
1SCIeNtIfIC REpoRTs | 7:44251 | DOI: 10.1038/srep44251

www.nature.com/scientificreports

Ultrafast quantum computation in 
ultrastrongly coupled circuit QED 
systems
Yimin Wang1,2, Chu Guo3, Guo-Qiang Zhang2, Gangcheng Wang4 & Chunfeng Wu3

The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum 
electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where 
novel quantum optics phenomena and potential computational benefits have been predicted. Here, 
we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where 
superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two 
more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional 
geometric phase gate between the two flux qubits is achieved based on close-loop displacements 
of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the 
phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can 
be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate 
can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through 
superconducting quantum interference devices. We also present a study of our scheme with realistic 
parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of 
ultrafastness and noise-tolerance due to the advantages of geometric phases.

Quantum computing has attracted much attention due to its acknowledged potential in solving hard problems 
over its classical counterparts, such as prime factoring, database searching, and etc. Superconducting circuit sys-
tems are promising platforms for quantum computation and quantum simulation because of its exotic properties 
such as scalability, controllability, flexibility, and compatibility with micro-fabrication1. In addition to the 
well-known three kinds of superconducting qubits: charge qubit2, flux qubit3, and phase qubit4, newly-designed 
qubits, such as transmon qubit5,6, fluxonium7, Xmon qubit8,9 have been widely explored for quantum information 
science. Considerable progresses have been made in recent superconducting circuit experiments involving the 
observation of the dynamical Casimir effects10, the realization of adiabatic quantum gate operations11, the demon-
stration of digital quantum simulation12, and so on. Especially, the ultrastrong coupling (USC) regime of 
light-matter interaction has been reached when a flux qubit is galvanically connected to a coplanar waveguide 
resonator13,14, where the qubit-resonator coupling strength g is comparable to the resonator frequency ωr: 

ω> > .∼ ∼g1 / 0 1r
15. This coupling regime not only provides a demand to study the quantum Rabi model16,17 and 

interesting quantum optics phenomena18–24, but it also leads to fast quantum gate operations25–27 as well as holo-
nomic quantum computations28. Specifically, a theoretical proposal to make ultrafast two-qubit quantum gates in 
circuit QED at the time scale of sub nanoseconds (0.1 ns) has been proposed in 201225, but it requires controllable 
coupling ratios as large as ω > .∼g/ 0 5r . Although a deep strong coupling ratio of ω .g/ 1 34r  between a flux qubit 
and a LC oscillator has been achieved very recently with a large inductor29, quantum computation with very large 
coupling strength and multiple qubits remains technically challenging.

On the other hand, one of the major practical difficulties in building up a quantum computer is that quantum 
systems are inevitably influenced by the decoherence effect induced from the environment. Decoherence will col-
lapse the state and render the quantum process invalid. It is thus essential to consider noise-tolerant proposals to 
implement quantum gates. One possible way is to resort to the geometric phase, which depends only on the solid 
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angle enclosed by the parameter path30 and generally not on the dynamics of the evolution31. Geometric quantum 
computation has been experimentally implemented in various quantum systems such as thermal ensembles of 
molecules32, solid-state spins33, superconducting qubits34 and so on.

In this work, we explore an ultrastrongly coupled qubit-resonator system involving flux qubits galvanically 
connected to a transmission line resonator (TLR), which is linked to another two empty resonators by supercon-
ducting quantum interference devices. The evolution of the system may result in a nontrivial two-qubit geomet-
ric phase gate, which is achieved from the displacements of the three-mode intracavity fields. Since there are 
three resonators contributing to the phase accumulation, it is possible to largely relax the requirement of very 
large coupling strength needed to achieve the phase gate as compared to the gate proposal in ref. 25. Further 
reduction in the coupling strength to realize a certain quantum controlled-phase gate can be achieved by adding 
more auxiliary resonators to the ultrastrongly-coupled system. Our result makes an essential step forward for 
multi-resonator circuit QED and can be used to implement ultrafast quantum gates bearing noise-tolerant merits 
by resorting to the advantages of geometric phase.

Results
The superconducting circuit model. We propose the use of ancillary microwave resonators as a tool to 
further accelerate the protected quantum computation in the ultrastrong coupling regime. As schematically 
shown in Fig. 1, two empty TLRs are coupled to the two sides of the TLR through a superconducting quantum 
interference device (SQUID)10,35–39. The SQUID couplers can also be replaced by capacitor couplers40,41 or qubit 
couplers42,43. In the middle TLR, two identical flux qubits, each of which is composed of three Josephson junctions 
(JJ), are uniformly distributed and galvanically connected to the center conductor by means of the coupling junc-
tions, i.e. JJ6. This qubit-circuit configuration allows for ultrastrong qubit-resonator coupling strength. Moreover, 
the magnetic flux Φ 2 and Φ 3 in the two additional loops provide its tunability and switchability25,44. When the 
inductance of the sixth junction is much smaller than the sum of inductances belonging to the loop threaded by 
the external flux Φ 2, its presence can be approximately understood as a perturbation to the TLR. We further 
impose that the JJ6 operates in a linear response regime with 

E EJ c6 6, which results in a nonlinear resonator 
spectrum. We consider the case that the flux qubits are sitting in the degeneracy point of the resonator, where a 
set of eigenmodes become degenerate27,45. In this single-band approximation, the Hamiltonian of the resonator is 
of the form ω= ∑ †H a ar l l l l (setting = 1 ). The Hamiltonian of the total setup becomes (the detailed derivations 
can be found in ref. 25)

= +H H H (1)int0

Figure 1. Schematic of a circuit-QED design for our proposal. Two flux qubits, each of which is composed of 
three Josephson junctions (1, 2, 3) in the upper loop threaded by an external flux Φ 1, are galvanically connected 
to the center conductor of the middle transmission line resonator (TLR). Tunable qubit-resonator couplings 
are achieved by controlling the external fluxs Φ 2, Φ 3 in the additional loops. Another two transmission line 
resonators, which are coupled to the middle TLR through the corresponding SQUIDs, are used as ancillary 
systems to accelerate the quantum computation.
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where ωq
j is the frequency of the jth qubit, σz x

j
,  are the corresponding Pauli matrices, ωa,b,c are the frequencies of 

the middle, left, right TRL resonators, a†(b†, c†) and a(b, c) are the creation and annihilation operators for the 
corresponding microwave resonators. The resonator-resonator coupling strength J can be controlled by the exter-
nal magnetic flux Φ e,b and Φ e,c threading the SQUID.

The qubit-resonator coupling strength β π∝g E f2 cos( )aj J 3  depends on the external magnetic flux Φ 3 and the 
size β of the fourth and the fifth Josephson junction. The coefficients α β≡c c f f( , , , )z x

j
z x
j

/ / 1 2 , which satisfy the 
condition + =c c 1x

j
z
j2 2  for ∀ j, are the magnitudes of the longitudinal/transverse qubit-resonator coupling 

strengths. They can be controlled by the qubit junction size α ≡ E E/J J3
, β ≡ ≡E E E E/ /J J J J4 5

 and the external 
fluxes Φ 2 and Φ 3. In particular, it might be possible to switch from transversal to longitudinal coupling by making 

→=c 0x
j 1,2 , →=c 1z

j 1,2 25,27. Thus the Hamiltonian of the total system is reduced to

σ σ= + + + + + + + + + .† † † † †H H g c c a a J a a b b J a a c c( )( ) ( )( ) ( )( ) (4)a z z z z0 1
1 1 2 2

We next perform a unitary transformation on the system Hamiltonian with

λ λ= − − − − − − .† † † †U i a a b b i a a c cexp[ ( )( ) ( )( )] (5)I

By performing rotating wave approximation respecting the condition of λ ω ω ω ω−J{ max { , }, }a b a b , we 
arrive at the following effective Hamiltonian,

σ σ λ σ σ

λ σ σ

= + + + + − +

+ − +

† †

†

H H g a a i g b b

i g c c

( )( ) 2 ( )( )

2 ( )( ), (6)
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eff 0
1 2 1 2
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where the constant term has been omitted.

Two-qubit controlled-phase gate. Here, we try to implement two-qubit quantum phase gate in the com-
putational basis 4  of { 00 , 01 , 10 , 11 } spanned by the two flux qubits. The Hamiltonian Eq. (6) can thus be 
expressed diagonally as =H H H H Hdiag[ , , , ]00 01 10 11  in the interaction picture, with the elements Hij given by

λ λ η η ξ ξ= + + + + +ω ω ω ω ω ω− − −⁎ † ⁎ † ⁎ †( ) ( )( )H e a e a e b e b e c e c ,ij ij
i t

ij
i t

ij
i t

ij
i t

ij
i t

ij
i ta a b b c c

where λ λ= = 001 10 , λ = g2 a00 , λ = − g2 a11 , η η= = 001 10 , η λ= i g4 a00 , η λ= − i g4 a11 , ξ λ= − i g4 a11 , 
ξ ξ= = 001 10 , and ξ λ= i g4 a00 . The evolution matrix U(t) is also in a diagonal form in  4, as according to the 
Hamiltonian in Eq. (6), the states will not evolve out of  4. The corresponding elements Uij(t) are nothing but the 
displacement operators β β β= −† ⁎D a a( ) exp[ ] together with the accumulated phases46,

∫ ∫ ∫ ∫τ τ φ α β γ=





−






=ˆ ( ) ( ) ( )U t T i H d i D d D d D d( ) exp ( ) exp( ) ,

(7)ij
t

ij ij
c

ij
c

ij
c

ij
0

w h e r e  ∫ ∫ ∫φ α α β β γ γ= + +⁎ ⁎ ⁎( )d d dImij c ij ij c ij ij c ij ij ,  α λ= − ω⁎d i e dtij ij
i ta ,  β η= − ω⁎d i e dtij ij

i tb ,  a n d 
γ ξ= − ω⁎d i e dtij ij

i tc . The phase φij accumulated by the state |ij〉  via the interaction between flux qubits and the 
resonators is the unconventional geometric phase40,47–49 and hence the phase φij is robust against certain type of 
noise as it bears global geometric features.

We assume that the resonators are initially in vacuum state, and at any time t >  0, the states of the resonators 
evolve to coherent states with amplitudes αij(t), βij(t) and γij(t) depending on the logical computational basis state 
|ij〉  . We find α λ ω ω ω= − − +⁎t t i t( ) [(cos 1) sin ]/ij ij a a a , β η ω ω ω= − − +⁎t t i t( ) [(cos 1) sin ]/ij ij b b b  and 
γ ξ ω ω ω= − − +⁎t t i t( ) [(cos 1) sin ]/ij ij c c c. By choosing ωb =  ωc =  ωa/m, after a process operating at T =  2π/ωb, 
the phase φij is found to be φ λ ω η ω ξ ω= | | + | | + | |T T( ) ( / / / )ij ij a ij b ij c

2 2 2 . As such the total operation time is T, 
and at time T the time evolution matrix can be written as

= .φ φ φ φU T e e e e( ) diag[ , , , ] (8)i T i T i T i T( ) ( ) ( ) ( )00 01 10 11

U(T) is thus a nontrivial entangled gate if and only if φ φ φ φ+ ≠ +00 11 01 10
50. This condition can be fulfilled by 

adjusting the coupling strengths. In our scheme the phases acquired by the qubits to realize a certain phase gate 
are due to the close-loop evolution of the resonators. In particular, let us try to realize a two-qubit gate with 
φ00 =  φ11 =  π/2 and φ01 =  φ10 =  0. In this case, the qubit-resonator normalized coupling strength needs to satisfy

ω λ= + .g m m( / ) 1/[16 (1 8 )] (9)a
2 2
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From Eq. (9), we see that the coupling strength required to construct a two-qubit gate is largely reduced as com-
pared to the required coupling ratio of ω > .∼g/ 0 5r  in ref. 25. By adjusting the displacement amplitude to be 
λ =  0.1, the ratio to be m =  2, and the qubit-resonator coupling strength to be g/ωa ~ 0.16 as satisfying Eq. (9), we 
have a two-qubit gate with operation time of π ω= ≈ .T 2 / 0 2 nsb  if the frequency of the middle resonator is 
ωa/2π =  10 GHz.

It is worthy to note that, to further reduce that requirement on the normalized coupling strength to achieve a 
specific phase gate, we can easily extend our model to the multiple resonators case for assistance, as schematically 
shown in Fig. 2(a). With N auxiliary resonators, the normalized coupling strength reads

ω λ= +g m mN( / ) 1/[16 (1 4 )], (10)a
2 2

where N is number of the auxiliary resonators. With this general equation in Eq. (10), the percentage of the 
reduction in the normalized coupling strength for the multi-resonator case is shown in Fig. 2(b). Therefore, it is 
noteworthy that in addition to the operational robustness of the geometric phase gates, another advantage offered 
in our scheme by employing auxiliary resonators is the decrease of the coupling strength on demand to achieve 
a certain gate. This result is thus of applicable importance for quantum computation and quantum information 
processing. In practical study, a desirable quantum gate may require relatively large coupling strength, which is 
not possibly available based on current techniques. An alternative way to realise such a gate is to use the auxiliary 
resonators, in which we need smaller strong coupling strength.

We next explore the performance of the two-qubit quantum gate by resorting to multi-resonator circuit QED 
systems, and show the advantages offered by the auxiliary resonators. For a particular initial state of the system 
in the logical qubit basis

ψ θ θ θ θ θ θ θ θ θ= + + +cos 00 sin cos 01 sin sin cos 10 sin sin sin 11 (11)i 1 1 2 1 2 3 1 2 3

with θ π∈ [0, 2 ]i  (i =  1, 2, 3), the state fidelity

ψ ψ=F , (12)f f
2

is defined between the expected final state ψ ψ= U T( )f i  and the state ψ f  after the evolution of the scheme. 
Taking the maximally entangled state ψ = + + +( 00 01 10 11 )/20  being the initial state as an example, 
we find that the error of the quantum phase gate due to the approximations involved in the derivation of the effec-
tive Hamiltonian is less than 0.01. To better explore the gate performance, we define the gate fidelity as the fidelity 
averaged over all the possible states,

∫ ∫ ∫π
ψ ρ ψ θ θ θ=

π π π
F 1

(2 )
d d d ,

(13)f f3 0

2

0

2

0

2
1 2 3

with ρ being the density matrix of the two logical qubits after evolution. In Fig. 3(a), we show the calculated gate 
fidelity F as a function of the displacement magnitude λ for different values of the ratio m. In Fig. 3(b), we show 
the optimal operating conditions to obtain the maximum gate fidelity. As shown in Fig. 3, to achieve a nontrivial 
two-qubit phase gate U(T) with φ φ π= = /200 11  and φ φ= = 001 10 , the maximal gate fidelity is achieved when 
the displacement amplitude is about λ ≈ .0 1 for almost all the values of m. The maximal gate fidelity is above 0.99 
for both m =  2 and m =  3 with λ ≈ .0 1. Here for the numerical simulation, we choose the system parameters as 
cavity frequencies ωa/2π =  10 GHz, ωb =  ωc =  ωa/m, the total evolution time T =  2π/ωb, and the 
resonator-resonator coupling strength J =  0.1|ωa −  ωb|.

Figure 2. Multi-resonator case. (a) Six transmission line resonators from left and right sides are connected 
to the middle transmission line resonator through the corresponding SQUIDs. This scheme allows for 
large-reduction of the normalized coupling strength to achieve a specific phase gate. (b) The percentage of 
the reduction on the requirement of the normalized coupling strength for a specific phase gate in the multi-
resonator case.
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Errors and decoherence. We remark that all our simulations presented so far assume no loss in the system 
and it is inevitable that any realistic quantum system operates with imperfect controls and noisy environments. It 
is clear that our phase gate U(T) specifically requires the longitudinal coupling strength such that we have 
assumed that in the effective Hamiltonian Eq. (4) the transversal coupling coefficient is zero, i.e. cx =  0. Although, 
in principle the coefficients ∈c [0, 1]x z

j
( )  can be manipulated by the external fluxes, in realistic systems there 

might be some residual nonzero transversal couplings, i.e., ≠c 0x , which will surely affect the performance of the 
two-qubit phase gate U(T). In Fig. 4(a), we show the numerical simulations of the two-qubit gate performance in 
the presence of the nonzero transversal couplings governed by Eq. (3). We note that for c 1x , it doesn’t affect 
much of the gate performance. Moreover, for cx <  0.6, smaller integers of m always gives better gate fidelity.

In additional to the errors induced by the imperfect control of the coupling strengths, our system is exposed 
to noisy environments. In circuit QED, decoherence arises from various environmental degrees of freedom and 
one of the key challenges is to minimize both the internal and the external noise sources. To better explore the 
performance of our gate proposal in realistic situations, dissipation induced by its coupling to the environment 
needs to be taken into account. However, the description offered by the standard quantum optical master equa-
tion breaks down in the ultrastrong coupling regime and open system analysis of the ultrastrongly-coupled sys-
tems needs to be carried out by studying dynamics of the microscopic master equation (see Methods). In Fig. 4(b), 
we show the performance of the two-qubit phase gate U(T) with φ00 =  φ11 =  π/2 and φ01 =  φ10 =  0 for the initial 
state prepared in the maximally entangled state ψ = + + +( 00 01 10 11 )/20  in presence of external 
noises. For any values of λ satisfying λ <  0.6, the fidelity in the open system case with the initial state prepared in 
the maximally entangled state is deceasing as m is getting larger. In this case, the maximal open-system fidelity 
can be archived is ≈ .F 0 95 with m =  2 and λ ≈ .0 1.

Figure 3. Gate fidelity plots. (a) Gate fidelity F as a function of the displacement magnitude λ for different 
values of m. The inset is a zoom of the region for F between 0.9 and 1. (b) Contour plots of the gate fidelity F as a 
function of the displacement magnitude λ and the ratio m. In this simulation to achieve a nontrivial two-qubit 
phase gate U(T) with φ00 =  φ11 =  π/2 and φ01 =  φ10 =  0, we choose the system parameters as cavity frequencies 
ωa/2π =  10 GHz, ωb =  ωc =  ωa/m, the total evolution T =  2π/ωb, and the resonator-resonator coupling strength 
J =  0.1|ωa −  ωb|.

Figure 4. Gate performance in presence of imperfections. (a) Gate fidelity F as a function of the nonzero 
transversal coupling strength cx. The inset is a zoom of the region of F between 0.9 and 1. (b) State fidelity in the 
open system ψ ψ= ′Fopen i i

2 with external noises γ γ γ γ γ ω= = = = = −10a b c x z a
3 , for the initial state 

prepared in the maximum entangled state ψ = + + +( 00 01 10 11 )/2i . For the simulation, we choose 
the system parameters as cavity frequencies ωa/2π =  10 GHz, ωb =  ωc =  ωa/m, the total evolution T =  2π/ωb, and 
the resonator-resonator coupling strength J =  0.1|ωa −  ωb|.
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Discussion
To summarize, we have presented a scheme to realize ultrafast quantum computation in the ultrastrong coupling 
regime of a multi-resonator circuit QED system, where the flux qubits are ultrastrongly coupled to the middle 
TLR, and another two empty resonators are connected to the middle TLR through SQUIDs to assist the quantum 
gate operations. Numerical results show that the geometric phase gate in the system operates with a gate fidelity 
above 99% for certain choices of parameters. In addition to ultrafastness of the quantum gate operation at sub 
nanosecond time scale due to the ultrastrong coupling strength, our scheme offers another two advantages. (i) By 
resorting to the displacements of the intracavity fields of three resonators, the evolution of the system results in a 
nontrivial two-qubit geometric phase gate and thus it possesses global geometric features enabling noise-tolerant 
quantum computation against certain type noises. (ii) Depending on the amount of displacement on the resona-
tor fields, the requirement of the coupling strength to realize a certain two-qubit phase gate can be greatly relaxed 
compared to the required coupling strength of ω > .∼g/ 0 5r  in ref. 25. By employing two empty resonators to con-
tribute to the phase accumulation of the quantum phase gates, the requirement on the coupling strength can be 
further relaxed. Even more, the requirement on the coupling strength for a quantum phase gate can be multiply 
reduced if we generalize our scheme to a system consisting of N auxiliary transmission line resonators. The result 
is important for quantum informational and computational applications because our scheme based on 
multi-resonator circuit QED systems is as well applicable to other types of qubit-resoantor coupled systems, 
where ultrastrong coupling is not feasible. By using multiple resonators, our scheme can relax the requirement of 
strong coupling strength and hence speed-up quantum gate is possibly achievable even without ultrastrong cou-
pling. Therefore, our scheme opens the possibility of implementing ultrafast quantum gates holding 
noise-resistant merits based on the advantages of geometric phases.

Methods
Owing to the very high qubit-resonator coupling ratio g/ωa, the standard quantum optical master equation fails 
to describe the dynamics of ultrastrongly coupled systems. Open system analysis of an ultrastrongly coupled 
system can be carried out by studying dynamics of the microscopic master equation. In the following, we rewrite 
the system operators in the eigenbasis of the total system Hamiltonian, and by applying the standard Markov 
approximation and tracing out the reservoirs degrees of freedom, we arrive at the master equation in the presence 
of noises at very low temperature environment of ≈T 021,51 (generalization to ≠T 0 environments is 
straightforward),

∑ρ ρ ρ= +
d t

dt
i t H t( ) [ ( ), ] ( ),

(14)s
s

where the subscripts s stands for the qubit losses with s =  x, z and for the cavity losses with s =  a, b, c. The 
Liouvillian superoperator is defined as

∑ρ ρ= Γ
>

t D j k t( ) [ ] ( ),
(15)

s
j k j

s
jk

,


with |j〉  being the eigenstates of the total system Hamiltonian Eq. (1), ω=H j jj , and the dissipator being

ρ ρ ρ ρ≡ − − .† † †D[ ] 1
2

1
2 (16)      

The relaxation coefficients are given by21,51

π αΓ = ∆ ∆d C2 ( ) ( ) , (17)s
jk

s kj s kj s
jk2 2

which depend on the system-bath coupling strength αs(Δ kj), the spectral density of the baths ds(Δ kj) at the respec-
tive transition frequency Δ kj =  ωk −  ωj, as well as on the transition matrix elements

σ
=







=

− − = .†C
j k s x z

i j o o k s a b c

: , ;

( ) : , , (18)
s
jk s

These relaxation coefficients can be interpreted as the full width at half maximum of each |k〉  →  |j〉  transition. For 
simplicity, we assume αs(Δ kj) and ds(Δ kj) to be constant, and then the relaxation coefficients can be written in a 
compact form γΓ = Cs

jk
s s

jk 2
, where γs are the standard damping rates of a weak coupling scenario. More specif-

ically, γx and γz are the damping rates of the flux qubit associated with the transversal noise and longitudinal 
noise; γa, γb and γc are the damping rates of the cavities.
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