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Maximum Power Game as a 
Physical and Social Extension  
of Classical Games
Pilwon Kim

We consider an electric circuit in which the players participate as resistors and adjust their resistance in 
pursuit of individual maximum power. The maximum power game(MPG) becomes very complicated in a 
circuit which is indecomposable into serial/parallel components, yielding a nontrivial power distribution 
at equilibrium. Depending on the circuit topology, MPG covers a wide range of phenomena: from a 
social dilemma in which the whole group loses to a well-coordinated situation in which the individual 
pursuit of power promotes the collective outcomes. We also investigate a situation where each player 
in the circuit has an intrinsic heat waste. Interestingly, it is this individual inefficiency which can keep 
them from the collective failure in power generation. When coping with an efficient opponent with small 
intrinsic resistance, a rather inefficient player gets more power than efficient one. A circuit with multiple 
voltage inputs forms the network-based maximum power game. One of our major interests is to figure 
out, in what kind of the networks the pursuit for private power leads to greater total power. It turns out 
that the circuits with the scale-free structure is one of the good candidates which generates as much 
power as close to the possible maximum total.

Imagine a situation where an adjustable resistor is placed between two wires connected to distinct voltage sources 
and you want to draw the maximum power generation on it. As in Fig. 1(a), if the fixed resistance of the wires is 
Rc, then you can obtain the maximum power out of the resistor by setting its resistance to r =​ 2Rc, according to the 
maximum power transform theorem1. The corresponding maximum power output is V2/8Rc where V =​ V2 −​ V1.

Now let us further consider a game of two agents r1 and r2 in the parallel circuit as in Fig. 1(b). Whenever 
an agent checks its current power, it finds that its power tends to increase each time it lowers its resistance. The 
problem is, however, that this choice sharply reduces the other side’s power production. The agents keep lowering 
their resistance until both of them eventually lose all resistance. This implies that neither of them get to generate 
any power in the end.

What if the circuit is more complicated with multiple resistors and each of them is trying to get its own max-
imum power? Fig. 1(c,d) show two examples of such cases. In these circuits, the current flowing through one 
resistor is influenced not only by its resistance, but also by the resistance of others in a complex way. So they react 
simultaneously to the current they experience, and control their resistance to raise their power. This turns out to 
be a continuous multi-player game.

This, the maximum power game, is the evolutionary game with continuous strategy space. It is close to repli-
cator dynamics which has been studied in economics, population biology, and machine learning2–4 in that their 
dynamics are naturally described in evolutionary differential equations. However, while replicator dynamics 
mostly describes the evolution of the population density across finite traits, we trace the evolution of a continuous 
trait(resistance) of the finite agents in the maximum power game.

In this work, we focus on theoretical aspect of the maximum power game, as a physical/social extension of 
classical games. Summation of the individual powers at equilibrium is generally not the maximum power that the 
system can generate. Indeed, the individual efforts to increase their own power often end up at the worst possible 
Nash equilibrium - no power production at all. This degeneracy implies similarity between the maximum power 
game and the prisoner’s dilemma game. One can also find a similar aspect in social dilemmas involving resource 
depletion that have long been studied in economics5,6. However, the maximum power game is not a simple phys-
ical analogy of the prisoner’s dilemma game. In the following sections, we will see the opposite situation is often 
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created with a certain condition, in which the individual pursuit of maximum power promotes the decent collec-
tive outcomes.

Within the context of power control problem, the game-theoretical framework have been used to study several 
applications in the design and analysis of reliable and efficient electrical power systems7–9. If we further assume 
that the agents have memory and their decisions depend on the history, the resistors can be regarded as mem-
ristors. Memristors are passive components that behave as resistors with memory. Memristive systems show the 
various complex behavior including hyperchaos, scale invariance, and time nonlocality10–12. However, the agents 
implemented in this work are simple resistors that refer only to their current power. The purpose of this paper is 
to present the most concise form of physical modules that can be extended to contain social implications and has 
a common denominator with the existing game theory.

This work studies the unique features of the maximum power games, focusing on two factors that affect the 
resource distribution at equilibrium: circuit topology and player efficiency. In the maximum power game, all 
players’ choices are organically connected and are sensitively influenced by one another immediately, even when 
they are located far away in the circuit. Another important point is the relation between the efficiency of the play-
ers and the efficiency of the whole system. If the players are not an ideal power generator and inevitably produce 
some heat waste, which is true in real world, their game may result in a completely different distribution even in 
a simple circuit.

System’s pursuit for the maximum power has been proposed as a formal principle in open system thermo-
dynamics and ecology. According to ref. 13, “During self-organization, system designs develop and prevail that 
maximize power intake, energy transformation, and those uses that reinforce production and efficiency”. As men-
tioned above, competition over a simple structure likely leads to catastrophic failure in the whole system. Hence 
the question here is: under what kind of structure, the subsystems’ pursuit for the maximum power consistently 
leads to the maximum power at larger scales? If natural selection works as a maximum power organizer, such 
structure that generates the maximum power consistently across scales is selected. In this work, we show the 
corresponding system is the circuits with the scale-free structure.

Dynamics of the Maximum Power Games
Dynamics of the game can be understood as the continuous limit of the following repeated discrete game. The 
players change their resistances, r1, r2, , rN, at tk+1 =​ tk +​ Δ​t, k =​ 1, 2, 



. The ith player checks its own power 
wi =​ wi(r1, r2, , rN) at the moment and decides whether to raise or lower ri. Each player has no information on 
other parts of the circuit, except its own current power as a feedback from the system. The process can be mod-
elled as

Figure 1.  Circuits with varying resistors. 
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it is a Nash equilibrium.
Once wi, i =​ 1, 2, 



, N is found as a function of the resistances from the circuit topology, one can analyze the 
systems behaviour from the differential equations (2). All the results of this paper are obtained in such manner. 
However, for the network-based maximum power games in the last section, we used the Monte Carlo simulations 
based on the discrete scheme (1) due to extreme complexity of ∂​wi/∂​ri.

As a concrete example of the dynamics, let us take a parallel game in Fig. 1(b). The voltages and the currents 
on the parts of the circuit follow the systems of equations as

− = +
− = +
− =
− =
− = +

= + .

V v i i R
v v i i r
v v i r
v v i r
V V i i R

r r r

( ) ,
( ) ,

,
,

( ) ,
1 1 1

(4)

a c

a b

a b

a b

b c

1 1 2

1 2

1 1

1 2

2 1 2

1 2

Here va and vb denote the voltage at the left and the right branching point, respectively, and i1 and i2 denote the 
current flowing through r1 and r2, respectively. Solving the above equations for those variables with respect to r1 
and r2, one can express the powers and as functions of r1 and r2 as
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The dynamics of the game is now obtained from (2) as
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The phase portrait and a sample solution of the system are shown in Fig. 2. The only Nash equilibrium of the 
system is =⁎ ⁎r r( , ) (0, 0)1 2 .

Equilibriums in Simple Maximum Power Games
In this section, we study the maximum power game in the basic circuits with a single potential difference. Figure 3 
illustrates examples of parallel and serial circuits lying between one potential difference. We assume that all agents 
are ideally efficient and can adjust their resistivity from 0 to infinity, making themselves a superconductor to a 
perfect insulator, respectively.

Parallel games.  Let V =​ V2 −​ V1 denote voltage difference and let Rc be a constant resistance of the connect-
ing wires as in Fig. 3(a). Let r1, r2, , rN be the resistance of the N parallelly-placed resistors. The power generated 
at the i-th resistor is evaluated as

=
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Since the agent is trying to maximize its power by adjusting the resistance ri, the equilibrium can be found 
from the equations
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 =​ wN =​ 0. This implies that the agents turn 
their resistivity down competitively to raise their power and eventually end up in the worst situation in which no 
player benefits from resource.

Serial games.  Consider the N agents serially connected as in Fig. 3(b). This time the power of i-th agent is
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where ρi =​ 1/ri. Solving = =
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This time all agents make themselves an insulator in the end, which ironically leads to the same result in terms of 
power generation, i.e., w1 =​ w2 =​ 



 =​ wn =​ 0.
It can be further shown that any simple composite of parallel/serial circuits leads to a trivial result. Figure 4 

presents two examples of circuits that combine parallel/serial components. The resistors r1 and r2 in (a) are seri-
ally connected and therefore must be infinity at equilibrium, since otherwise they always have incentive to raise 
their resistance further. This implies the above wire is broken and the circuit becomes a single resistor circuit with 
r3 =​ 2Rc at equilibrium. Similarly, the parallel resistors r1 and r2 in (b) must be 0 at equilibrium. Otherwise the 
status cannot be an equilibrium since they have incentive to lower their resistance further. In this manner, for any 
combination of parallel/serial elements, one can determine the resistance at equilibrium one by one and eventu-
ally simplify the given circuit into trivial one.

Figure 2.  2-player parallel game. 

Figure 3.  Basic circuits with N varying resistances. 
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When played by ideally efficient agents on parallel/serial circuits or their combinations, the maximum power 
game results in trivial power distribution. So one of the possible ways to avoid these no-win situations is playing 
the game in nonstandard circuits.

Games on Irregular Composite Circuits.  Now let us consider the systems with a nonstandard topology. 
Figure 5 shows some circuits which are not decomposable to a combinations of serial/parallel connections. It 
turns out that the maximum power game on these systems leads to a nontrivial power distribution. One can show 
that the circuit in Fig. 5(a) follows the systems of equations as
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Here i denotes the current flowing through Rc and ik, k =​ 1, 


, 5 denotes the current flowing through rk. Also, 
va, vb, vc and vd are the voltages at the nodes, assigned counterclockwise from the left end of r1. Solving the above 
equations for these variables with respect to rk, one can express the powers =w i rk k k

2  as a function of r1, , r5. 
Then application of the condition (3) gives infinitely many equilibriums as
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Note that the circuit in Fig. 5(a), without the middle component r3, would become a simple combination of 
parallel/serial circuits and therefore results in zero equilibrium. Interestingly, even though the presence of r3 is 
essential not to make trivial equilibrium, w3 remains all the way zero. So the collective failure cannot be avoided 
without the sacrifice of 3rd agent.

Agents with Intrinsic Heat Dissipation
Even though the above examples show the characteristic features of the maximum power game, they are unreal-
istic in that each agent is an ideal resistor which can adjust its resistivity from 0 to infinity.

Figure 4.  Combination circuits: Equilibriums are (a) = ∞ ∞⁎ ⁎ ⁎r r r R( , , ) ( , , 2 )c1 2 3  (b) =⁎ ⁎ ⁎r r r R( , , ) (0, 0, 2 )c1 2 3 .

Figure 5.  Nonstandard circuits. 
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In this section, we assume that all agents have internal intrinsic heat waste. The agents have no control over 
a fixed dissipative resistance, say d, and this causes unavoidable heat loss which cannot be converted to usable 
power. So the agents are trying to maximize their power anywhere but this fixed resistance. The agent with larger 
d tends to lose more heat and therefore 1/d can be interpreted as an indicator for the agent’s efficiency. Figure 6 
illustrates parallel games with the agents who have a serially connected dissipative resistance.

Suppose as in Fig. 6(a) that two agents with adjustable resistance r1 and r2 and with fixed dissipative resistance 
d1 and d2, respectively, are playing the maximum power game in the parallel circuit. Derivation of the equilibrium 
on this circuit is the same as the 2 player parallel game described in Section 2, except that the equation 
1/r =​ 1/r1 +​ 1/r2 in the equations (4) is replaced by 1/r =​ 1/(r1 +​ d1) +​ 1/(r2 +​ d2). The Nash equilibrium ⁎ ⁎r r( , )1 2  is 
found as

=
+ + +

+

=
+ + +

+
.

⁎

⁎

r
R d d d R d d

R d

r
R d d d R d d

R d

2 2 ( )
2

,

2 2 ( )
2 (13)

c c

c

c c

c

1
1 1 2 1 2

2

2
2 1 2 1 2

1

The graph in Fig. 7 shows the total power wT =​ w1 +​ w2 generated by two agents at the equilibrium, when 
the intrinsic resistances are identical as d1 =​ d2 =​ d. One can see that collective power failure in Section 2 can be 
avoided, ironically from the fact that the agents are not as efficient as they can control their resistivity completely.

Now let us investigate the case of d1 ≠​ d2, where the efficiency of agents are distinct. Figure 8(a) shows the 
change of the first agent’s power according to its intrinsic resistance level d1, while the d2 of the second player is 
fixed at a large value. One can see that, if the opponent is inefficient with large heat waste, then the agent with 
smaller d1 achieves more power. This agrees well with the common sense that an efficient agent beats inefficient 
ones.

On the contrary, if the opponent is highly efficient with small intrinsic waste d2, then the first agent’s being 
more efficient is no more beneficial in the maximum power game. In Section 2, we saw the multiple agents with 
ideal efficiency end up in the no-win situation. Figure 8(b) shows the power from r1 according to d1, with d2 fixed 
at 0.01. The best agent who can get the possible maximum power is not the one with small d1, but the one with a 
relatively large d1 around 0.4. This implies that, if one player is highly efficient, the better partner is an inefficient 
one. Two competing efficient players do not prosper together.

Figure 6.  Circuits with agents that have extra dissipative resistance d. 

Figure 7.  Grpah of the total power wT = w1 + w2 at equilibrium according to the dissipative resistance 
d = d1 = d2 in Figure. The total power becomes zero as d approaches either 0 or ∞​. The parameters V =​ 1 and 
Rc =​ 1 are used.
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Let us now consider the collective efficiency of multiple agents with heat waste. If you employ N homoge-
neous agents in the parallel circuit and try to harvest as much total power as possible through the maximum 
power game, how many agents are optimal for the maximum total? If the homogeneous dissipative resistance d is 
assumed, one can find the corresponding total power from the maximum power game as

∑= =
+ + + + + −=

⁎
w w NV r

d N R d dNR N R( ( 2) 2 ( 2) ) (14)
T

k

N

k
c c c1

2

2 2 2 2

where = + + − − −⁎r d dNR N R N R2 ( 2) ( 2)c c c
2 2  is the corresponding value of the resistances r1, r2, , rN 

at equilibrium. The example in Fig. 9 shows the optimal number of agents to produce the maximum total power 
is 7 when d =​ 5, V1 =​ 0, V2 =​ 1, and Rc =​ 1. Employing more agents gradually decreases the total power.

For a large value of d, the optimal number of the agents N* for the maximum total power is approximately d/Rc. 
More precisely,

→ →
⁎N

d R
w V

R
1 and

16
,

(15)c
T

c

2

as d →​ ∞​.
Note that, no matter what d and N are, the corresponding total power from the maximum power game cannot 

exceed the half of the possible maximum power, V2/8Rc. This observation naturally brings us to the next impor-
tant question: how can we improve the collective efficiency through the maximum power game? If not a simple 
parallel/serial structure, under what structure can the collective power be promoted by the selfish individuals 
through the game? In the next section, we investigate this problem, given with the network with multiple voltage 
sources.

Maximum Power Games with Multiple Potentials
One of the intriguing challenges in social science is to find a social structure that can reconcile the individual’s 
pursuit of private interest with improvement of the common good. In this section, we try to study this problem 

Figure 8.  Graphs of the power w1 according to the dissipative resistance d1, with the opponent’s dissipative 
resistance d2 fixed in Fig. 6(a). When the opponent is efficient with d2 low at 0.01, the maximum power of w1 is 
attained with d1 at a rather large value around 0.4. The parameters V =​ 1 and Rc =​ 1 are used.

Figure 9.  The graph of the total power wT according to the number of agents N in Fig. 6(b). The parameters 
V =​ 1, Rc =​ 1 and d1 =​ d2 =​ 



 =​ dN =​ 1 are used.
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in the context of the maximum power game, by investigating the relation between the circuit topology and the 
induced total power.

The results of the network-based game discussed in this section are all derived from the numerical experi-
ments performed on the network ensemble. Once the power functions wi =​ w(r1, r2, , rN), i =​ 1, 2, 



, N are 
determined from a given network topology, one can, in principle, describe its dynamics and equilibriums, from 
(2) and (3). However, this is often too complicated even for small-size networks. (If the networks are a bit larger, 
finding wi in the analytic form becomes challenging as well).

Here we apply the Monte Carlo simulation to the scheme (2) in order to search equilibriums of the system; At 
every time tk, k =​ 1, 2, 



, we select an arbitrary resistor and give a random perturbation to its resistance. If the 
change brings its power up, we assume that the agent chooses the change of resistance, otherwise remains the 
same. We repeat this process until the system reaches the stage where no more agents are trying to change their 
resistance. Note that having all players choose in turn (sequential updating), or a randomly selected player 
choose(random updating), or everyone choose all at once(synchronous updating), do not make substantive dif-
ference in the results.

In all the examples, we have created 1000 networks of the same nature with 30 nodes. For example, in the case 
of the Erdős-Rnyi network, 1000 networks were created and tested for every p value. We performed the Markov 
Chain Monte Carlo(MCMC) to prevent the outcomes to be stuck in a local minimum. The results were compared 
in the mean and the standard deviation.

Let us consider a circuit with multiple external voltages V1, V2, 


, VN. Each external voltage is supplied 
through a wire with a fixed resistance Rc. To simplify the setting, we assume the each agent directly connects two 
of the voltage-supplying wires, from Vi and Vj, and is denoted by rij. We also assume there is no heat drain from 
the agents. In the light of the network theory, the agents can be regarded as links connecting the supplying nodes 
(the end of supplying wires). Figure 10(a and b) shows two examples of such network circuits which have com-
plete connections with 3 and 4 supplies, respectively.

The maximum power that can be generated from the complete network circuit is

∑ − .
≠NR

V V1
8

( )
(16)c i j

i j
2

This is not analytically proved yet but it has been tested through numerical experiments with complete net-
works of various size. Note that this maximum is generally not attainable from the maximum power game, but 
from the careful coordination of rij. More precisely, it is observed that the possible maximum power is generated 
if all agents’ resistances rij follow the relation

−
+

−
=

+ −
= .

V V
r

V V
r

V V V
NR

i j k N
2

, , , 1, 2, ,
(17)

i j

ik

j k

jk

i j k

c

It is however not possible to satisfy the above equations through the maximum power game. (One of the 
simple solutions to the equations is rij =​ NRc, but it is not a stable Nash equilibrium of the game). In fact, the 
maximum power game on any complete connected networks with N >​ 3 external supplies results in trivial zero 
equilibrium.

Here we will investigate the maximum power game on two types of typical random networks: Erdös-Rényi 
model(ER) and scale-free network. In the ER model, all nodes are equally likely connected with the same proba-
bility, say, p. The degree distribution of any particular node is therefore binomial. On the contrary, a scale-free net-
work is a network whose degree distribution follows a power law, P(k) ~ k−γ. It has been reported many real world 

Figure 10.  Network circuits with multiple potentials. 3 agents and 6 agents are placed in the complete 
networks in (a,b), respectively.
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networks are scale-free, at least asymptotically. We use the preferential attachment method to generate scale-free 
networks. Figure 11 illustrates examples of the two circuits which are based on ER and scale-free networks.

Consider ensembles of the three types of network circuits: complete, ER and scale-free networks. They are all 
connected to 30 external voltages V1, V2, , V30 with the fixed resistance Rc =​ 1. For each kind of networks, we 
create 1000 networks of the same nature with the external voltages following the normal distribution N(0, 1). Let 
us denote by E w E w[ ], [ ]T

COM
T
ER  and E w[ ]T

SF  the mean of the possible maximum power induced by full coopera-
tion of the agents in complete, ER and scale-free networks, respectively. These are not the results from the maxi-
mum power games, but from fine coordination of the resistors for comparison. As to the complete networks, the 
mean of the maximum producible power is = . ± .E w[ ] 7 25 1 90T

COM . Note that this is consistent with the mean 
evaluated by using (16). Figure 12(a) shows that the mean total power of the ER circuits, E w[ ]T

ER , gradually 
increases from 0 to 7.25, as the connection probability p rises. The standard deviation stays around 1.88 along p. 
The mean of the maximum producible power for the scale-free networks is = . ± .E w[ ] 6 96 1 86T

SF .
What we are interested in is how much total power is generated against = . ± .E w[ ] 7 25 1 90T

COM , from the 
maximum power games. Let us denote by E w[ ]MPG T

ER  and E w[ ]MPG T
SF  the mean total power induced by the max-

Figure 11.  Circuits based on two types of typical random networks. Each agent connects a pair of the nodes 
wired to the external potentials. For a suitable visualization, the agents are denoted by red lines.

Figure 12.  Comparisons of the mean total powers in networks according to the network topology. The 
comparisons are performed for two types of the networks(ER and scale-free) under two different 
conditions(complete coordination and the maximum power game). The mean total power for the ER network, 
E w[ ]T

ER  and E MPG w[ ]T
ER  are graphed according to the connection rate p and are compared to the mean total 

power for the scale-free network E w[ ]T
SF  and E MPG w[ ]T

SF , respectively. The standard deviations of wT
ER and wT

SF 
in (a) are around 1.88 and 1.86, respectively. The standard deviations of wT

ER and wT
SF in (b) are around 1.43 and 

1.62, respectively).
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imum power games, of ER and scale-free networks, respectively. In Fig. 12(b), the mean of the total power from 
the ER model increases with p, reaching its maximum 4.1 at around p =​ 0.075. The standard deviation stays 
around 1.43 along p. However, raising p further reduces the total power and eventually makes it zero. This agrees 
with the fact that the maximum power game in the complete networks leads to trivial equilibrium. So if the con-
nections are randomly made without any structure, they may cause individual competitions to harm collective 
performance.

On the contrary, in the scale-free networks, the mean total power that the maximum power game generates, 
E w[ ]TMPG

SF  is 5.95 ±​ 1.62. This is decent compared to the maximum with full coordination, 6.96 ±​ 1.86 (and even 
to = . ± .E w[ ] 7 25 1 90T

COM ). Hence, as long as the network has the scale-free structure, competition between 
people does not necessarily conflicts with the public good, and the maximum power game yields better collective 
performance.

Discussion and Perspectives
This work shows that, in order to promote the collective power through the maximum power games, we need to 
have either 1) a system with more complex topology than a simple combination of parallel/serial circuits, or 2) 
nonhomogeneous players with various efficiency. In addition, especially with multiple inputs, the system with the 
scale-free structure is more advantageous than dense connections or random connections.

How a group maintains, and even prospers, with its members pursuing their own profit is a fundamental 
problem in economics and ecology. Conventional game theories often employ the dichotomy of cooperators/
defectors to describe group dynamics. While the cooperation allows the group to thrive, one needs to explain 
how the cooperators survive in competition with the defectors. The maximum power game theory provides an 
alternative approach without explicitly introducing cooperation. It shows that the collective selfish efforts can lead 
to the success of the group as long as the group has proper structures.

The maximum power game provides with insight and tools to deal with collective phenomena occurring 
among agents who are interacting and competing for common resource. It can cover a wide range of phenomena, 
from a social dilemma in which the whole group loses to a more well-coordinated situation in which the pursuit 
of private profit promotes the collective outcomes. We believe that the maximum power game is a flexible frame-
work to study mutual influence of competitions, distribution of resources and collective efficiency.

We assumed in this work that the environment constantly provides with fixed potential energy. The maximum 
power games with time-varying external voltage sources are applicable to more extensive problems. In such sys-
tems, involving “smart” agents seems to be necessary: They choose their actions based not only on the current 
feedback but also on the previous data. They may accumulate the potential energy using capacitors to prepare for 
a sudden change of the environment. Combining the game theory with the stochastic optimal control theory, the 
future work will drive researches for energy applications such as the optimal power flow problem and the massive 
power grid failure problem.
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