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Digital-analog quantum simulation 
of generalized Dicke models with 
superconducting circuits
Lucas Lamata

We propose a digital-analog quantum simulation of generalized Dicke models with superconducting 
circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-
matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a 
bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient 
quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, 
by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through 
digital steps. Moreover, just a single global analog block would be needed during the whole protocol in 
most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, 
a large number of digital steps may be attained with this approach, providing a reduced digital error. 
Additionally, the number of gates per digital step does not grow with the number of qubits, rendering 
the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation 
of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting 
circuits.

The analysis of light-matter interactions has raised much interest in the past few years. Beginning with the sem-
inal works by Rabi1, Dicke2, Jaynes and Cummings3, or Tavis and Cummings4, current trends5,6 aim at analyz-
ing exotic regimes of light-matter coupling previously inaccesible to experimentation, including the ultrastrong 
coupling7–9 and the deep-strong coupling10 regimes. While these scenarios are not achievable in standard atomic 
systems, the emergence of novel quantum technologies including superconducting circuits11 and semiconductor 
polaritons12 has recently enabled its exploration. Moreover, the field of quantum simulations13–25 allows one to 
engineer light-matter interactions with a higher degree of controllability, and investigate these exotic coupling 
regions with enhanced accuracy and tunability. As some examples, an analog quantum simulation of the quan-
tum Rabi model in all parameter regimes has been proposed in trapped ions26 and cold atoms27. Additionally, a 
digital-analog version of the same model has been put forward in superconducting circuits28 with a preliminary 
analysis of Dicke physics, having been realized recently in the lab in the quantum Rabi case29. The digital-analog 
approach to quantum simulations (DAQS) promises to advance on the way to scalability, via the combination 
of large analog blocks with flexible digital steps. Further proposals for DAQS involve fermions30,31 and spins32 
with trapped ions, fermion scattering with superconducting circuits33 and ions34, quantum chemistry with circuit 
quantum electrodynamics (QED)35, and lattice gauge theories with cold atoms36.

The Dicke model2 is one of the prototypical many-body models of light-matter coupling. It describes the inter-
action between a set of N two-level atoms and a quantized bosonic mode of the electromagnetic field. In the clas-
sical spin limit, where N goes to infinity, or the classical oscillator limit, where the ratio of the atomic transition 
frequency to the bosonic field frequency approaches infinity, the Dicke model is known to present a superradiant 
phase transition, for a certain value of the light-matter coupling37. In many situations, a mean-field treatment of 
the dynamics suffices to capture the relevant physics. However, and given the recent interest in exploring the dif-
ferent regimes of light-matter coupling, a full-fledged quantum simulation of the Dicke model in all its parameter 
regimes, as well as with a variety of interactions involving inhomogeneities, biases, and time-dependent cou-
plings, would be desirable. In this sense, a first proof-of-principle demonstration of Dicke superradiance with two 
superconducting qubits in the weak coupling regime has been recently attained38, and a pioneering experiment of 
the Dicke phase transition with a superfluid gas was performed39.
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Here we propose the digital-analog quantum simulation of generalized Dicke models with superconduct-
ing circuits, which is a natural extension of ref. 28. Besides estimating in detail the error in a previous scheme 
for the Dicke model with a DAQS28, we propose a set of novel scenarios. These include the quantum simula-
tion of Fermi-Bose condensates encoded onto broadband Dicke models40, biased Dicke models41,42, as well as 
periodically-pulsed Dicke models43,44. After introducing the expressions for the respective quantum simulation 
dynamics, we obtain bounds and estimate the digital error analytically and numerically to validate the feasibility 
of the protocols for N transmon qubits45,46 coupled with a microwave bosonic mode, in a variety of parameter 
regions, from the weak coupling to the ultrastrong and deep-strong coupling regimes. This DAQS of the Dicke 
model and its generalizations are free from raised drawbacks presented by the square of the electromagnetic 
vector potential, A2, in atomic systems or ab initio implementations of the Dicke model in superconducting cir-
cuits47,48. There is evidence that in these latter cases the superradiant phase transition will be absent, while with 
a DAQS the A2 term effect may be in principle safely neglected. The digital-analog approach to quantum simula-
tions may enable the study of mesoscopic many-body quantum systems in the near future, allowing us to progress 
towards the aimed-for quantum supremacy.

Results
The Dicke model. We consider a scenario with N qubits coupled with a bosonic mode. This can be 
implemented with N transmons45 coupled to the electromagnetic field of a transmission line resonator. The 
Hamiltonian for the Dicke model is given by (ℏ =  1),

∑ ∑
ω

σ ω λ σ= + + +
= =

† †H a a
N

a a
2

( ),
(1)D

i

N D

z
i D

D

i

N

x
i

1

0

1

where ω D
0 (ωD) is the frequency of the qubits(bosonic mode), λD is the normalized coupling, σk

i, k =  x, z are Pauli 
operators, and a is the bosonic-mode annihilation operator.

The efficient DAQS of the Dicke model was schematized, without a detailed error analysis, by Mezzacapo 
et al.28, via digitization of a combination of collective Tavis-Cummings interactions and collective single-qubit 
drivings, which generate anti-Tavis-Cummings interactions. In order to implement the Dicke model and all its 
coupling regimes, one will first begin with the circuit QED Hamiltonian, in the strong-coupling regime, under 
rotating-wave approximation11,
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where ω0(ω) is the frequency of the transmons(transmission-line resonator), and g is the transmon-resonator 
coupling strength. We now move onto an interaction picture with respect to the free energy part σ δ∑ +δ †a ai z

i
2

, 
which will produce the dynamics
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One will now perform a digitization of the dynamics, combining the previous collective Tavis-Cummings interac-
tion with collective single-qubit rotations, changing the previous Hamiltonian onto an anti-Tavis-Cummings one,
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where the qubit detunings ῶ0 −  δ are now different to the previous case in order not to cancel the free energy part. 
The new frequency ῶ0 may take arbitrary values, while the simulating Dicke qubit frequency is related to the dif-
ference of ω0 and ῶ0 via ω ω ω= −



D
0 0 0.

The way to combine both Hamiltonians, Tavis-Cummings and anti-Tavis-Cummings ones, together with the 
free energy terms, to obtain the Dicke model, is to employ the Lie-Trotter-Suzuki formula14,49, which in its lowest 
order and for a Hamiltonian composed of two parts, H =  H1 +  H2, corresponds to

+− − −
e e e O t n( ) ( / ), (5)iHt iH t n iH t n n/ / 21 2

where the error O(t2/n) depends on the commutator [H1,H2] and decreases with the number of Trotter steps, n. In 
this approach, as already pointed out, ω ω ω= −



D
0 0 0, the simulating Dicke bosonic mode frequency corresponds 

to ωD =  2(ω −  δ), and the simulating Dicke coupling is λ = N gD . Below we include a detailed analysis of the 
contribution of the leading term to the digital error. We also include an analysis for the first time of the feasibility 
of the DAQS of the Dicke model with superconducting circuits, which was not carried out when the protocol was 
first introduced in ref. 28. We obtain estimations of digital errors, Trotter steps, and gates, and compare them with 
state-of-the-art experiments of superconducting circuits with optimal coherence times.

Variants of the Dicke model can be considered, and will be analyzed below for the sake of versatile DAQS of 
generalized Dicke models. For example, one may have a finite qubit bandwidth, with different ω i

0 frequency for 
each qubit. This situation will give rise to the study of Fermi-Bose condensates40. One may also have a further 

σ∑ ∆=i
N

x
i

1  bias term, which will produce biased Dicke models41. And finally, one may have a time-dependent λ(t) 
coupling, related to periodically-pulsed Dicke models43. All these situations are feasible to implement via 
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digital-analog techniques in a setup composed of N superconducting qubits coupled to a microwave resonator. 
Moreover, the flexibility of these techniques will allow one to explore all parameter regimes of the Dicke model 
and its generalizations, as well as getting rid of the detrimental effect of A2 terms that may appear in direct imple-
mentations of the Dicke model in ultrastrong coupling circuit QED, which are not quantum simulations47,48. In 
the context of DAQS, the A2 ∝  (a +  a†)2 term will contain a renormalization of the mode frequency, which can be 
absorbed in ω, and off-resonant terms, a2, (a†)2, which will rotate fast in the strong-coupling regime here consid-
ered, and can be safely neglected. We point out that all the regimes of the Dicke model are here achieved via 
suitable transformation into an interaction picture, which cancels most of the ω i

0 and ω frequencies, and permits 
to tune their remaining values through appropriate qubit detunings. Therefore, in principle the A2 term should 
not be an issue with a DAQS employing superconducting circuits.

We plot in Fig. 1 the circuit representation of a single Trotter step of the digital-analog approach to the quan-
tum simulation of the Dicke model introduced in ref. 28. The gate decomposition is based on iterated collec-
tive Tavis-Cummings dynamics, with two different alternative qubit detunings, interspersed with collective 
single-qubit rotations with respect to the x axis. We point out that the number of gates per Trotter step does not 
grow with N, although each collective gate acts on all the N qubits at the same time.

Fermi-Bose condensate. The Hamiltonian for a Fermi-Bose condensate is given by ref. 40.

∑ ∑ε ω= + + +
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where εi are the free energies of the fermionic modes, ω is the free energy of the bosonic mode, while ciσ(a) 
are annihilation fermionic(bosonic) operators, being σ =  ↑ , ↓  the fermionic spin. The dynamics given by this 
Hamiltonian can be retrieved with a classical computation in the mean-field approximation, when the number 
of bosonic excitations is large. However, here we focus in the exact behaviour, including all coupling regimes and 
valid for a wide range of bosonic excitations.

The Fermi-Bose condensate model of Eq. (6) can be mapped onto a generalized Dicke model40, where the 
qubit frequencies ω i

0 are inhomogeneous,
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being σ ≡ ∑ −σ σ σ
†c c Iz

i
i i , σ ≡− ↓ ↑c ci

i i , and σ ≡+ ↑ ↓
† †c ci
i i  Pauli operators. The mapping is exact in the unoccupied/

double occupied subspace of levels εi. The single-excitation subspace in each mode is decoupled from this dynam-
ics via Eq. (6). The analogy is complete with ε ω= /2i

i
0  and λ=g N/ . Eq. (7) is akin to a finite-bandwidth 

Figure 1. Digital-analog quantum simulation of the Dicke model. We depict the circuit representation of a 
single Trotter step of the digital-analog approach to the quantum simulation of the Dicke model introduced in 
ref. 28. The gate decomposition is based on iterated collective Tavis-Cummings dynamics, with two different 
alternative qubit detunings, interspersed with collective single-qubit rotations with respect to the x axis. 
Interacting evolutions are depicted with red boxes, while single-qubit gates are plotted with orange boxes.
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Tavis-Cummings model, which is the limit of the Dicke model in the coupling regime where λ ω ω , i
0. In this 

limit, the rotating-wave approximation holds, and the model in the zero-bandwidth case is analytically solvable.
The previous dynamics in Eq. (7) can be implemented with a purely analog quantum simulator using N trans-

mon qubits45 with different detunings which are homogeneously coupled with the microwave electromagnetic 
field of a transmission line resonator. A variety of ranges for ω i

0, ω, and λ may be achieved via changing the detun-
ing of the qubits and moving to an interaction picture with respect to part of the free energies, σ δ∑ +δ †a ai z

i
2

, 
which would leave as the new frame Hamiltonian the following,
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This can be straightforwardly implemented with current circuit QED technology11.
On the other hand, more exotic Fermi-Bose Hamiltonians, of the form

∑ ∑ε ω= + + + +
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correspond to the full-fledged generalized, broadband Dicke model without rotating-wave approximation, and 
can be implemented with a broadband modification of the introduced digital-analog protocol for the Dicke 
model, by modifying the qubit detunings to have different ω i

0 frequency for each qubit.
We plot in Fig. 2a the circuit representation of the fully analog approach to the quantum simulation of the 

Fermi-Bose condensate described in ref. 40. The single Hamiltonian gives the full dynamics with no Trotterization. 
It is based on a Tavis-Cummings dynamics with inhomogeneous qubit detunings in a rotating frame. We depict 
in Fig. 2b how a variant of the previous Fermi-Bose condensate with a modification of the pairing term can be 
obtained via a digital-analog implementation of a generalized Dicke model with inhomogeneous qubit detunings. 
The gate decomposition represents a single Trotter step involving iterated collective Tavis-Cummings dynamics, 
with two different alternative qubit detunings, interspersed with collective single-qubit rotations with respect to 
the x axis.

Figure 2. Digital-analog quantum simulation of a Fermi-Bose condensate via Dicke models. (a) We depict 
the circuit representation of the fully analog approach to the quantum simulation of a Fermi-Bose condensate. 
The single Hamiltonian gives the full dynamics with no Trotterization. It is based on a Tavis-Cummings 
dynamics with inhomogeneous qubit detunings in a rotating frame. (b) A variant of the previous Fermi-Bose 
condensate with a modification of the pairing term can be obtained via a digital-analog implementation of 
a generalized Dicke model with inhomogeneous qubit detunings. The gate decomposition denotes a single 
Trotter step and is based on iterated collective Tavis-Cummings dynamics, with two different alternative qubit 
detunings, interspersed with collective single-qubit rotations with respect to the x axis. Interacting evolutions 
are depicted with red boxes, while single-qubit gates are plotted with orange boxes.
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Biased Dicke model. A further variant of the Dicke model41 includes a bias term in the qubit free part, 
σ∑ ∆=i

N
x
i

1 , which sometimes appears in direct implementations of ultrastrong-coupling dynamics in supercon-
ducting circuits. Accordingly, the total Hamiltonian of this generalized Dicke model takes now the form,
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where Δ  is the bias frequency. This bias term is sometimes detrimental for the appearance of the superradiance 
phase transition, such that it is interesting to consider a DAQS that includes it to benchmark related physical 
behaviour. In order to implement this term and all the coupling regimes of this generalized Dicke model, one will 
first perform the Trotter step for the protocol of the Dicke model exposed above, and later add to it the necessary 
gates for obtaining the bias term, which may be implemented in different ways. A possibility will come from addi-
tional digitization, via considering tunable-coupling qubits50–52 to cancel the interaction term, and y-rotation via 
collective microwave driving of the free energies of the qubits, to produce the σx

i terms, as follows,
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This collective single-qubit rotation can be done straightforwardly via microwave pulses with auxiliary resonators 
addressing the transmon qubits.

We plot in Fig. 3 the circuit representation of a single Trotter step of the digital-analog approach to the quan-
tum simulation of the biased Dicke model described in ref. 41. This gate decomposition consists of iterated col-
lective Tavis-Cummings dynamics, with two different alternative qubit detunings, interspersed with collective 

Figure 3. Digital-analog quantum simulation of a biased Dicke model. We depict the circuit representation 
of a single Trotter step of the digital-analog approach to the quantum simulation of a biased Dicke model. The 
gate decomposition is based on iterated collective Tavis-Cummings dynamics, with two different alternative 
qubit detunings, interspersed with collective single-qubit rotations with respect to the x axis, and a later 
evolution without qubit-resonator coupling, which rotates the qubits with collective single-qubit Y rotations 
onto the x axis. Here the frequency ῶ0 of the simulating system is equal to 2Δ  in the simulated model. 
Interacting evolutions are depicted with red boxes, while single-qubit gates and dynamics are plotted with 
orange boxes.
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single-qubit rotations with respect to the x axis, and a later evolution without qubit-resonator coupling, which 
rotates the qubits with collective single-qubit Y rotations onto the x axis.

Pulsed Dicke model. Finally, the Hamiltonian for the periodically pulsed Dicke model43 is given by,
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where the dynamics now includes a kicked interaction term, with λ λ λ δ π= + ∑ −=
∞t t T k( ) ( / 2 )k0 1 1 , for λ0, λ1 

and T constant parameters.
The dynamics of this periodically pulsed Dicke model can be analyzed with Floquet theory and includes a shift 

in the quantum critical point, as well as the appearance of sideband quantum phase transitions and novel phases43.
The digital-analog approach to quantum simulation is very appropriate for this kind of scenario. One may 

straightforwardly implement this generalized dynamics via tunable-coupling transmon qubits50–52, considering 
two values of the couplings, λ N/0  and λ λ α+ N( )/0 1 , where we approximate the Dirac delta pulses by square 
pulses of height α and width τ, which in the limit α →  ∞ , τ →  0, ατ =  1, will recover the delta pulses. We point 
out that this limit does not increase the digital error given that the quantity that enters into the commutator of the 
different terms, contributing to the error, depends on the product ατ =  1, which does not explode as α grows. 
Moreover, by fast switching of the coupling via external magnetic fluxes, as well as fast single-qubit rotations, a 
large amount of digital steps may be produced, reducing the digital error. Additionally, the same physics as for the 
kicked Delta pulses is recovered with square pulses under certain limits43, enabling the DAQS.

The protocol for this case will begin with the circuit QED Hamiltonian, in the same interaction picture as in 
previous cases,
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where g(t) will be a bimodal function taking values λ=g N/0 0 , and λ λ α= +g N( )/1 0 1 , and where the value 
of g(t) can be tuned via the structure of the tunable-coupling transmon qubit, with the application of external 
magnetic-flux drivings.

The protocol will proceed similarly as in the purely Dicke case, except that now, inside a Trotter step, instead 
of a single-coupling Tavis-Cummings and anti-Tavis-Cummings dynamics, we will have two different Dicke 
models subsequently implemented, each of them with each of the g0,1 couplings, which will be performed each 
with a pair of Tavis-Cummings and anti-Tavis-Cummings interactions. In the limit of large number of Trotter 
steps, n 1, the dynamics of Eq. (12) will be recovered.

We plot in Fig. 4 the circuit representation of a single Trotter step of the digital-analog approach to the quan-
tum simulation of the periodically-pulsed Dicke model described in ref. 43. This gate decomposition relies on 
two iterated collective Tavis-Cummings dynamics with different couplings, g0, g1, each of them with two different 
alternative qubit detunings, interspersed with collective single-qubit rotations with respect to the x axis.

Estimation of the digital error. The lowest order contribution to the digital error is given by the 
expression14
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In this section we estimate the contribution to the error produced by the leading term in digital-analog imple-

mentations of the Dicke model and its generalizations. Therefore, we compute the different commutators of the 
various parts involved, namely, in the case of the Dicke model,
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where ω k
i

0, , k =  1, 2 are the effective qubit frequencies which appear in the interaction picture, and the effective 
mode frequency ῶ is also assumed to be computed in the interaction picture.

One has then that
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For a sizable dynamics, we may assume that ω ω ��g tmax { , , } 1k
i

0, , and give a bound on the leading contribu-
tion to the error via the Cauchy-Schwarz inequality,

ε + + − +† †H H N a a N a a N n( , ) [4 ( ) ( ) ]/2 , (21)1 2
2 2 2

where we consider the supremum norm over the involved states in the dynamics, for which ||σk|| =  1, with  
k =  x, y, z. Here, in order to compute the norm of the unbounded operators a and a†, we consider them to be 

Figure 4. Digital-analog quantum simulation of a pulsed Dicke model. We depict the circuit representation 
of a single Trotter step of the digital-analog approach to the quantum simulation of a periodically-pulsed Dicke 
model. The gate decomposition is based on two iterated collective Tavis-Cummings dynamics with different 
couplings, g0, g1, each of them with two different alternative qubit detunings, interspersed with collective single-
qubit rotations with respect to the x axis. Interacting evolutions are depicted with red boxes, while single-qubit 
gates are plotted with orange boxes.
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restricted to a finite-dimensional domain Hilbert space, such that this set will include all the appearing states in 
the considered evolution.

Accordingly, and assuming that the number of bosonic excitations remains bounded during the evolution, the 
scaling of the leading error contribution in the number of qubits N of the implementation is at most quadratic, as 
one would expect. We point out that the tail of bosonic excitations can be long, i.e., populating many Fock states, 
but with a low probability, such that classically the computation will be hard, having to truncate at a high dimen-
sion, but for a DAQS the norm of the domain-restricted a operators needs not be large for this to happen. For 
example, this will take place for a small average value and a large variance of a†a. Moreover, as pointed out above, 
each digital step in the digital-analog implementation of the Dicke model is composed of two Tavis-Cummings 
interactions and two collective single-qubit rotations. Therefore, the number of gates does not grow with N, which 
is a nice feature of this implementation. Below we include numerical simulations benchmarking the DAQS of 
the Dicke model and the pulsed Dicke model with superconducting circuits, including the digital error as well as 
realistic decoherence sources. The previous bound in the error is intended to analyze its scaling with the num-
ber of qubits. The final digital error will depend on how many bosonic excitations will be produced, which will 
strongly depend on the particular cases involved. In many situations, the bosonic excitations grow until a certain 
value and then decrease, as happens in the quantum Rabi model with finite mode frequency, see ref. 10, or in the 
inhomogeneous Dicke model wherever closed subspaces are produced in the dynamics, see ref. 53. The numerical 
simulations we performed show that the protocol is feasible for the analyzed cases, where the number of bosonic 
excitations does not grow much. Additionally, the recent implementation of a digital-analog quantum simulator 
of the quantum Rabi model29 based on the proposal by Mezzacapo et al.28, achieves a small digital error even for 
a significantly high number of about 30 bosonic excitations.

A similar consideration of the digital error can be done with the Fermi-Bose condensate, given that the single 
Trotter step has a related structure to the pure Dicke model. The only difference appears in the inhomogeneous 
qubit frequencies in the former, but a similar scaling can be expected for a wide range of parameter values.

Regarding the biased Dicke model, there appears a third term in the Hamiltonian, ∆σ= ∑H i x
i

0 , which con-
tributes to the leading term of the digital error via the commutators with H1 and H2, as shown in Eq. (14). 
Accordingly, the following expression results for the equivalent bound to Eq. (20),

∑ε ε
ω ω

σ= − ∆
+

H H H H H i t
n

( , , ) ( , )
( )

2
,

(22)i

i i

y
i

Bias 0 1 2 1 2
2 0,1 0,2

contributing an additional term linear in N to Eq. (21),

ε ε + .H H H H H N n( , , ) ( , ) / (23)Bias 0 1 2 1 2

We point out that the new term is subdominant with respect to the quadratic term, and for large number of 
qubits, in many situations, will not contribute much to the digital error.

Finally, in the periodically pulsed Dicke model, the analysis amounts to duplicating the number of gates per 
Trotter step as compared with the Dicke model. This is approximately equivalent to duplicating the number of 
necessary Trotter steps for achieving the same fidelity, given that the gates are formally equivalent to this case 
except by the couplings of the interactions. Therefore, in this case ε εH H H( ) 2 ( , )iPulse 1 2 .

Current experiments with superconducting circuits have reached more than 1000 gates in a digital quantum 
simulator, and decoherence times are about three orders of magnitude longer than gate times18 such that one may 
expect that a proof-of-principle experiment of the Dicke model in all its parameter regimes, from the weak to the 
ultrastrong and deep-strong coupling regimes, may be carried out with state-of-the-art or near future technology. 
Further improvements in gate fidelities and coherence times may allow one to reach many tens of qubits with 
many bosonic excitations in a full-fledged Dicke or generalized Dicke quantum simulator, such that this way one 
may reach quantum supremacy without the need of quantum error correction.

Numerical simulations. We have performed numerical simulations for the DAQS of the Dicke model and 
pulsed Dicke model with master equation and realistic decoherence sources for superconducting circuits, to 
show the feasibility of the protocol. We Trotterize the dynamics and compare the ideal, exact evolution with the 
digitized evolution in the presence of decoherence. For including decoherence we employed a master equation 
formalism with a unitary part based on the corresponding Dicke or pulsed Dicke Hamiltonian, and a Lindblad 
part composed of cavity damping, spontaneous emission, and dephasing, following the expression,

∑

∑

ρ ρ κ ρ ρ ρ σ ρσ σ σ ρ ρσ σ

σ ρσ ρ

= − + − − + Γ − −

+ Γ − .

− + + − + −
† † †d

dt
i H a a a a a a[ , ] (2 )/2 (2 )/2

( )
(24)

s
i

i i i i i i

d
i

z
i

z
i

To implement the digital-analog dynamics, we apply successively the evolution of Eq. (24) for each Trotter step 
component, employing the corresponding Hamiltonian, e.g., Tavis-Cummings and local gates.

We plot in Fig. 5 the fidelity F =  Tr(ρTρI) for (a) N =  2 and (b) N =  3, of the overlap between the states ρT of the 
Trotterized evolved dynamics including decoherence sources, and the ideal evolution ρI, versus gt, with λ=g N/ . 
Here g/ω =  1.5. This case corresponds to the deep-strong coupling regime. We depict in the inset the survival prob-
ability of the initial state, which is the ground state of qubits and bosonic mode of the free Hamiltonian, showing that 
this state significantly changes during this dynamics. We observe that this state is not preserved as corresponds to 
this coupling/mode frequency ratio, which includes the counterrotating terms of the Dicke Hamiltonian.
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One can appreciate that the fidelity F decreases from the N =  2 to the N =  3 cases, as one would expect due 
to larger digital error as well as increased imperfections due to the larger size. Nevertheless, for a still reduced 
number of Trotter steps of 11, as compared with the already experimentally achieved numbers of about 90, see 
Langford et al.29, the fidelity remains large with respect to the classical limit for a randomly chosen state, during a 
long time evolution in which the initial state changes significantly, namely, for a sizable dynamics.

We plot in Fig. 6 the photon number average 〈 a†a〉  =  Tr(a†aρT,I) with respect to the states ρT (dashed) of the 
Trotterized evolved dynamics including decoherence sources, and the ideal evolution ρI (solid), versus gt, with 

λ=g N/ . Here g/ω =  0.5, which corresponds to the ultrastrong coupling regime. The initial state is the ground 
state of qubits and bosonic mode of the free Hamiltonian. It can be appreciated how the N =  3 case (b) has a larger 
photon emission rate than N =  2 (a), as corresponds to having a larger number of qubits.

In order to benchmark the generalized Dicke models as well, we performed similar numerical simulations for 
the pulsed Dicke model, which is the most complex model of the ones proposed in terms of the number of gates. 
We plot in Fig. 7 the fidelity F =   Tr(ρTρI) for (a) N =  2 and (b) N =  3, of the overlap between the states ρT of the 
Trotterized evolved dynamics including decoherence sources, and the ideal evolution ρI, versus g0t, with 

λ=g N/0 0 . Here g0/ω =  1.5 and g1 =  2g0, with λ λ α= +g N( )/1 0 1 . This case corresponds to the deep-strong 
coupling regime. We depict in the inset the survival probability of the initial state, which is the ground state of 
qubits and bosonic mode of the free Hamiltonian, showing that the dynamics in the considered time interval is 
sizable, namely, the initial state significantly evolves. We observe that this state is not preserved as corresponds to 
this coupling/mode frequency ratio, which includes the counterrotating terms of the Dicke Hamiltonian.

One can appreciate that also in this case the fidelity F decreases from the N =  2 to the N =  3 cases, as expected. 
Moreover, for a reduced number of Trotter steps as compared to the one achievable in the lab29, the fidelity 
remains large with respect to the classical limit during a time evolution with a sizable dynamics, as shown by the 
inset.

We point out that the pulsed Dicke model is the most complex one proposed, in terms of the number of total 
gates and number of entangling gates per Trotter step. Therefore, it is expected that the other models introduced, 
the Fermi-Bose and the biased ones, will behave in general better in the digital-analog quantum simulation, 
namely, they will require a smaller number of Trotter steps to reach a similar fidelity.

These numerical simulations are intended to show the feasibility of an experiment with current circuit QED 
technology. In order to probe the different phases of the system, including the superradiance phase transition, 
one may modify the protocol to perform a digitized adiabatic evolution18 beginning with an easy to initialize 
state, and ending with the ground state of the Dicke Hamiltonian or its generalizations. Moreover, as a figure of 
merit, one may consider the average number of photons in the cavity, 〈 a†a〉 , as a function of time, for different 

Figure 5. Dicke model. Fidelity F for (a) N =  2 and (b) N =  3, n =  7,9,11: Deep-strong coupling. Numerical 
simulation with realistic decoherence sources of the implementation with circuit QED of the Dicke model for 
(a) N =  2 and (b) N =  3, with n =  7 (dashed), n =  9 (dashed-dotted) and n =  11 (solid) Trotter steps, for a 
coupling/resonator ratio λ ω = .N/ 1 5, where ω denotes the resonator frequency of the simulated model, and a 
qubit to resonator frequency ratio ω0/ω =  1/20, where ω0 denotes the qubit frequency of the simulated model. 
Decoherence sources include that of the resonator κ, with κ/ω =  10−2, spontaneous emission Γ s, and dephasing 
Γ d, with Γ s/ω =  Γ d/ω =  0.5 ×  10−2. We plot the fidelity F =  Tr(ρTρI) of the overlap between the states ρT of the 
Trotterized evolved dynamics including decoherence sources, and the ideal evolution ρI, versus gt, with 

λ=g N/ . We depict in the inset the survival probability of the initial state under ideal evolution, showing that 
the dynamics in the considered time interval is sizable, namely, the state is significantly evolved.
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numbers of superconducting qubits, to benchmark the scaling of the collective spontaneous emission rate with N, 
which for a superradiant state is known to grow with N2, see ref. 2. The quantity 〈 a†a〉  can be efficiently measured 
with standard techniques, e.g., dual-path methods54. Having at disposal the flexibility of a DAQS, more exotic 
phases of matter with partial superradiance, inhomogeneous couplings or free energies, and disorder, can be fully 
explored with similar techniques. We point out that many of these cases with low or no symmetry will present the 
sign problem and will be hard for classical computers, such that a digital-analog quantum simulator with a few tens 
of qubits may solve this kind of dynamics exponentially faster. Moreover, highly entangled multipartite quantum 

Figure 6. Dicke model. Photon number average for (a) N =  2 and (b) N =  3, n =  7: Ultrastrong coupling. 
Numerical simulation with realistic decoherence sources of the implementation with circuit QED of the Dicke 
model for (a) N =  2 and (b) N =  3 with n =  7 Trotter steps, for a coupling/resonator ratio λ ω = .N/ 0 5, where ω 
denotes the resonator frequency of the simulated model, and a qubit to resonator frequency ratio ω0/ω =  1/20, 
where ω0 denotes the qubit frequency of the simulated model. Decoherence sources include that of the resonator 
κ, with κ/ω =  10−2, spontaneous emission Γ s, and dephasing Γ d, with Γ s/ω =  Γ d/ω =  0.5 ×  10−2. We plot the 
photon number average 〈 a†a〉  =  Tr(a†aρT,I) with respect to the states ρT (dashed) of the Trotterized evolved 
dynamics including decoherence sources, and the ideal evolution ρI (solid), versus gt, with λ=g N/ .

Figure 7. Pulsed Dicke model. Fidelity F for (a) N =  2 and (b) N =  3, n =  13: Deep-strong coupling. Numerical 
simulation with realistic decoherence sources of the implementation with circuit QED of the pulsed Dicke 
model for (a) N =  2 and (b) N =  3, with n =  13 Trotter steps, for a coupling/resonator ratio g0/ω =  1.5 and 
g1 =  2g0, where ω denotes the resonator frequency of the simulated model, and a qubit to resonator frequency 
ratio ω0/ω =  1/20, where ω0 denotes the qubit frequency of the simulated model. In this specific simulation we 
made the periodicity of the Trotter steps coincide with the one of alternating couplings g0 and g1, as indicated in Fig. 4. 
The time for evolution with g0 and g1 couplings is taken to be equal for both. Decoherence sources include that of the 
resonator κ, with κ/ω =  10−2, spontaneous emission Γ s, and dephasing Γ d, with Γ s/ω =  Γ d/ω =  0.5 ×  10−2. We plot the 
fidelity F =  Tr(ρTρI) of the overlap between the states ρT of the Trotterized evolved dynamics including 
decoherence sources, and the ideal evolution ρI, versus g0t, with λ=g N/0 0  and λ λ α= +g N( )/1 0 1 . We 
depict in the inset the survival probability of the initial state under ideal evolution, showing that the dynamics in 
the considered time interval is sizable, namely, the state changes significantly.
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states may be obtained with these protocols, both in the symmetric55 and the general non-symmetric56–58 subspaces, 
contributing to complex quantum state generation and studies of quantum correlations in multipartite systems.

Discussion
Summarizing, we have proposed a digital-analog quantum simulation of generalized Dicke models with super-
conducting circuits. We analyze the necessary interactions, and make an estimation of the digital errors, required 
number of digital steps, and number of gates, comparing them with state-of-the-art experiments on digital quan-
tum simulations with superconducting qubits and circuit QED. Proof-of-principle few-qubit experiments of the 
Dicke model and its generalizations in a wide range of coupling regions may be performed with current technol-
ogy. Moreover, improvements in gate fidelity and coherence times may soon allow for the digital-analog quantum 
simulation of these models involving tens of qubits, which may be significant on the way to quantum supremacy. 
For fully scaling to several tens or hundreds of qubits, error correction methods may be envisioned for this kind 
of digital-analog quantum simulator. The digital-analog quantum simulation paradigm is a novel framework that 
aims at benefitting from the best of current paradigms, digital and analog. Finally, these ideas could be straight-
forwardly implemented in other quantum platforms, being a prominent example ions in Penning traps59,60. In this 
kind of technology, digital-analog quantum simulations of either Dicke or Heisenberg models seem feasible and 
could in principle involve a large number of qubits, which deserves further analysis.
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