate functions Eq. (27) by power expansions while we can conveniently do it by 
using Fourier basis vectors. Expanding Φ​i, Ψ​ij as

∑

∑

θ α θ α θ

θ θ β θ θ β θ θ

Φ = + ′

Ψ − = 
 − + ′ − 



=

=

k k

k k

( ) [ sin( ) cos( )]

( ) sin( ( )) cos( ( ))
(28)

i i
k

m

i k i i k i

ij j i
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ij k j i ij k j i

1
, ,

1
, ,

i

i

we can then define basis vector as

θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ
θ θ θ θ θ θ
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= − −
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m
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sin (2( )), cos(2( )), , sin( ( )), cos( ( )),
sin( ), cos( ), , sin( ( )), cos( ( )), ,
sin( ), cos( ), , sin( ), cos( ), ,
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i
T
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i i i i i i

i i i i i i i i

N i N i i N i

i N i

1 1
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and the corresponding unknown coefficient vector as

= = +A A A A M m N( , , , ) , 2 1 (30)i i i i M
T

i i,1 ,2 , i

The correlator vector Zi can be simply defined as

=Z Yt t( ) ( ) (31)i i

Inserting Eq. (29) for Y(t) and Eq. (31) for Z(t −​ τ) (0 <​ τ ≪​ 1) into Eq. (11), we can specify all elements of 
vector Bi(−​τ) and matrix Ĉ i, and explicitly infer all the nonlinear structures and interaction links of targeted 
vector Ai in Eq. (30).

We take a network of N =​ 10 as an example with

∑

∑

θ α θ α θ

θ θ β θ θ β θ θ

Φ = + ′

Ψ − = 
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(32)

i i
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1

3

, ,

1

3

, ,

where all αi,k, α ′i k, , βij,k, β ′ij k, , k =​ 1, 2, 3, uniformly distribute in the interval (−​1, 1). Multiplicative noises Γ​i(t) are 
simply chosen as

∑ θ θ δ=




 + +







=
xQ a b k k( ) (sin( ) cos( ))

(33)
ij ij

k
ij k i i ij

1

2

,

2

with aij and bij,k randomly and uniformly distributed in (0,1). In Fig. 5(a–c) the reconstruction results for different 
mi are compared. According to the self-consistently checking condition, we conclude that mi =​ 1, 2 are not suita-
ble (see Fig. 5(a,b)) while the truncation at mi =​ 3 is enough for correct network reconstruction (see the distribu-
tion of dots around the diagonal line in Fig. 5(c)). In Fig. 5(d) the inference results of mi =​ 3 are compared with 
actual values of Aij. With all harmonic terms being taken into account, we achieve rather precise reconstruction 
with certain fluctuations. Moreover, by applying approaches of Eqs (13)(14) we can explore the statistical struc-
tures of noise and reveal multiplicative factors rather accurately (Fig. 5(e)).

In the above analysis we consider only dynamical and white noises, i.e., Γ​(t) in Eq. (1), by assuming that 
all the node variables x(t) can be measured accurately. The analysis can be extended to measurement noises 
and colored noises, as we show in Supplementary Information. Moreover, due to noises and finite data length 
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reconstruction errors are inevitable. Some facts influencing errors of inference are also briefly discussed in 
Supplementary Information. All discussion in this paper focused on reconstructions of homogeneous ran-
dom networks. The HOCC method can be applied equally well to networks of different structures, including 
small-world and scale-free networks.

Conclusions
In conclusion we have studied the problem of inferring noise-driven nonlinear dynamic networks with measura-
ble data of node variables only. A high-order correlation computation (HOCC) method is proposed to unifiedly 
treat nonlinear dynamic structures, coupling topologies and statistics of additive and multiplicative noises in 
networks. This method treats network reconstruction by jointly considering three facts: choosing suitable basis 
and correlator vectors to expand nonlinear terms of networks; adjusting correlation time difference to decorrelate 
noise effects; and applying high-order correlations to derive linear matrix equations to infer nonlinear structures, 
topologies and noise correlation matrices. The HOCC algorithm has been theoretically derived, and its predic-
tions are well confirmed by numerical results.

In biological, social and other crossing fields, we have huge amount of data available for analysis while often 
understand much less about the structures and dynamics producing these data. Nonlinear dynamics, mutual 
node interactions and noises often cooperate to yield various functions. Now with the development of the net-
work reconstruction research, it is hopefully expected that we can explore hidden mechanisms, find underlying 
principles and reveal various unknown key parameters of practical dynamic networks by analyzing measurable 
output data only. These capabilities create a novel and significant perspective for understanding, modulating and 
controlling realistic network processes.

Materials and Methods
Derivation of Eqs (13) and (14).  Equations (13) and (14) can be derived as follows:

∫τ τ= + − − = + Γ ′ + Γ ′ ′
τ

τ

−

+
x x xS t x t x t x t f t t f t t dt( , ) ( )( ( ) ( )) ( ( , ) ( )) ( ( , ) ( )) (34)ij i j j i i

t

t

j j

Its expectation on noise realizations reads

Figure 5.  The same as Fig. 2 with network Eq. (26) reconstructed by using Fourier basis set. N =​ 10, and 
other parameters are uniformly distributed on Ai,μ ∈​ (−​1, 1) (for all nonzero coefficients in Equation(32), μ ≥​ 2 
and mi ≤​ 3), Ai,1 ∈​ (1, 2) and all the Fourier components of mi ≥​ 4 are zero. Multiplicative noises Eq. (33) are 
used with aij, bij,k ∈​ (0, 1). Truncations are made from low-order harmonics to higher-order ones. (a,b) The same 
as Fig. 2(a) with phase dynamics Eq. (26) considered, and the results of mi =​ 2 plotted vs. those of mi =​ 1 in (a); 
mi =​ 3 vs. mi =​ 2 in (b). Without high-order harmonics, many dots distribute away from the diagonal lines. (c) 
The results of mi =​ 4 plotted vs. those of mi =​ 3. All dots are distributed around the diagonal line, indicating self-
consistently the suitable truncation at mi =​ 3. (d) The same as Fig. 2(c) with Eq. (26) computed. All computed 
results at mi =​ 3 coincide with those of the actual Ai,μ with certain fluctuations. (e) The same as Fig. 2(d) with 
noises (33) computed. The results of multiplicative noises ′ µDii ,  agree rather well with actual noise parameters 
Dii,μ’s.
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Since 〈​Γ​i(t)〉​ =​ 〈​Γ​j(t)〉​ =​ 0 and τ ≪​ 1 we have
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multiplying the two sides of Eq. (36) by basis τ′ −µ xq t( ( ))ij ,  and making time average, we arrive at
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with Δ​Bij being vector having elements
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and Ĝij being matrix with elements
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Finally we obtain

= ∆
−ˆD B G (41)ij

T
ij
T

ij
1

where all elements of vector Δ​Bij and matrix Ĝij can be computed from available data and well defined bases qij,μ, 
′
νqij ,  and vector Dij can thus be inferred by Eq. (41).
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