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Anordrin Eliminates Tamoxifen 
Side Effects without Changing Its 
Antitumor Activity
Wenwen Gu1,*, Wenping Xu2,*, Xiaoxi Sun3, Bubing Zeng2, Shuangjie Wang1, Nian Dong4, 
Xu Zhang1, Chengshui Chen4, Long Yang5, Guowu Chen3, Aijie Xin3, Zhong Ni6, Jian Wang1 & 
Jun Yang1

Tamoxifen is administered for estrogen receptor positive (ER+) breast cancers, but it can induce uterine 
endometrial cancer and non-alcoholic fatty liver disease (NAFLD). Importantly, ten years of tamoxifen 
treatment has greater protective effect against ER+ breast cancer than five years of such treatment. 
Tamoxifen was also approved by the FDA as a chemopreventive agent for those deemed at high risk for 
the development of breast cancer. The side effects are of substantial concern because of these extended 
methods of tamoxifen administration. In this study, we found that anordrin, marketed as an antifertility 
medicine in China, inhibited tamoxifen-induced endometrial epithelial cell mitosis and NAFLD in mouse 
uterus and liver as an anti-estrogenic and estrogenic agent, respectively. Additionally, compared with 
tamoxifen, anordiol, the active metabolite of anordrin, weakly bound to the ligand binding domain of 
ER-α. Anordrin did not regulate the classic estrogen nuclear pathway; thus, it did not affect the anti-
tumor activity of tamoxifen in nude mice. Taken together, these data suggested that anordrin could 
eliminate the side effects of tamoxifen without affecting its anti-tumor activity.

Tamoxifen was the first FDA-approved drug for breast cancer patients with positively expressed estrogen recep-
tors (ER)1. However, tamoxifen also induces side effects, such as uterine endometrial cancer and non-alcoholic 
fatty liver disease (NAFLD). Steatohepatitis may also develop, particularly in overweight women administered 
with tamoxifen. Importantly, for women with ER-positive (ER+) cancer, continuing tamoxifen treatment for up 
to 10 years, rather than stopping at 5 years, produces further reductions in recurrence and mortality, particularly 
after year 102. Tamoxifen was also the first FDA-approved chemopreventive agent for those deemed at high risk 
for the development of breast cancer3. Because patients had to administer tamoxifen for more than 10 years, the 
side effects were a substantial concern. Previous studies into the molecular mechanism of tamoxifen-induced side 
effects resulted in the discovery of the classic estrogen nuclear pathway and membrane-initiated estrogen sig-
nal (MIES) pathways, which are modulated by membrane-bound estrogen receptors, orphan G-protein coupled 
estrogen receptor 30 (GPER1) and ER-α –364–6. However, when investigators studied the physiological functions 
of GPER1 and ER-α –36, they found that changing the expression of GPER1 in cells also influences endogenous 
ER-α -36 expression and vice versa7, suggesting that it remains unclear whether tamoxifen modulation of ER 
activity and its side effects are regulated by GPER1 and/or ER-α -368,9. To eliminate tamoxifen-induced side effects 
and understand the physiological functions of GPER1 and ER-α -36, we screened selective estrogen receptor 
modulators, which, compared with tamoxifen, clinically exerted the opposite estrogenic activity in MIES. We 
then found that anordrin and tamoxifen may oppositely modulate MIES.
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Anordrin/anordiol was synthesized using androgens. Interestingly, anordrin/anordiol specifically binds to ER 
rather than androgen or progestin receptors (AR or PR) and does not compete with 3H-labeled corticosterone 
for binding to serum proteins10. As a specific estrogen receptor antagonist on the uterus, anordrin has been mar-
keted as an antifertility medicine under the brand name AF-53 in China since 1976. In this study, we found that 
anordrin and tamoxifen exerted opposing estrogenic effects to modulate the physiological function of MIES in 
a mouse uterus and liver. Combined administration of tamoxifen with anordrin can eliminate the side effects of 
tamoxifen without affecting its anti-tumor activity in nude mice.

Results
Anordrin inhibited tamoxifen-induced mitosis of endometrial epithelial cells in mouse 
uterus. Because tamoxifen induces the mitosis of endometrial epithelial cells (EEC), as an estrogenic agent4–6,11,  
it is considered the mechanism of tamoxifen-induced uterine endometrial cancer. Estrogen-induced mitosis of 
EEC is required for embryo implantation11. Anordrin inhibits embryo implantation to elicit its contraceptive 
effects12. These clinical indications suggest that anordrin and tamoxifen might modulate the proliferation of EEC 
in the opposite manner. We fed normal mice with drugs in food. The amount of tamoxifen and anordrin were 
determined dependent on their clinical dosages and the average amount of daily food uptake by the mice. After 
two weeks, the mice were sacrificed and their uteri were harvested. Twelve mice uterus of each group were fixed by 
paraformaldehyde. Hematoxylin and eosin (H&E) staining of paraffin-embedded uterine sections revealed that 
3 mg anordrin (ANO) per kilogram food (3 mg/kg), and 45 mg tamoxifen (TAM) per kilogram food (45 mg/kg)  
increased the thickness of the EEC (Fig. 1a and b, TAM (green bar), ANO (yellow bar)); however, mitotic EEC did 
not occur in the anordrin (ANO) group (Fig. 1a, ANO). This result suggests that anordrin caused EEC hypertro-
phy rather than mitosis. In the tamoxifen +  anordrin (TAM +  ANO) group, mice were treated with 45 mg tamox-
ifen (TAM) +  1.5–4.5 mg anordrin (ANO) per kilogram food. At the 3-mg dosage of anordrin, the thickness of 
the EEC remained similar to that in the control group (Blank) (Fig. 1a and b, TAM +  ANO (blue bar) vs. Blank 
(black bar)). These results indicated that anordrin inhibited tamoxifen-induced EEC mitosis, tamoxifen inhibited 
anordrin-induced EEC and uterine hypertrophy, and the combined administration of tamoxifen with anordrin 
restored the EEC to normal, suggesting that anordrin and tamoxifen exerted the opposite effect in the EEC of 
a mouse uterus. In addition of EEC phenotype, anordrin and tamoxifen also exerted the opposite effect in the 
modulation of mouse uterine hypertrophy (SI. Fig. 2).

Hec1A is a human uterine endometrial cancer cell (hECC), which only expresses ER-α -36 and not ER-α -6613. 
Tamoxifen stimulated Hec1A cell proliferation via MIES, as an ER-α -36 agonist13. To verify whether anordrin 
could inhibit tamoxifen-stimulated proliferation of endometrial cancer cells, Hec1A cells were treated with 
tamoxifen (TAM) or anordrin (ANO) or tamoxifen +  anordrin (TAM +  ANO) for 6 days in vitro, and then we 
counted the number of living Hec1A cells and normalized to Blank (vehicle) (Fig. 1c). The result confirmed that 
tamoxifen (TAM) stimulated Hec1A proliferation (Fig. 1c, TAM (green bar) vs blank (black bar)). Anordrin 
(ANO) exerted the opposite effect to inhibit Hec1A proliferation stimulated by tamoxifen (TAM) (Fig. 1c, 
TAM +  ANO (blue bar) vs. TAM (green bar)), suggesting that anordrin may be an ER-α -36 antagonist to inhibit 
tamoxifen-induced endometrial cancer cell proliferation in vitro.

To assess the anordrin inhibition of tamoxifen-induced EEC mitosis, as an antiestrogenic effect in a mouse 
uterus, ovariectomized mice (OVX) were treated with anordrin (3 mg/kg) and tamoxifen (45 mg/kg) via food 
uptake for 2 weeks. Twelve mice uterus of each group were fixed by paraformaldehyde. H&E sections of OVX mice 
uteri showed that anordrin (ANO) and tamoxifen (TAM) induced hypertrophy and mitosis of EEC, as estrogenic 
agents, respectively (Fig. 1d, ANO, TAM). Increased thickness of the EEC was exhibited in both the anordrin 
(ANO) and tamoxifen (TAM) groups (Fig. 1d and e, ANO (yellow bar), TAM (green bar)). Importantly, the thick-
ness of the EEC in the 45 mg tamoxifen +  3 mg anordrin group (TAM +  ANO) was decreased to the comparable 
height as in the sham group (Fig. 1e, TAM +  ANO (blue bar) vs. TAM (green bar) or ANO (yellow bar)). The 
phenotype of the EEC H&E sections in the tamoxifen +  anordrin (TAM +  ANO) group was similar to the sham 
group (Fig. 1d, TAM +  ANO, sham). These data suggested that anordrin and tamoxifen exerted the opposite est-
rogenic effect on the EEC of a mouse uterus. In addition, anordrin prevented uterine atrophy in OVX mice (SI1 
Fig. 3). Tamoxifen inhibited anordrin prevention of uterine atrophy under the same testing condition (SI1 Fig. 3), 
suggesting that anordrin and tamoxifen exerted the opposite estrogenic effect on the mouse uterus, and further 
reinforced that anordrin and tamoxifen may exert the opposite estrogenic effect on the EEC of mouse uterus.

Anordrin inhibits tamoxifen-induced NAFLD in mice liver. Tamoxifen increases the hepatic fat con-
tent by inhibiting the role of estrogen in maintaining hepatic lipid homeostasis14. Anordrin induced hypertrophic 
phenotype in mouse EEC, implying that anordrin may up-regulate metabolism as an estrogenic agent (Fig. 1d, 
ANO). Tamoxifen inhibited anordrin-induced EEC hypertrophy (Fig. 1d, TAM +  ANO vs. ANO), suggesting that 
tamoxifen and anordrin modulate metabolic effect of estrogen oppositely. We then hypothesized that anordrin 
can inhibit tamoxifen-induced NAFLD in a mouse liver. Female mice that were 7–8 weeks old were fed with drugs 
in food for 109 days. At least twelve livers were harvested from the experimental groups. Twelve pieces of mice 
livers from each group were fixed by paraformaldehyde, and paraffin sections were prepared for H&E staining. 
Additionally, 30–50-mg pieces of liver tissue were incubated in lipid extraction solution and 0.5 ml physiological 
salt solution. The amount of total cholesterol (TC) and triglycerides (TG) in the organic phase was then measured 
using TC and TG assay kits, respectively. The analysis of H&E-staining liver sections revealed that compared 
with Blank (no drug in food), there was an increase of NAFLD syndrome in the tamoxifen (TAM) group (TAM; 
fed by 45 mg tamoxifen per kilogram food (45 mg/kg)), (Fig. 2a and b, TAM (green bar) vs. Blank (black bar)). 
The NAFLD grade was significantly increased in liver cells that were close to the capillary vessels (Fig. 2c and 
d). Additionally, compared with blank, hepatic TG levels were also increased in the tamoxifen (TAM) group, 
(Fig. 2b, TAM (green bar) vs. Blank (black bar)). The opposite effect was revealed in the anordrin group (ANO 
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fed 3 mg anordrin per kilogram food (3 mg/kg)) (Fig. 2a and b, ANO (yellow bar)). Importantly, anordrin can 
reverse tamoxifen-induced NAFLD syndrome and decrease liver TG content induced by 45 mg/kg tamoxifen in 
a dose-dependent manner (Fig. 2b, TAM +  ANO group (blue bar) vs TAM (green bar) or ANO (yellow bar)). 
There were no significant differences in food uptake and hepatic TC levels among groups (SI1 Fig. 4). These data 
suggested that anordrin could inhibit tamoxifen-induced NAFLD and liver TG phenotype in vivo.

To assess the anordrin modulation of liver TG content as an estrogenic effect, we decreased estrogen pro-
duction using OVX mice. Mice were fed with drugs in food for 2 months. Following the same method as Fig. 2a, 
we observed that anordrin as well as E2 prevented TG content in the liver in a dose-dependent manner in OVX 
mice (Fig. 2e and f, ANO (yellow bar)). Compared with the tamoxifen (TAM) or anordrin (ANO) group, the liver 
TG content was significantly reversed in the tamoxifen +  anordrin group (TAM +  ANO) (Fig. 2f, TAM +  ANO 
(blue bar) vs. TAM (green bar) or ANO (yellow bar)). These data suggested that anordrin could enhance liver TG 
metabolism as an estrogenic agent.

Figure 1. Anordrin inhibited tamoxifen-induced mitosis of EECs, as an anti-estrogenic agent in mice 
uterus. (a) Paraffin-embedded H&E sections (40x magnifications) of EECs from mice uterus treated by drugs 
for two weeks. TAM or ANO: mice were treated with tamoxifen (TAM) or anordrin (ANO) alone, respectively. 
TAM +  ANO mice were treated with the combination of tamoxifen and anordrin. Blank mice were treated by 
vehicle. (b) Statistical analysis of the EEC height (μ m), as measured from H&E-stained sections a. Blue bar: 
mice were administered with tamoxifen (TAM) +  anordrin (ANO) (TAM +  ANO) at the indicated doses. 
N =  2 ×  6. **means P <  0.01. (c) Anordrin inhibited tamoxifen-induced Hec1A cell proliferation. TAM or 
ANO: Hec1A cells were treated with 4 μ M tamoxifen (TAM) or 4 μ M anordrin (ANO) alone, respectively. 
TAM +  ANO: Hec1A cells were treated with 4 μ M tamoxifen +  4 μ M anordrin. Blank, Hec1A cells were treated 
by vehicle. N =  3 ×  3; **means P <  0.01. (d) H&E staining of uterine EECs of OVX mice. (e) Statistical analysis 
of the EEC height (μ m), as measured from H&E-stained sections d. Two independent experiments were 
performed with a total of twelve mice for each dose under the same conditions; **means P <  0.01.
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Anordrin does not affect tamoxifen activity of ER+ breast cancer resistance in nude 
nice. Previously, Mehta et al. identified two estrogen-binding complexes, named 4 S and 8 S, according to their 
rate of ultracentrifugation sedimentation in the uterine cytosol of mice. Anordiol, the unesterified and active 
metabolite of anordrin, binds preferentially to the 8 S complex. In contrast, tamoxifen binds to both the 4 S and 
8 S estrogen-binding complexes10. Importantly, estrogen regulates biological functions through two methods: the 
classic estrogen nuclear pathway and membrane-initiated estrogen signal pathways (MIES)4–6. The preferential 

Figure 2. Anordrin inhibits tamoxifen-induced NAFLD as an estrogenic agent in mouse liver. (a) Paraffin-
embedded H&E sections (40x magnifications) of normal mouse liver treated by drugs for 109 days. TAM or 
ANO: mice were treated with tamoxifen or anordrin alone, respectively. TAM +  ANO mice were treated with 
the combination of tamoxifen and anordrin. Blank, no drug was added to the food. (b) Statistical analysis 
of liver triglyceride (TG) content, as in (a); N =  12; **means P <  0.01. (c) The worst NAFLD syndrome is 
shown close to the capillary vessel in the mouse liver. (d) Statistical analyzing the square of Fatty area as in 
(c); N =  2 ×  6; **means P <  0.01. (e) H&E staining liver sections of OVX mice. (f) Statistical analysis of liver 
triglyceride (TG) content, as in (e). **and ***mean P <  0.01 and P <  0.001: Two independent experiments with 
total twelve sections, for each time point, under the same conditions.
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binding of anordrin to one estrogen-binding uterine cytosolic complex suggests that anordin might only mod-
ulate one estrogenic pathway. Tamoxifen and estrogen may modulate both the classic estrogen nuclear pathway 
and MIES. We then assessed whether anordrin played a role in the classic nuclear pathway of estrogen modu-
lation. Because the ER-β  selective agonist was not as well suited as E2 and as an ER-α  selective agonist to medi-
ate uterine endometrial proliferation15, we only tested the binding affinity of anordiol to ER-α . ER-α -46 is an 
effective ligand-regulated transcription isoform of ER-α 16,17. ER-α -46 was expressed in E. coli and purified using 
glutathione beads. The binding affinity of anordiol, tamoxifen, and E2 for the ER-α -46 fusion protein was then 
compared using a 3H-E2-competition assay. The results demonstrated that 50 nM anordiol could not inhibit the 
binding of 0.5 nM 3H-E2 to 1 μ g ER-α -46; however, the same concentration of either tamoxifen or E2 blocked  
> 60% of the binding between 3H-E2 and ER-α -46 (Fig. 3a, ANO (yellow bar) vs. TAM (green bar) or E2 (red 
bar)). However, 40 nM anordiol (ANO) as well as E2 and tamoxifen including its active metabolites (4hydroxyta-
moxifen (4HTAM) and endoxifen (END)) inhibits the binding of 0.5 nM 3H-E2 to ER-α -36 transiently expressed 
in HEK293 cells (Fig. 3b, SI1 Fig. 5), suggesting that anordiol binds preferentially to ER-α -36 as well as 8 S com-
plex of uterine cytosol and then modulates MIES.

Because androgen contains a methyl group (C19) at the C10 site, instead of hydrogen at the same site of estro-
gen (E2) (Fig. 3c), androgen binds to the androgen receptor (AR) but does not bind to ER. Androgens are used 
to synthesize anordrin/anordiol. Interestingly, anordrin/anordiol specifically binds to ER rather than androgen 
or progestin receptors (AR or PR) and does not compete with 3H-labeled corticosterone for binding to serum 
proteins10. These data suggest that methyl group (C19) at the C10 site of anordrin is a crucial group, blocking 
anordiol-binding to the ligand binding domain (LBD) of ER. We then synthesized dinordiol (DIN) using estro-
gen (Fig. 3c). The binding affinity of anordiol (ANO) and dinordiol (DIN) with ER-α -46 indicated that the C19 
group of anordiol (ANO) is crucial for the binding of anordiol to ER-α  LBD (Fig. 3d, ANO (yellow bar) vs. DIN 
(brown bar)), suggesting that anordiol may not bind to ER-α  in cytosol and does not regulate the classic nuclear 
estrogen pathway.

It is known that Bcl-2 is a key member of the anti-apoptotic family proteins. Its overexpression is linked to 
many kinds of cancers in humans. The bcl2 promoter contains the estrogen response element (ERE) sequence. 
Therefore, the expression level of bcl2 mRNA in MCF-7 cells is regulated positively by E2 and inhibited by tamox-
ifen through the classic estrogen nuclear pathway18. In this study, our findings showed that the expression of Bcl-2 
protein was enhanced by culture medium containing estrogen compared with that containing charcoal-stripped 
(CS) Fetal bovine serum (FBS) (Fig. 3e, BLK (Blank]). Furthermore, treatment with 7.5 μ M tamoxifen (TAM) 
inhibited Bcl-2 expression (Normal FBS, Fig. 3e; TAM vs. BLK), whereas Bcl-2 expression was unaffected by 
treatment with 7.5 μ M anordrin (ANO) (Normal FBS, Fig. 3e; ANO vs. BLK). Importantly, neither 7.5 μ M tamox-
ifen (TAM) nor 7.5 μ M anordrin (ANO) affected Bcl-2 expression in cells cultured in medium without estrogen 
(CS FBS in phenol red free (PR-free) EMEM medium; Fig. 3e, TAM; ANO). These results further reinforced our 
conclusion that anordrin was not involved in the classic nuclear pathway of estrogen regulation and suggested 
that anordrin may not affect tamoxifen activity to inhibit the growth of ER+ breast cancer.

Anordrin does not modulate the expression of cancer gene via the classic estrogen nuclear pathway and will 
not affect the activity of tamoxifen to inhibit the growth of ER+ breast cancer. We next tested the anti-tumor 
activity of tamoxifen containing anordrin in vivo. ER+ breast cancer cells, MCF-7, were used as a xenograft model 
in female nude mice19. A suspension of 1 ×  107 cells in 100 μ L 1xDPBS with matrixgel was injected S.C. into 
mice. Tumors were grown until average tumor volume reached 0.1–0.2 cm3. Tamoxifen doses were determined 
dependent of the ref. 19, and the results are shown in Figs 1 and 2. Nude mice were then administered daily via 
intragastric injection for 3 weeks with a vehicle or 6 mg tamoxifen (TAM) per kilogram body mass, or the same 
amount of tamoxifen (TAM) +  0.4 mg anordrin (ANO). Compared with the vehicle (Blank), tamoxifen (TAM) 
significantly inhibited MCF-7 xenograft (Fig. 3f and g, Tam (green bar) vs Blank (black bar)). MCF-7 xenograft in 
the tamoxifen +  anordrin (TAM +  ANO) group exhibited similar mass to those mice in the TAM group (Fig. 3g, 
TAM (green bar) vs. TAM +  ANO (blue bar)), suggesting that anordrin did not affect the tamoxifen activity of 
ER+ breast cancer resistance in vivo.

Discussion
It is known that embryo implantation requires E2-induced EEC proliferation via ERs. The ER-β  selective ago-
nist and G1, a GPER1 selective agonist, were not as well suited as the E2 and ER-α  selective agonist to mediate 
estrogenic effect in mice uterus15,20. Neither tamoxifen nor E2 induced EEC proliferation in ER-α KO mice11. 
GPER1KO mice revealed comparable fertility to wild-type mice20, suggesting that the E2 regulation of EEC pro-
liferation requires ER-α  but not ER-β  and GPER1.

Anordrin was marketed as a contraceptive medicine because it is a specific ER antagonist on uterus9,12, indi-
cating that anordrin is an ER-α  antagonist. Three ER-α  variants, ER-α –66, -46 and -36, were reported to regulate 
classic estrogen nuclear pathway and MIES5–7,17,21. ER-α –66 and -46 variants are an effective ligand-regulated 
transcription isoforms of ER-α 16,17, which regulate RNA transcription via classic estrogen nuclear pathway9. 
The bcl2 promoter contains the ERE sequence. The expression level of bcl2 mRNA in MCF-7 cells is regulated 
positively by E2 and inhibited by tamoxifen through the classic estrogen nuclear pathway18. The current results 
demonstrated that anordrin bound to ER-α 46 weakly compared with E2 and tamoxifen, and that E2 enhanced 
Bcl-2 expression; tamoxifem inhibited Bcl-2 expression; anordrin did not regulate Bcl-2 expression under the 
same condition in MCF-7 cells. These results indicated that tamoxifen is an antagonist of the classic estrogen 
nuclear pathway to exert its anti-ER-α  positive tumor effect, and that anordrin did not regulate the classic estro-
gen nuclear pathway. Therefore, anordrin did not affect the antitumor activity of tamoxifen.

ER-α –36 is devoid of both the AF-1 and AF-2 transactivation domains of ER-α –66 and the E2-modulated 
activity of intrinsic RNA transcription8,21; it is found as predominantly a plasma membrane-associated ER-α 
(mER–α )variant to transduce E2-mediated MIES5–8,21. Hec1A is a human uterine endometrial cancer cells 
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Figure 3. Anordrin (ANO) does not affect the anti-tumor activity of tamoxifen. (a) Upper panel: The percent 
of 3H-E2 binds to GST-ER-α -46 competed by E2 or TAM (tamoxifen) or ANO (anordiol) to be normalized with 
3H-E2 only (blank), after subtracting the DPM of3 H-E2 from equal molar amount of GST protein on beads 
N =  3 ×  3; ***means P <  0.001; Lower panel: SDS-PAGE followed by Coomassie Blue R250 staining to show the 
GST and GST-ER-α -46 fusion protein after purification using glutathione beads. (b) Upper panel: The percent 
of 3H-E2 binds to ER-α -36 competed by ANO (anordiol) to be normalized with 3H-E2 only (blank), after 
subtracting the DPM of 3H-E2 from an equal amount of total cellular protein; N =  3 ×  3; ***means P <  0.001; 
Lower panel: SDS-PAGE followed by western blotting to show the ER-α -36 expression by vector and ER-α -36 
plasmid after 24 hours of transient transfection. (c) The molecular structure of androgen vs. E2 and Anordiol 
(ANO) vs. Dinordiol (DIN). (d) Upper panel: The percent of 3H-E2 binds to ER-α -46 competed by anordiol 
(ANO) and dinordiol (DIN) to be normalized with 3H-E2 only (blank), after subtracting the DPM of 3H-E2 
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(hECC), which positively expressed ER-α –36 but not ER-α –6613. Tamoxifen stimulated Hec1A proliferation 
as an ER-α –36 agonist13; it clinically induced human endometrial cancer and mice EEC mitosis as estrogenic 
agent11; and that tamoxifen as well as E2 induced EEC mitosis in a manner that was dependent on ER-α  but 
independent of the classic ER-α  nuclear pathway11. These data suggested that tamoxifen is an agonist of mER-α  
and/or ER-α -36. The current results demonstrated that anordrin inhibited tamoxifen-induced EEC mito-
sis and hECC proliferation, suggesting that anordrin functions as an antagonist of mER-α  and/or ER-α -36 to 
exert its anti-estrogenic and antifertility effects in uterus. Because our data showed that tamoxifen and anordrin 
exerted the opposite effects in the uterine EEC mitosis and human ECC proliferation, anordrin can eliminated 
tamoxifen-induced uterine endometrial cancer.

In addition, current data revealed that anordrin stimulated the hypertrophic phenotype in mice uterus EEC 
and inhibited TG accumulation in the liver of OVX mice as an estrogenic agent, suggesting that anordrin is an est-
rogenic agent of MIES to modulate TG metabolite in liver. The previous study suggested that tamoxifen increases 
the hepatic fat content by inhibiting the role of estrogen in maintaining hepatic lipid homeostasis14. Current data 
revealed that anordrin inhibited tamoxifen-induced TG accumulation in a mouse liver, suggesting that anordrin 
can eliminate tamoxifen-induced NAFLD. Taken all together, we conclude that anordrin can eliminate the side 
effects of tamoxifen without affecting its activity of breast cancer resistance. This conclusion will be further con-
firmed in clinical trial study.

Methods
Materials. E2 and androgen were purchased from the Okahata Trading Co., Ltd. (Shanghai, China). The 
detailed method for anordrin and dinordil synthesis was previously reported [Journal of Sichuan University 
(Medical Science Edition), 1976, 109–114]. All compounds were confirmed using 1H and 13C NMR spectra. 
Jian Wang generously provided the anordrin standard. The purity of the synthesized anordrin was verified using 
Agilent 1100 HPLC with an Anthane C18 column. Briefly, anordrin was solved in 100% methanol at a concentra-
tion of 0.1 mg/l, and 10 μ l of anordrin solution was loaded onto the column at 30 °C. Anordrin was then eluted at 
~88% [acetonitrile] using a graded elution program with a water/acetonitrile mixture (1:1) and 100% acetonitrile 
with a flow rate of 1 ml/min. Anordrin that was 98% pure was detected at an absorption wavelength of 208 nm.

Fetal bovine serum (FBS) was purchased from GIBCO (10099141; Made in Australia). E2, tamoxifen, and iso-
flavone (MPG USP grade) were obtained from Okahata Trading Co., Ltd. (Shanghai, China). All compounds were 
solved in DMSO before use. The mouse chow, AIN-93G, was purchased from Trophic Animal Feed High-tech 
Co., Ltd, Nantong, China. H&E sections were obtained from BK Animal Model, Inc. (Shanghai China). Chemicals 
including 4-hydroxytamoxifen and endoxifen were purchased from Sigma or Aladdin, unless otherwise stated. 
The TG (Cat#E1013) and TC (Cat#E1015) assay kits were purchased from Apply Gen Technologies, Inc. and 
Nanjing Jiancheng Bioengineering Institute, respectively. Bcl-2 (Cat#51-1513GR) antibody was purchased from 
BD Biosciences (USA). ER-α  antibody (Cat#8644) and actin (Cat#4970 s) were purchased from Cell Signaling 
Technology (Danvers, MA USA). 3H-E2 and restriction enzymes were purchased from PerkinElmer and Takara 
Bio Inc, respectively.

Plasmid construction, and protein expression, purification, and characterization using LC-MS/
MS. ER-α -46 and ER-α -36 were cloned into pET-28 and pGEX-6P-1 using EcoRI and XhoI sites. Production 
of the His- or GST-ER fusion proteins was induced using 0.1 μ M IPTG, and the proteins were expressed in E. coli 
at 25 °C for 3 hours. Bacteria were then harvested, and the GST fusion proteins were purified according to the 
manufacturer’s instructions (GE). The purified proteins were eluted from GSH-beads using 1 ×  sample buffer at 
100 °C for 5 min, and the supernatants were separated on 10% gels using SDS-PAGE. The gels were stained with 
Coomassie blue-R250, and the amount of GST-ER-α -46 was determined using NIH Image J software using GST 
as the standard. Subsequently, the bands corresponding to GST-ER-α -46 were cleaved from the gel and charac-
terized using LC-MS/MS. Human ER-α  cDNAs were purchased from YR gene (China, Changsha) and subcloned 
into pEGFP-N1 vectors (Clontech). The PCR primers were designed from the human ER-α -36 cDNA sequence 
in NCBI.

Cell culture, transfection, the induction of an MCF-7 stable cell line, and Hec1A cell prolifer-
ation assay. MCF-7, Hec1A and HEK-293 cells were grown according to the protocols recommended by 
ATCC. Cell transfection was performed using Lipofectamine 2000 (Invitrogen) according to the manufactur-
er’s instructions. The expression of GFP fusion protein was confirmed using western blotting. The proliferation 
assay of Hec1A cells were performed by counting the number of living Hec1A cell after inoculation for 6 days. 
Briefly, 5 ×  103 Hec1A cells containing drugs in 0.5 ml medium were inoculated into 24 well plates. Medium was 

from an equal amount of total bacterial protein. N =  3 ×  3; **means P <  0.01; Lower panel: SDS-PAGE followed 
by western blotting to show ER-α -46 expression in crude E. coli lysate. (e) The expression of Bcl-2 protein in 
MCF-7 cells, detected by western blotting, is regulated by estrogen and tamoxifen after 48 h. The upper gel shows 
the expression of Bcl-2 in MCF-7 cells treated with 7.5 μ M tamoxifen (TAM) or 7.5 μ M anordrin (ANO), or 
DMSO (blank, BLK), as assessed by western blotting using anti-Bcl-2 antibodies (PR free: phonel red free; CS: 
charcoal stripped; FBS: fetal bovine serum). The lower gel shows western blotting for actin to confirm equal 
protein loading. (f) The xenograft of MCF-7 cells in nude mice treated by vehicle (Blank), tamoxifen (TAM) and 
tamoxifen +  anordrin (TAM +  ANO). (g) Statistical analysis of the MCF-7 xenograft mass from nude mice, as 
in (f). Two independent experiments were performed. More than nine tumor mass was measured for statistical 
analysis in each group under the same conditions. *means P <  0.05.
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exchanged once at the third day from initiation day. In the sixth day, Hec1A cells were trypsined up and stained 
by trypan blue (Cat#T8154, Sigma). Total living cells were counted using cell counter.

The preparation of rabbit polyclonal anti-ER-α-36 antibody. The rabbit polyclonal anti-ER-α -36 
antibody was prepared by custom service from GL Biochem Ltd. (Shanghai, China). Exactly following ref. 21, the 
C-terminal peptide of ER-α -36 was synthesized and coupled to hemocyanin as an antigen, and then anti-ER-α -36 
antibody was raised.

Drug-ER-α binding affinity and 3H-E2-drug competition assays. Assays were performed as refs 7 
and 13 with brief modification. Purified GST-ER-α -46 was coupled on glutathione beads in TE buffer (50 mM 
Tris [pH 8.0], 10 mM EDTA, 20 mM β -Mercaptoethanol. Drugs and 3H-E2 were added to 1 ml protein solution, 
and incubated at 4 °C for 2 hours. Beads were washed twice using TE buffer and transferred to scintillation vials. 
The amount of bound 3H-E2 was then measured using a GM meter.

ER-α 36 was transiently expressed in HEK293 cells using ER-α 36 cDNA plasmid. After 24 h of transfec-
tion, cells were suspended in TE-glycerol buffer (10% glycerol, 50 mM Tris [pH 8.0], 10 mM EDTA, 20 mM 
β -Mercaptoethanol. After centrifugation at 500 g for 3 min, drugs and 3H-E2 were added to 1 ml supernatant 
(5 mg/ml), and incubated at 4 °C for 2 h. Supernatant was centrifuged at 30 krpm for 90 min. The pellet was trans-
ferred to scintillation vial to count the amount of bound 3H-E2.

His tagged ER-α –46 was expressed in E. coli and lysed in 1xPBS containing 10 mM EDTA, 20 mM 
β -Mercaptoethanol. Then, 1 ml crude lysate containing 10 mg total protein was mixed with drugs and 3H-E2 
for 2 h. Next, 30 mg Norit A [Immunometrics LTD, London], suspended in 100 μ l 0.3% Dextran-0.1 M sodium 
phosphate solution [Immunometrics LTD, London], was added into the reaction solution on ice for 15 min. After 
centrifugation at 4 °C for 12 min, 500 μ l supernatant was transferred to scintillation vials to count the amount of 
bound 3H-E2. The bound 3H-E2 was calculated, after subtracting the DPM of 3H-E2 from an equal amount of 
total protein which bacterial was transformation using vector.

Extraction of cell lysates, measuring the total protein concentration, and western blot-
ting. Cells were harvested and lysed in RIPA buffer or 1 ×  DPBS containing 1% Triton X-100 and protease 
inhibitor cocktail (Sigma). The total protein concentration was then measured using a Bio-Rad protein staining 
dye. Western blotting was performed according to standard protocols using nitrocellulose membranes (Millipore) 
with Bio-Rad semidry transfer.

Animals. ICR and nude mice strains were purchased from the Shanghai BK Animal Model Inc. Ltd., China. 
The animal experimental protocol was approved by Animal Ethics Committee of the Shanghai Institute of 
Planned Parenthood Research (SIPPR Regulation#2015–13), in accordance with the 588th regulation of animal 
experiments issued by Chinese Government in 2011. All animal experiments were performed under audit of the 
SIPPR Animal Ethics Committee.

Construction of the OVX mice model and drug administration. The ovaries of 7- to 8-week-old 
ICR mice (BK Animal Model, Inc. Shanghai) were excised surgically. After 3 days or 2 months, the drugs were 
administered daily using gastric tract injections or mixed with food and fed to mice. The dosage of 45 mg tamox-
ifen per kilogram food, or 0.5, 1, 1.5, 2, 3, 4.5, 9 mg anordrin per kilogram food, or mixture of the two drugs was 
administered to mice. The amount of drugs in food was designed dependent of the uptake of food by mice daily. 
The daily drug uptake in food is similar to the drug uptake with daily gastric tract injections. The mice were fed 
with AIN-93G (Blank) or AIN-93G mixed with drugs for 1, 2, 3, 4, 6, 9, 12, and 15 weeks and then sacrificed. The 
tissues were either frozen at − 80 °C or paraffin-embedded for sectioning.

Generating xenograft MCF-7 tumor in female nude mice. Five-week-old mice were administered 
twice per week with 1 mg E2 per kg body mass. After one week E2 administration, a suspension of 1 ×  107 MCF-7 
cells in 100 μ L 1xDPBS with 100 μ l matrixgel was injected S.C. into nude female mice. Tumors were grown until 
average tumor volume reached 0.1–0.2 cm3. Nude mice were administered daily for 3 weeks with vehicle or 6 mg 
tamoxifen per kilogram body mass, or the same amount of tamoxifen plus 0.4 mg anordrin. Mice were sacrificed. 
Tumor mass was measured.

Preparation and analysis of paraffin-embedded sections and H&E staining. Mouse tissues 
were harvested and fixed using 4% formaldehyde in 1 ×  DPBS (Solar Bioscience & Technology, Beijing, China). 
Paraffin sections were prepared and H&E staining was then performed according to the standard protocols at 
the GLP laboratory of BK Animal Model, Inc. The paraffin was removed from liver sections by washing with 
xylene three times, and the xylene was then removed using 100%, 95%, and 75% alcohol, sequentially. For antigen 
preparation, the sections were incubated with 0.01 M sodium citrate buffer (pH 6.0) at 95 °C for 2 min and washed 
using 1 ×  PBS three times for 5 min each. The sections were then incubated in 1 ×  PBS containing 3% H2O2 for 
5–10 min at room temperature and washed using 1 ×  PBS for 5 min. The fatty area of liver H&E sections was 
assayed using NIH image J software.

Measuring TC and TG in the liver and serum of mice. Mouse liver samples (30–50 mg) were harvested 
and homogenized in 1 ml of a chloroform:methanol (2:1) mixture and then extracted using 0.5 ml ddH2O. The 
organic phase was transferred to new tubes and left to dry in the air, and the TC and TG content was measured 
using a kit, according to the manufacturer’s instructions. The error was eliminated using an internal standard 
control.
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Statistical analysis. At least two repeats were performed for each drug dosage include vehicle (Blank) in all 
experiments. More than nine mice tissues or tumors were used for statistical analysis in all animal experiments. All 
data are presented as the mean ±  SD. Asterisks indicate significant differences, as calculated using two-tailed Student’s 
t-test. A value of P <  0.05 was defined as significant. At least three repeats were used for all statistical analyses.
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