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Identification of the Beer 
Component Hordenine as Food-
Derived Dopamine D2 Receptor 
Agonist by Virtual Screening a 3D 
Compound Database
Thomas Sommer1,2, Harald Hübner3, Ahmed El Kerdawy4,5, Peter Gmeiner3, 
Monika Pischetsrieder2 & Timothy Clark1

The dopamine D2 receptor (D2R) is involved in food reward and compulsive food intake. The present 
study developed a virtual screening (VS) method to identify food components, which may modulate 
D2R signalling. In contrast to their common applications in drug discovery, VS methods are rarely 
applied for the discovery of bioactive food compounds. Here, databases were created that exclusively 
contain substances occurring in food and natural sources (about 13,000 different compounds in total) 
as the basis for combined pharmacophore searching, hit-list clustering and molecular docking into 
D2R homology models. From 17 compounds finally tested in radioligand assays to determine their 
binding affinities, seven were classified as hits (hit rate = 41%). Functional properties of the five most 
active compounds were further examined in β-arrestin recruitment and cAMP inhibition experiments. 
D2R-promoted G-protein activation was observed for hordenine, a constituent of barley and beer, with 
approximately identical ligand efficacy as dopamine (76%) and a Ki value of 13 μM. Moreover, hordenine 
antagonised D2-mediated β-arrestin recruitment indicating functional selectivity. Application of our 
databases provides new perspectives for the discovery of bioactive food constituents using VS methods. 
Based on its presence in beer, we suggest that hordenine significantly contributes to mood-elevating 
effects of beer.

Homeostatic food intake is regulated mainly by the hypothalamus and caudal brainstem by integration of various 
peripheral and central signals resulting in an ingestive behaviour which counterbalances the energy expenditure1. 
However, it is also well established that certain food stimuli induce hedonic food intake in the state of satiety, 
leading to an overconsumption of calories and, thus, eventually to obesity. Dopaminergic pathways are heavily 
involved in hedonic food intake by mediating reward, motivation and reinforcement2. Among the five dopamine 
receptor subtypes, in particular the dopamine D2 receptor (D2R) seems to be involved in food reward and com-
pulsive food intake2,3. However, the molecular determinants of palatable food inducing non-homeostatic food 
intake are still not fully understood. Mixtures of carbohydrates and fat most efficiently induce hyperphagia in 
rats4–6, with a carbohydrate/fat ratio of about 45%: 35% having the most pronounced effect7. Although being very 
effective in inducing food intake, fat/carbohydrate mixtures have a lower impact on brain reward areas compared 
to palatable food items with the same fat/carbohydrate composition7,8. Thus, bioactive food components with the 
potential to modulate dopaminergic pathways may be able to change the rewarding properties of food. To date, 
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only little is known about dopaminergic food components. Therefore, the aim of the present study was the iden-
tification of novel food-derived D2R ligands.

For the discovery of novel bioactive food components, food extracts or food compounds are either selected 
hypothesis-driven or even arbitrary and then tested by bioassays addressing the desired physiological effect. 
Subsequently, active food extracts are subjected to activity-guided fractionation to identify the bioactive com-
ponents9. This approach, however, is rather time-consuming, has a low hit rate and tends to overlook promising 
novel food bioactives. Furthermore, only a limited number of food components are commercially available for 
testing or easily accessible. Therefore, in silico screening methods would be useful for prioritising the food com-
pounds to be submitted to biological assays.

Virtual screening (VS) refers to the use of computational methods for the knowledge-based identification of 
compounds that exhibit a desired biological activity10. In drug-discovery research, this technique has been devel-
oped as a response to stagnating high-throughput screening (HTS) hit rates in combination with rising costs for 
HTS assays. Nowadays, VS methods are a common complementary technique to HTS to analyse large compound 
databases in order to prioritise a set of molecules for further experimental testing11–13. However, no VS applica-
tions in food science have been reported in the literature, possibly because of the lack of specific food-compound 
databases, since pharmaceutical companies focus on drug-like compounds and natural products. In the pres-
ent study, we developed a VS protocol consisting of pharmacophore screening, hit-list clustering and molecular 
docking to search for possible D2R-ligands in a newly assembled database containing 13,000 components from 
foods and some other natural sources. The most promising compounds were evaluated in biological assays. This 
approach allowed for the first time the unbiased identification of novel food bioactives by virtual screening of a 
novel food-compound database.

Results and Discussion
Molecular properties of FCDB and PhyDB compared to other VS databases. Our first aim was 
the generation of an in silico 3D food-compound database. Besides this database (FCDB; 12,579 compounds), 
which we constructed by selecting natural food constituents from the Dictionary of Food Compounds14, we also 
generated a small natural products database (PhyDB; 987 compounds) based on the catalogue from the vendor 
PhytoLab Vestenbergsgreuth, Germany (available at http://www.phytolab.com/de/phytolab.html). The databases 
are part of the Supplementary information.

For the characterisation of our newly generated databases, we calculated molecular property distributions 
for FCDB and PhyDB and for samples containing 10,000 randomly selected compounds from the UNPD data-
base15, the ZINC biogenic compounds subset (ZBC) and the ZINC all purchasable subset (ZAP)16. Thus, we could 
compare our databases with established freely available VS databases that contain natural products (UNPD data-
base and ZBC) and drug-like compounds (ZAP). Detailed data are available in the Supplementary information, 
Fig. S1.

The calculations revealed that the FCDB and PhyDB databases are substantially different to a typical drug-like 
library (ZAP). While the compounds in drug-like libraries tend to comply with Lipinski’s rule-of-five17 resulting 
in Gaussian-like molecular property distributions with distinct maxima, the molecules in FCDB, PhyDB, and 
UNPD exhibit very broad molecular-property distributions. Hence, the compounds in these databases tend to 
have higher structural diversity, which is typical for natural compound libraries18. Despite their distinct sim-
ilarity, differences between FCDB/PhyDB and UNPD still exist, especially in terms of molecular weight. The 
natural product library ZBC turned out rather to possess drug-like than natural-product-like properties, proba-
bly because the authors of ZINC (http://zinc.docking.org/subsets/zbc) took their information about the natural 
character of a compound from vendor catalogues. The vendors often also include synthetic derivatives of natural 
products in their catalogues to make them more attractive for medicinal chemists, as also observed by Manallack 
et al.19. In summary, it turned out that our generated screening databases represent a new type of screening 
library, which is much more similar to databases containing natural products than drug-like compounds.

Virtual screening process. The next goal was the search for nutritive or natural D2R-ligands in the gen-
erated VS databases. D2R is a target of great interest for the pharmaceutical industry, for which agonists have 
been developed as drugs for treating Parkinson’s disease and antagonists for treating schizophrenia20,21. Although 
no X-ray structure of D2R has been published yet, a wide variety of ligands has been synthesised that facilitates 
the effective use of ligand-based VS methods such as pharmacophore searching11. The GPCR Ligand Library22 
provides a comprehensive collection of known D2R-ligands compiled from the GLIDA database23. However, 
since the majority of D2R-ligands are synthetic in origin, the ligand collections contain primarily drug-like com-
pounds, in contrast to those contained in FCDB and PhyDB. Therefore, the selected VS methods needed to be 
capable of finding VS hits in FCDB and PhyDB that are structurally different to the input ligands. Therefore, we 
did not only apply VS methods that rely on molecular similarity but rather used pharmacophore searching in 
combination with hit-list clustering and molecular docking. The overall VS workflow is summarised in Fig. 1.

Pharmacophore modelling. By selecting relatively large and structurally diverse training sets for both 
D2R-agonists and -antagonists, we ensured that the resulting pharmacophore models only retain the most critical 
features for binding. The training sets are depicted in the Supplementary information, Figs S2 and S3. Training 
sets containing only large and structurally similar compounds would probably have resulted in very specific 
pharmacophore models with a large number of features, which would not be able to find any hits in FCDB and 
PhyDB. Additionally, we did not consider excluded volumes in the pharmacophore models to avoid obtaining 
small hit lists.

It is a prerequisite for an alignment of the ligands to be a good approximation to their binding mode that 
the template compound for the alignment provides an orientation close to its bioactive conformer. In addition 
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to molecular docking and subsequent molecular-dynamics refinement of the ligand conformers as techniques 
for approaching the bioactive conformation, we selected some ligands, namely # 21 and # 27 from the agonist 
training set, Fig. S2, and # 32 from the antagonist training set, Fig. S3. We used the conformers that are stored in 
the GPCR Ligand Library directly, because the conformational space in low-energy regions is sparsely occupied 
for structurally restrained ligands. The bioactive conformer has been shown to be often located near the global 
minimum24 and a low-energy conformer for a restrained ligand can thus be a good approximation. The training 
set ligand conformers that possess the maximum similarity compared to the template were then determined by 
ParaAlign (see Methods and Supplementary information). For each ligand, this conformer was extracted and 
used as input for the HipHop25 pharmacophore model generation algorithm. Since we generated up to 25 phar-
macophore models per run, the variation of the conformer types and the templates that were used for ParaAlign 
resulted in a large number of models, which had to be validated subsequently.

The validation process involved large test databases compiled from the GPCR Ligand Library and GPCR 
Decoy Database22 in order to determine the overall best pharmacophore models. We found two very similar phar-
macophore models with almost identical excellent VS performance in model validation for the D2R-agonists. 
Both models contained hydrogen-bond donor, aromatic ring and positive ionisable features. We therefore 
decided to use only the model that gave a slightly better receiver operating characteristic (ROC) curve (Fig. 2b).

A comparison between this D2R-agonist pharmacophore model (Fig. 2a) and models reported in the literature 
revealed a high degree of similarity. Both Malo et al.26 and Chidester et al.27 reported D2R-agonist pharmacoph-
ore models that also contain hydrogen-bond donor, aromatic ring and positive ionisable features with similar rel-
ative orientations. The only difference is an additional hydrophobic feature close to the positive ionisable feature 
present in their models. However, since not all our training set ligands contain such a feature, we conclude that 
the hydrophobic feature is able to increase binding affinity but that it is not critical for binding.

We also obtained two pharmacophore models for the D2R-antagonists that exhibited the best VS performance 
in the validation step (Fig. 3c). In contrast to the agonists, these two models did not show a high degree of similar-
ity concerning shape and features (Fig. 3a,b). While the first D2R-antagonist model contained a hydrogen-bond 
acceptor, an aromatic ring and a positive ionisable feature, the other model possessed a hydrophobic feature 
together with the aromatic ring and positive ionisable feature. The relative orientation of the features was also 
different. However, this observation is not surprising, since our D2R-antagonist training set covered ligands with 
considerably different shapes (e.g. ligands # 35 and 39, Fig. S3). Such diverse ligands probably adopt different 
binding modes and, hence, it is not surprising that we obtained two diverse pharmacophore models.

The models further resemble a ligand classification for pharmacophore model generation reported by 
Klabunde and Evers28. They divided their D2R-antagonist training set into two different classes and built dif-
ferent pharmacophore models from the two subsets. Our first D2R-antagonist pharmacophore model (Fig. 3a) 
resembles their class I model, whereas our second model (Fig. 3b) shows some similarity to their class II model. 
As our validation database contains a substantial number of actives from both ligand classes, similar VS perfor-
mance of the pharmacophore models was not surprising. The validation performance is not as good as for the 

Figure 1. Schematic representation of the VS process from database generation to experimental testing. 
The numbers on the left and on the right side represent the number of compounds that passed through the 
respective VS step depicted in the centre. Due to 230 compounds that are present in both FCDB and PhyDB, the 
absolute number of different compounds is smaller than the sum of the compounds in the two databases.



www.nature.com/scientificreports/

4SCiENtiFiC RepoRts | 7:44201 | DOI: 10.1038/srep44201

Figure 2. The overall best D2R-agonist pharmacophore and its inter-feature distances (a), depicted 
together with its ROC curve that results from VS of the test database (b). The features are hydrogen bond 
donor (purple, HBD), aromatic ring (orange, R) and positive ionisable (red, P). The dashed red line in the ROC 
plot indicates a random selection.

Figure 3. The overall best D2R-antagonist pharmacophore models and their inter-feature distances (a 
and b) depicted together with the corresponding ROC curves that result from VS of the test database (c). 
The features are hydrogen bond acceptor (green, HBA), aromatic ring (orange, R), positive ionisable (red, P) 
and hydrophobic (blue, H). The dashed red line in the ROC plot indicates a random selection. The blue curve 
corresponds to model a) and the green curve to model b).
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D2R-agonist models, probably because, on the one hand, either model is recognising class I-like actives or class 
II-like actives better and, on the other hand, hydrophobic and hydrogen-bond acceptor features are not as selec-
tive as a hydrogen-bond donor feature. For this study, we decided to use both models for database searching in 
FCDB and PhyDB and, subsequently, to combine the two hit lists to avoid missing any type of antagonist.

The 3D database-searching step using the selected D2R-agonist pharmacophore model selected 1,441 com-
pounds from FCDB and PhyDB. In contrast, the two selected D2R-antagonist pharmacophore models gave a 
combined hit list with 1,866 compounds. Note that we treated tautomeric compounds and different ionisation 
states as different database entries in this step, which led to a lower number of chemically different hit compounds.

Hit-list clustering and compound prioritisation. The next goal of our study was to select structurally 
diverse compounds for experimental testing. Therefore, we performed a clustering analysis of the hit lists in 
Discovery Studio 3.1 (Accelrys Inc., San Diego, CA) to divide them into groups that contain structurally different 
classes (Fig. 1). Moreover, the possible corresponding tautomers and ionisation states for a given hit compound 
could be pooled as they were assigned to the same compound cluster. After variation of the number of generated 
clusters, we found that values of 80 clusters for the D2R-agonist hits and 100 clusters for the D2R-antagonist hits 
represent good values for characterising the hit-list compounds.

Selecting compounds from different clusters ensured that we chose structurally diverse molecules for the 
following molecular-docking step. The choice was further based on the fit value to the pharmacophore models 
and on visual inspection. For both D2R-agonist and -antagonist screening, we derived a cut-off limit for the fit 
value from the pharmacophore validation step, in which databases consisting of known actives and putative 
inactives were mapped to the models. From the actives mapped to the D2R-agonist model, all but one gave a fit 
value higher than 2.2. Hence, we used this value as a cut-off limit in compound prioritisation. By contrast, most 
of the actives mapped to the D2R-antagonist models showed fit values of 1.9 and 2.3 for model A and model B, 
respectively. We retained pharmacophore searching hits with larger fit values than these cut-off limits for at least 
one of the models.

Hit-list clustering and compound prioritisation reduced the number of VS hits to 125 and 69 different com-
pounds for the D2R-agonist and -antagonist screening, respectively. Thus, we selected less compounds from the 
D2R-antagonist screening for the molecular docking step, although the pharmacophore hit list and the number 
of clusters was larger than for the agonists. However, many compounds in the antagonist hit-list did not pass the 
fit-value cut-off. Additionally, visual inspection of the hit-list molecules revealed that large and bulky compounds 
tended to have very high fit values. These molecules were rejected because they are unlikely to fit into the binding 
pocket.

Molecular docking and final compound selection. The combination of pharmacophore searching with 
molecular docking enabled an initial check of our database molecules for the required molecular features and 
their relative orientations. Then we examined more thoroughly, whether the candidates could fit well into the 
binding pocket and establish important protein-ligand interactions. A D2R inactive-state homology model used 
successfully in a previous docking study29 served as docking target. The compounds that passed the cluster-
ing and prioritisation step were docked together with their corresponding tautomers and ionisation states using 
AutoDockVina30 with high exhaustiveness and maximum conformer values for detailed examination. For each 
compound, we carefully inspected both the value of the scoring function and the resulting receptor-ligand com-
plexes. An interaction between a positively charged moiety and the carboxylate group of Asp1143.32 was manda-
tory for a compound to be regarded as hit in the docking step.

Eventually, we obtained 53 hit compounds and searched for corresponding possible activity data concerning 
dopamine receptors in the literature. We excluded hits with known bioactivity at D2R and checked the commer-
cial availability of the remaining compounds. Finally, 17 compounds of different origin (Fig. 4a,b, Table 1) were 
purchased and prepared for experimental testing.

We also examined, whether a 2D molecular similarity search would have been sufficient to extract these mol-
ecules from the VS databases. Therefore, we calculated Extended Connectivity Fingerprint 4 (ECFP4)-based 
Tanimoto coefficients (Tc) for the nine D2R-agonist screening hits and the eight D2R-antagonist screening 
hits compared to the respective training set ligands. For the D2R-agonist hits, the Tc values varied from 0.094 
(pyrraline) to 0.324 (salsolinol), while we obtained Tc values between 0.110 (fenpropimorph) and 0.345 (ajmali-
cine) for the D2R-antagonist hits. When comparing all our screening database compounds to the training set 
ligands, the top 100 hits using the D2R-agonist training set as a reference gave Tc values of at least 0.234, while 
the Tc values of the top 100 hits using the D2R-antagonist training set as a reference were at least 0.243. Thus, 
when applying the 2D molecular similarity search, only three of our selected compounds, ajmalicine (Tc =  0.345), 
salsolinol (Tc =  0.324) and fumigaclavine A (Tc =  0.288) would have been present among the top-ranked com-
pounds. For details, please refer to the Supplementary information, Table S1.

Experimental evaluation. To confirm the VS predictions, we conducted radioligand binding assays 
to estimate the binding affinity of our hit compounds at D2R. As we performed VS to identify both nutritive 
D2R-agonists and -antagonists, we were interested in the ability of the VS hits to activate the receptor or to 
antagonise the effects of dopamine. Hence, functional assays were carried out to evaluate both G protein- and 
β -arrestin-mediated signalling pathways.

Ligand binding experiments. The affinity profiles of our VS hits towards the human dopamine D2L recep-
tor isoform were compared with those of the reference compound dopamine by radioligand binding experiments 
(Table 1).
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The binding data revealed Ki values ≤  50 μ M for five of nine tested D2R-agonist VS hits, representing a hit 
rate of 56%. Two out of eight tested D2R-antagonist VS hits gave Ki values ≤  50 μ M corresponding to a 25% hit 
rate. All observed binding affinities were in the micromolar range, which is typical for active compounds found 
by VS31. Fumigaclavine A, an alkaloid with an ergoline-like structure produced by different Aspergillus species32, 
showed the highest binding affinity with a Ki value that was only seven times higher than for the endogenous 
ligand dopamine. Furthermore, the coccidiostat and possible food contaminant robenidine33, as well as salsolinol 
and hordenine bind in the low micromolar range. Salsolinol, for which controversial activity profiles for D2 
receptors have been reported34–36, is a constituent of cocoa and chocolate37, whereas hordenine is present in 
barley38 and beer39. The anthocyanidin delphinidin, which has a considerably different molecular scaffold to the 
remaining VS hits, gave a Ki value of 26 μ M. Most active compounds contain an aliphatic amine as a positively 
charged moiety at physiological pH to enable a salt bridge to Asp1143.32. Only robenidine, which contains a gua-
nidinium group, and delphinidin, which features cationic oxygen, are different.

Functional experiments. Finally, we examined the ability of our VS workflow not only to identify com-
pounds that bind to D2R, but also to predict the compound efficacy. Hence, we performed functional experiments 
for the five compounds that showed the best binding affinities, namely fumigaclavine A, robenidine, salsolinol, 

Figure 4. Structures of the experimentally tested D2R-agonist (a) and -antagonist (b) VS hits. The 17 
compounds can be classified into natural food constituents (delphinidin, hordenine, kukoamine A, pyrraline, 
salsolinol, roquefortine C), further compounds from natural sources (fumigaclavine A, leonurine, muscimol, 
ajmalicine, dihydroberberine, emetine), and food contaminants (clenbuterol, fenpropimorph, halofuginone, 
robenidine, sarafloxacin).
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hordenine, and delphinidin. As it has been shown that ligands can induce G protein-mediated signalling and 
β -arrestin recruitment independently40,41, the individual pathways were investigated separately (Table 2).

Among the five investigated VS hits, three compounds showed significant intrinsic activity in the cAMP accu-
mulation assay. The EC50 values of fumigaclavine A and hordenine are both in the extended range of the Ki values 
determined in the radioligand binding experiments. Conversely, probably because of a very flat dose-response 
curve, the EC50 value of salsolinol is considerably lower than its Ki value. For hordenine, we could observe almost 
full activation (Emax =  76%) compared to the reference compound quinpirole and to dopamine (Fig. 5a). This 
is particularly interesting, because hordenine did not show significant β -arrestin recruitment (Fig. 5b). In fact, 
titration curves using a constant concentration of 300 nM of the D2R-agonist quinpirole with hordenine confirm 
its antagonistic activity (Fig. 5c). Fumigaclavine A and salsolinol also did not show β -arrestin recruitment, but 

Compound Compound origin Ref.
Pharmacophore 
model fit valuea

Ki ± SEM [nM]b [3H]
spiperone D2L

Dopamine 160 ±  31

D2R-agonist hits

Clenbuterol Food contaminant, illegal use 
in calf fattening 49 2.488 50,000 ±  13,000

Delphinidin Anthocyanidin, in various 
plants and fruits 50 2.396 26,000 ±  6,800

Fumigaclavine A Produced by Aspergillus 32 2.901 1,100 ±  160

Hordenine Barley and beer 38,39 2.300 13,000 ±  2,700

Kukoamine A Potato tubers 51 2.967 > 100,000

Leonurine Leonotis species 52 2.833 > 100,000

Muscimol Amanita muscaria 53 2.218 > 100,000

Pyrraline Maillard product from glucose 
and lysine 54 2.853 > 100,000

Salsolinol Cocoa and chocolate 37 2.397 7,300 ±  1,900

D2R-antagonist hits Model A Model B

Ajmalicine Rauvolvia serpentina 55 2.287 2.672 > 100,000

Dihydroberberine Berberis species 56 2.360 2.252 75,000 ±  27,000c

Emetine Carapichea ipecacuanha 57 2.848 2.652 37,000 ±  5,700c

Fenpropimorph Food contaminant, fungicide 58 1.403 2.687 > 100,000

Halofuginone Food contaminant, coccidiostat 59 2.818 2.774 > 50,000

Robenidine Food contaminant, coccidiostat 33 2.163 2.553 5,400 ±  1,600

Roquefortine C Blue cheese 60 1.087 2.362 > 100,000

Sarafloxacin Food contaminant, antibiotic 61 1.279 2.852 > 100,000

Table 1.  Compound sources, pharmacophore searching fit values and radioligand binding data for the 
tested VS hits compared to the reference compound dopamine, employing D2L receptors expressed in 
CHO cells. aThe fit value indicates how well a compound matches the pharmacophore model. For our models, 
which each contain three features, the maximum possible fit value for a compound is 3. bKi values ±  standard 
error of mean (SEM) in nM derived from at least four individual experiments each performed in triplicate. cKi 
values ±  standard deviation (SD) in nM derived from two individual experiments each performed in triplicate.

Compound

Inhibition of forskolin-stimulated 
cAMP accumulation

β-Arrestin 
recruitmentb

EC50 (nM) Emax (%)c EC50 (nM) Emax (%)d

Delphinidin N/A 20% at 100 μ M N/A < 7

Fumigaclavine A 250 27 N/A < 7

Hordenine 3700 76 N/A < 7

Salsolinol 630 21 N/A < 7

Robenidine N/A < 5 N/A < 7

Dopamine 0.97 100 420 96

Table 2.  Intrinsic activities and potencies of the five most active VS hits determined at the dopamine 
receptor subtype D2S by measuring the inhibition of forskolin-stimulated cAMP accumulation and 
recruitment of β-arrestin-2 after stimulation of the D2S receptor expressed in HEK cellsa. aEC50 and 
Emax values were derived from mean curves based on 3–7 individual dose-response curves. bD2S-mediated 
recruitment of β -arrestin-2 determined with the PathHunter assay. cMaximum effect of forskolin-stimulated 
cAMP inhibition relative to the effect of quinpirole. dMaximum effect of D2S-mediated β -arrestin recruitment 
relative to the maximum effect of quinpirole. N/A: EC50 values could not be analysed because of low 
corresponding Emax values.
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the maximum response of these compounds in the cAMP accumulation assay was well below 50%, categorising 
them as weak partial agonists.

Although the G protein-biased D2R-agonist hordenine shares structural similarities to the balanced agonist 
dopamine, receptor–ligand interactions obtained after docking and energy minimisation in presence of a D2R 
homology model appear to be different. Hordenine lacks a meta-hydroxyl group compared to dopamine, ren-
dering it unable to form hydrogen bonds to both residues Ser1935.42 and Ser1975.46 as dopamine does42 (Fig. 6). 
The receptor–ligand complex that results from docking and energy minimisation cannot explain whether double 
methylation of the nitrogen atom enables hordenine to form additional hydrophobic interactions compared to 
dopamine.

Taken together, we could observe partial or almost full agonist activity in the cAMP inhibition assays for three 
of four tested D2R-agonist VS hits. For the D2R-antagonist VS hit robenidine, we could not observe any activa-
tion in either assay. These results confirm the pharmacophore models and VS workflow.

Thus, the VS workflow proved to be able to identify hordenine as almost full D2R-agonist in Gi/o activation 
and simultaneous antagonism in β -arrestin recruitment, indicating that this substance acts as a G protein-biased 
agonist at D2R. Additionally, two VS hits with partial agonism in Gi/o activation, fumigaclavine A and salsolinol, 
were identified. The D2R-antagonist robenidine did not show any activation in either assay. The VS method based 

Figure 5. Receptor activation properties of hordenine. In comparison to dopamine, hordenine shows agonist 
properties in the inhibition of forskolin-stimulated cAMP accumulation (a). While no β -arrestin-2 recruitment 
was determined for hordenine (b), the test substance completely antagonised quinpirole-stimulated recruitment 
(c).

Figure 6. Conformation of hordenine and its receptor-ligand interactions obtained after docking and 
energy minimisation. We used an active-state homology model of D2R and performed MD simulations with 
the endogenous ligand dopamine42. Dopamine was removed from the model, hordenine was docked into the 
binding pocket and the resulting receptor-ligand complex was subjected to energy minimisation in a water 
box. Whereas dopamine is able to form two hydrogen bonds with both Ser1935.42 and Ser1975.46 in the D2UpR 
model42, our VS hit hordenine forms only a single hydrogen bond to Ser1975.46 due to the lack of a second 
hydroxyl group.
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on the newly generated VS food database can now be applied to other targets for unbiased identification of novel 
bioactive compounds in food.

Hordenine is a natural constituent of barley and, in particular, beer, a food that is often linked to alcohol abuse. 
In the present study, hordenine was able to bind to D2R with a Ki value in the low micromolar range. The activa-
tion profile of hordenine showed significant bias for G protein-promoted activation over β -arrestin recruitment 
compared to functionally balanced D2R-agonists like the endogenous ligand dopamine. Given that β -arrestin 
recruitment leads to desensitisation and receptor internalisation, hordenine-promoted D2R activation may be 
stronger and more sustainable than activation with the balanced neurotransmitter dopamine. Further studies are 
necessary to clarify the possible influence of hordenine on the dopaminergic system and food reward.

Methods
Database generation. From the 40,000 entries (natural food constituents, food contaminants, food addi-
tives, nutraceuticals) in the Dictionary of Food Compounds14 only those molecules were selected for FCDB that 
were reported in the literature to occur in food. We excluded compounds that were heavier than 750 Da or pos-
sessed more than two sugar moieties, because they are unlikely to be resorbed in the gastrointestinal tract. The 
Supplementary information includes further details on the database generation procedure.

Molecular property calculations. For comparison of FCDB and PhyDB with other established database 
types, we selected the UNPD database15, the ZINC biogenic compounds (ZBC), and the ZINC all purchasable 
(ZAP) subset from the ZINC database16. From these three databases, we extracted a sample of 10,000 random 
compounds each. By contrast, FCDB and PhyDB were used in their entirety for the calculation of molecular prop-
erties. The molecular properties (molecular weight, AlogP, numbers of rotatable bonds, hydrogen bond donors 
and acceptors) were calculated in Discovery Studio 3.1.

Pharmacophore modelling. For pharmacophore model generation, we selected structurally diverse 
training sets containing 11 D2R-agonists and 12 D2R-antagonists collected from the GPCR Ligand Library22. To 
obtain low-energy conformers for the training set ligands, we generated conformational sets with up to 255 con-
formers using the Catalyst BEST conformer generation algorithm (once including and once without a conformer 
minimisation step using the CHARMm force field implemented in Discovery Studio 3.1.) The generated ligand 
conformers were aligned to a template compound, which is assumedly present in its bioactive conformation.

To obtain template conformers for the rigid-body alignment algorithm ParaAlign (detailed description of 
ParaAlign is given in the Supplementary information), we submitted each training set ligand to a molecular 
docking step into an in-house D2R homology model using AutoDock Vina30 followed by molecular dynam-
ics refinement of the ligand conformers in the receptor-ligand complex using AMBER10 programme package 
(University of California). The refined docking conformation of each training set ligand was subsequently used as 
template for ParaAlign. Because our training sets also contained structurally restrained ligands, we additionally 
used the ligand conformers for these compounds that are stored in the GPCR Ligand Library directly as templates 
for ParaAlign. Two agonists (# 21 and 27, Fig. S2) and one antagonist (# 32, Fig. S3) underwent this procedure. 
Using the ParaAlign algorithm, we could then determine and extract the respective training set conformer for 
each alignment that possessed the highest similarity to the template conformer. Subsequently, pharmacophore 
models were generated for those training set conformers using the Common Feature Pharmacophore (HipHop) 
algorithm in Discovery Studio 3.1. The applied parameters are given in the Supplementary information.

In a validation step consisting of a database search with test databases that contain a large number (136 ago-
nists, 493 antagonists, and 39 decoys for each) of chemically diverse ligands and suitable corresponding decoys 
compiled from the GPCR Ligand Library and GPCR Decoy Database, we evaluated all generated pharmacophore 
models. The overall best D2R-agonist and -antagonist pharmacophore models were extracted for the pharma-
cophore screening in FCDB and PhyDB using the best flexible 3D database search in Discovery Studio 3.1.

Hit-list preparation and molecular docking. The hit lists resulting from the pharmacophore searches 
were merged and duplicate structures were removed. In the following, we applied the ligand-clustering tool in 
Discovery Studio 3.1 using MDL public key fingerprints as clustering properties to divide the hit lists into groups 
of structurally similar molecules. Thus, a total number of 80 clusters for the D2R-agonist and 100 clusters for the 
D2R-antagonist screening hits were generated.

To obtain structurally diverse screening hits for the subsequent molecular docking step, we picked out single 
cluster representatives based on the pharmacophore-model fit values and on visual inspection. For chiral com-
pounds, we checked if the configuration generated by CORINA corresponded to the natural stereoisomer. If this 
was not the case, we produced the natural stereoisomer in ChemDraw 12.0, converted it to a SMILES string and 
to a 3D conformer by CORINA and submitted it to the ligand-preparation steps previously applied to all database 
compounds. Ligand conformers were generated and mapped to the pharmacophore models to check, if a match 
was still present.

Subsequently, the selected pharmacophore hits were docked into an in-house D2R-homology model previ-
ously used in molecular docking studies29 using AutoDock Vina30. We applied a search space of 26 ×  24 ×  24 Å 
and an exhaustiveness value of 32 and obtained up to 20 conformations of each ligand. For the final selection of 
screening hits to be tested in vitro, the resulting protein-ligand complexes were subjected to an accurate visual 
inspection. We retained only poses, where the most important receptor-ligand interactions such as the conserved 
salt bridge between Asp1143.32 and a positively charged moiety were present. After checking the final hit lists 
for commercial availability, 17 compounds were purchased. The VS hit hordenine was further docked into a 
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D2R-homology model used in molecular-dynamics studies with the endogenous ligand dopamine42. The docking 
procedure is described in detail in the Supporting information.

VS hit compounds. Ajmalicine, delphinidine chloride, dihydroberberine, emetine dihydrochloride, 
hordenine, leonurine, and muscimol were purchased from PhytoLab GmbH (Vestenbergsgreuth, Germany). 
Clenbuterol hydrochloride, fenpropimorph, halofuginone hydrobromide, robenidine hydrochloride, and sara-
floxacin hydrochloride hydrate were obtained from Sigma Aldrich (Taufkirchen, Germany). Fumigaclavine A was 
purchased from AdipoGen AG (Liestal, Switzerland), and kukoamine A from AChemTek, Inc. (Worcester, MA, 
USA). Pyrraline was provided by PolyPeptide Group (Strasbourg, France). Roquefortine C was obtained from 
Cfm Oskar Tropitzsch GmbH (Marktredwitz, Germany) and salsolinol hydrochloride from ABCAM biochemical 
(Cambridge, U.K.).

Radioligand binding assays. Receptor binding studies were carried out as described previously43,44. In 
brief, preparations of membranes from CHO cells that stably express the human D2L receptor were used together 
with [3H]spiperone (specific activity 73 Ci/mmol, Biotrend, Cologne, Germany) at a final concentration of 
0.15 nM. The assays were carried out at a protein concentration of 6 μ g/assay tube, showing KD values of 0.052–
0.10 nM and corresponding Bmax values of 950–1500 fmol/mg.

cAMP Inhibition assay. HEK293T cells were transiently co-transfected with pcDNA3L-His-CAMYEL45 
(purchased from ATCC, Manassas, VA via LGC Standards, Wesel, Germany) and D2s receptor, respectively, and 
the assay was performed according to literature46. Twenty-four hours after transfection cells were split into white 
half-area 96-well plates at 2 ×  105 cells/well and grown overnight in a phenol-red free medium supplemented with 
serum (Invitrogen, Darmstadt, Germany). On the day of measurement, the medium was removed and replaced 
by phosphate buffered saline (PBS). The cells were serum-starved for 1 h before treatment. The assay was started 
by adding 10 μ L of coelenterazine-h (Promega, Mannheim, Germany) to each well to yield a final concentration 
of 5 μ M. After 5 min of incubation, test compounds were added in PBS containing forskolin at a final concentra-
tion of 10 μ M. After an incubation time of 15 min, BRET measurement was performed with a CLARIOstar plate 
reader (BMG LabTech, Ortenberg, Germany). Emission signals from Renilla luciferase and YFP were measured 
simultaneously using a BRET1 filter set (475–30 nm/535–30 nm). BRET ratios (emission at 535 ±  30 nm/emission 
at 475 ±  30 nm) were calculated and dose-response curves were fitted by nonlinear regression analysis using the 
algorithm of PRISM 6.0. Curves were normalised to basal BRET ratio obtained from dPBS (0%) and the maxi-
mum effect of the reference ligand quinpirole (100%).

β-Arrestin recruitment assay. The measurement of β -arrestin-2 recruitment stimulated by D2R activation 
was performed using the PathHunter®  assay purchased from DiscoveRx (Birmingham, U.K.) according to the 
manufacturer’s protocol as described previously47. To determine the antagonist properties, different concentra-
tions of the test compounds (10−10–10−3 M) were pre-incubated for 30 min before adding 300 nM (final concen-
tration) quinpirole to start the standard incubation period.

Data analysis. The resulting competition curves of the receptor binding experiments were analysed by non-
linear regression using the algorithms in PRISM 6.0 (GraphPad Software, San Diego, CA). The data were initially 
fit using a sigmoid model to provide an IC50 value, representing the concentration corresponding to 50% of 
maximal inhibition. IC50 values were transformed to Ki values according to the equation of Cheng and Prusoff48.

Data from cAMP measurements were analysed by normalising the BRET ratios with 0% for the unstimulated 
receptor and 100% for the full effect of the reference ligand quinpirole. Dose-response curves were calculated by 
nonlinear regression using the algorithms of PRISM 6.0.

The amount of recruitment of β -arrestin was derived from the agonist-induced increase of chemilumines-
cence, which was expressed in counts per second (cps). Dose-response curves were normalised to basal cps stim-
ulated by buffer (= 0%) and the effect of the maximum effect of the reference compound quinpirole (= 100%).

From each curve, a set of mean values was derived and pooled to result in an average curve showing the EC50 
and Emax value, respectively.
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