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Superstatistical model of bacterial 
DNA architecture
Mikhail I. Bogachev1,2, Oleg A. Markelov1, Airat R. Kayumov2 & Armin Bunde3

Understanding the physical principles that govern the complex DNA structural organization as well as 
its mechanical and thermodynamical properties is essential for the advancement in both life sciences 
and genetic engineering. Recently we have discovered that the complex DNA organization is explicitly 
reflected in the arrangement of nucleotides depicted by the universal power law tailed internucleotide 
interval distribution that is valid for complete genomes of various prokaryotic and eukaryotic 
organisms. Here we suggest a superstatistical model that represents a long DNA molecule by a 
series of consecutive ~150 bp DNA segments with the alternation of the local nucleotide composition 
between segments exhibiting long-range correlations. We show that the superstatistical model and 
the corresponding DNA generation algorithm explicitly reproduce the laws governing the empirical 
nucleotide arrangement properties of the DNA sequences for various global GC contents and optimal 
living temperatures. Finally, we discuss the relevance of our model in terms of the DNA mechanical 
properties. As an outlook, we focus on finding the DNA sequences that encode a given protein while 
simultaneously reproducing the nucleotide arrangement laws observed from empirical genomes, that 
may be of interest in the optimization of genetic engineering of long DNA molecules.

The ability of DNA to adopt different structural conformations is a key instrument of many biological processes 
such as interaction with proteins, replication and transcription. Therefore a better understanding of the DNA 
mechanical and thermodynamical properties and their impact on its conformational abilities is essential to reveal 
many regulatory mechanisms at molecular scale and their reflection in the biological systems performance at 
macroscopic scale. Considerable progress in both theoretical and experimental biophysics in recent decades led 
to the design and experimental verification of sophisticated mathematical models capable of describing various 
DNA structural conformations and their physical properties1,2.

The DNA consists of two complementary polynucleotide chains which form a double helix with a helical 
pitch of about 10–11 base pairs (bp) that is universal for all kingdoms of life3. The primary structure of DNA is 
determined by a sequence that consists of four nucleotides, namely adenosine (A), cytosine (C), guanosine (G) 
and thymidine (T). The second polynucleotide chain can be normally reconstructed from the first one due to 
their complementarity, provided that A is opposed to T and G is opposed to C, and thus statistical analysis can be 
performed on a single sequence. The two types of base pairs have considerably different bonding energies charac-
terized by the bond enthalpies −​11.8 for A:T and −​23.8 kcal/mol for G:C, respectively4. For an extensive review 
on the DNA structural organization, we refer to5.

Due to its extremely compact packaging, DNA is very efficient as a carrier of genetic information, that is rep-
resented by the sequence of nucleotides in its primary structure. Recent success in genetic engineering resulted 
in the record-breaking amount of information that can be written on synthetic DNA (up to ~200 Mb of data has 
been reported as of 2016), that is comparable with the entire human genome size, with synthetic DNA patches of 
thousands to dozens of thousands of base pairs (bp) being already a laboratory routine. One of the key challenges 
in genetic engineering of long DNA segments is the reproduction of its physical properties such that the syn-
thetic molecule exhibits similar conformational abilities like the DNA in the living cell. The most straightforward 
approach is to follow the laws that govern the architecture of the host/model organisms and organize the synthetic 
DNA in a similar way, that in turn requires a better understanding of these laws.

While as a carrier of genetic information the DNA is often treated simply as a sequence of consecutively 
arranged nucleotides, in fact its molecular structure is much more complex including multiple packaging levels 
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and exhibiting largely heterogeneous properties. From the pure information theory point of view the DNA con-
tent is drastically redundant. Even in Bacteria where about 97% of DNA encode functional proteins, 20 possi-
ble amino acids are being translated from 64 possible trinucleotides that, providing the necessity for the stop 
codons, already indicates approximately three-fold redundancy. In higher eukaryotes, only about 3% of the DNA 
encode functional proteins, while up to one half of the remaining 97% non-coding DNA consists of repetitive 
DNA sequences. The discovery of pronounced long-range correlations (LRC) in DNA sequences in the early 
90 s6–10 only added to this redundancy. LRC in the primary DNA sequence is a signature of clustering of certain 
nucleotides or nucleotide complexes. In recent years these clustering effects has been utilized in a number of 
alignment-free bioinformatic approaches via the analysis of the probability distributions of different oligonucle-
otides in genomes or oligopeptides in corresponding proteomes11–19.

Clustering of nucleotides and nucleotide complexes have been attributed to the structural complexity of DNA 
represented by the famous fractal globule model20 that has been recently supported by sequence-based recon-
structions of three-dimensional whole-genome architecture21–25.

Contrast to the multi-level hierarchical eukaryotic DNA architecture, there is a single regular structural level 
in bacterial DNA, the double helix3. At larger scales, it is localized in a relatively free manner in the cytoplasm, 
with random attachments to the cell membrane and packed in supercoils of varying size. In terms of its mechan-
ical properties, double stranded DNA has a single specific structural scale characterized by its persistence length 
of about 50 nm, that corresponds to approximately 150 bp26–28. The DNA segments displaced by more than persis-
tence length can be considered as no longer mechanically coupled in terms of their tangential directions, and thus 
structural conformations that are separated by more than 150 bp at a first glance could be treated as independent.

In a recent publication29 we have reported a non-trivial universal power law tailed distribution and power law 
correlations in the internucleotide interval sequences from 130 complete genomes of various organisms from 
Archaea and Bacteria to H. Sapiens that are valid over many orders of magnitude limited only by the respective 
genome/chromosome size. This universality is somewhat striking, since it holds for both coding and non-coding, 
repetitive and non-repetitive DNA segments, and exhibits only moderate variations depending on the GC content 
of the genomes and on the optimal living temperature of the studied organisms, and thus could be likely attrib-
uted to the universal structural and/or conformational properties of DNA that hold independently of the carried 
genetic information.

The observed universal power law tailed distribution is also known as the q-exponential distribution, a sub-
class of generalized Pareto distributions. In the literature, this class of distributions has been also associated with 
the maximization of generalized entropy30 that had been originally introduced in the early 1960 s by Renyi31 
and found numerous applications in the analysis of fluctuations in various dynamical systems (see, e.g. ref. 32 
and references therein; for the criticism of the concept, see ref. 33 and references therein). In the limit q →​ 1 the 
q-exponential distribution reduces to a simple exponential. In recent years, the same functional form of the dis-
tribution have been numerously observed in the dynamical and structural characteristics of several very different 
complex systems (see, e.g. refs 29, 35–38 and references therein).

One of the prominent concepts that leads to the observed class of distributions is superstatistics. The super-
statistical concept in its original version considers a macroscopic system that consists of microscopic cells exhib-
iting fluctuations of an intensive quantity, usually denoted as β, such as the inverse temperature or dissipation 
energy39,40. A local equilibrium is supposed in each of these microscopic cells, while it is achieved at very different 
β values. In this setting, according to the law of total probability, the macroscopic energy distribution is then 
given by
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where P(β) is the distribution of β over all local cells in the macroscopic system and Z(β) is a normalization factor 
for e−βE at specified β41. Under a very general assumption that β is additively driven by multiple random factors 
and each factor is approximately Gaussian distributed, the macroscopic system is described by q-exponential 
distributions40,42.

In this paper, we take the advantage of the superstatistical approach to suggest a possible explanation of the 
non-trivial universality in the internucleotide interval distributions. We show explicitly that both the supersta-
tistical model and the corresponding DNA generation algorithm accurately reproduce the laws governing the 
empirical nucleotide arrangement properties of the bacterial DNA sequences for various GC contents and opti-
mal living temperatures. We also discuss the relevance of our model in terms of DNA mechanical properties. 
Finally, as an outlook, we focus on finding DNA sequences that encode a given protein while simultaneously 
reproducing the nucleotide arrangement laws observed from empirical genomes, that may be of interest for the 
optimization of reverse translation algorithms in the genetic engineering of long DNA molecules.

Results and Discussion
Fluctuation analysis.  We focus on the same datasets as previously in ref. 29 and start with bacterial DNA 
that exhibits the simplest structural organization. We split 72 complete bacterial genomes into four groups 
according to their global GC content determined as the fraction of strongly bonded base pairs (G:C) in the stud-
ied genome. For each DNA sequence, we next perform the fluctuation analysis using the widespread detrended 
fluctuation analysis (DFA) method (for more details on the DFA, we refer to the Methods section at the end of 
this paper). Since we are mostly interested in the quantities that determine the mechanical properties of DNA 
and its structural organization, we exchange the nucleotide base pairs by their bond enthalpies, −​11.8 for A:T 
and −​23.8 kcal/mol for G:C, respectively4.
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Our results depicted in Fig. 1 indicate that in all cases F(s) contains two characteristic regimes, with effectively 
vanishing correlations below (H =​ 0.5) and pronounced long-range correlations above (H =​ 0.8) the crossover, 
that is also consistent with the results obtained in earlier studies for other DNA numerical representations43,44. 
Taking into account that the second-order DFA used in this study typically shows a characteristic crossover at 
about 3 …​ 5 persistence lengths s× (see, e.g. ref. 45), the actual position of s× at ~150 bp is consistent with the 
current consensus on the DNA persistence length under physiological conditions widely used in biophysical 
models (see, e.g. refs [26–28]). The figure also shows that, as expected, after random shuffling of the nucleotides 
the correlations vanish at all scales.

Superstatistical model.  Following the above observations, we suggest a simple representation of DNA by a 
superstatistical model, that is schematically illustrated in Fig. 2. First, we split the DNA sequence into 
Nseg =​ [N/150[non-overlapping 150 bp segments ν =​ 1, …​, Nseg, where N is the genome size and] …​] is the integer 
operator. We focus on the long-range inter-segment variations of the numbers νnA C G T, , ,  and νnW S,  of the respective 

Figure 1.  DFA2 fluctuation functions F(s) for the sequence of base pair bond enthalpies for bacterial genomes 
with (a) very low, (b) low, (c) intermediate and (d) high GC content divided by s  such that a horizontal plateau 
corresponds to the absence of correlations. Black circles indicate average F(s) within each group, while dashed 
lines show the approximate model with effectively vanishing correlations (H =​ 0.5) below and pronounced long-
range correlations (H =​ 0.8) above the crossover. Small coloured bubbles show F(s) for randomly shuffled DNA 
sequences, while black bubbles show F(s) for the reconstructed DNA after randomized back-and-forth 
translation. Corresponding model approximations are given by red *. Vertical dotted lines show the position of 
the crossover, while the red dashed lines indicate the DNA persistence length.

Figure 2.  A schematic representation of the superstatistical model and the internucleotide interval 
sequences assessment procedure exemplified for the Bacillus subtillis genomic DNA. (a) The DNA sequence 
is being split into Nseg 150 bp non-overlapping segments ν characterized by the local numbers νnW S,  and νnA C G T, , ,  
(or their relative fractions ξ ν

W S,  and ξ ν
A C G T, , , , respectively) of weakly ‘W’ or strongly ‘S’ bonded base pairs as well 

as individual nucleotides ‘A’, ‘C’, ‘G’ and ‘T’, where ν runs from 1 to Nseg. The upper plot shows the variations of 
νnW S,  and νnA C G T, , ,  on a genome-size scale. (b) An example of 150 bp DNA segment taken from the 5′​ end of the 

B.subtillis chromosome is shown in the lower part of the panel, with weakly bonded base pairs connected by 
dots, while strongly bonded base pairs connected by full vertical lines. Extraction of intervals l between 
consecutive positions of similar nucleotides (A-A, C-C, G-G and T-T) is exemplified for the upstream (5′​ to 3′​) 
nucleotide chain. Consecutive occurrences of similar nucleotides (e.g., ‘AA’) is considered as a single 
internucleotide interval l =​ 1, one nucleotide between similar nucleotides (e.g., ‘ABA’) leads to double interval, 
where ‘B’ is any nucleotide except ‘A’, and so on. Intervals between consecutive positions of weakly ‘W’ or 
strongly ‘S’ bonded base pairs are obtained in a similar way from an auxiliary sequence, where either ‘A’ or ‘T’ 
are exchanged by ‘W’, and either ‘G’ or ‘C’ are exchanged by ‘S’.
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nucleotides or base pairs per each segment in the analyzed genomes (see Fig. 2a). We also determine the intervals 
between consecutive positions of similar nucleotides as well as strongly- or weakly bonded base pairs (see Fig. 2b). 
Due to the effective absence of correlations at short scales (see Fig. 1), we assume that the nucleotides are arranged 
randomly within each segment, and thus the internucleotide intervals l are distributed exponentially P(l) =​ 1/ 〈​l〉​
exp(−​l/〈​l〉​), where 〈​l〉​ is the local average interval for each given segment. However, since the numbers of respec-
tive nucleotides or base pairs per segment n exhibit pronounced segment-to-segment variations along the DNA 
sequence, this also leads to the variations of the local average interval 〈​l〉​ that is inversely proportional to n. In this 
model, for known P(n), the marginal distribution is given by
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where β =​ n/150 is the fraction of specific nucleotides or base pairs in each of the local fragments that plays the 
role of the local intensity parameter and is bounded between 0 and 1.

Next we focus on the shape of the distributions P(n). Figure 3 exemplifies the distributions P(n) for 12 rep-
resentative genomes of well-known free living bacteria with different GC contents which are also widely used in 
molecular biology and genetic engineering. The figure shows that the shapes are very close to Gaussian family 
distributions, and thus are fully determined by their averages 〈​n〉​ and standard deviations σn. While a very close 
approximation could be provided by a Gaussian distribution, it is not physically supported, since it allows for neg-
ative values with non-zero probability. Besides a trivial solution such as an effective description by Gaussian trun-
cated at 0 ≤​ n ≤​ 150, similar asymptotic behaviour can be observed in several distributions with a non-negative 
support such as binomial, Γ​- or χ2-distributions. For large average values 〈​n〉​ the discrepancies between these 
distributions and Gaussian distributions with corresponding averages 〈​n〉​ and standard deviations σn are van-
ishing. The figure also shows that random shuffling of the nucleotides in the studied DNA sequences leads to 
considerable narrowing of the distributions, while their shapes remain close to Gaussian.

Figure 4a,b shows the parameters 〈​n〉​ and σn for the entire set of the studied genomes. Remarkably, σn does not 
depend on the average per segment number over the entire genome 〈​n〉​ for both strongly and weakly bonded base 
pairs (see Fig. 4a), in contrast to the simple assumptions like the binomial or χ2-distributions. It is also interesting 
that the purine-pyrimidine alternation exhibits different properties for strongly and weakly bonded nucleotides 
(see Fig. 4b). While for G and C σn does not change significantly with the changes in their averages per segment 
〈​n〉​, for A and T σn increases with increasing their averages per segment 〈​n〉​, like in the χ2 model. Figure 4c,d 
shows the coefficients of variation ρ =​ σn/〈​n〉​ as functions of the relative fraction ξ =​〈​n〉​/150 of given base pairs 
and individual nucleotides, respectively. The figure shows that in both cases for strongly bonded base pairs and 
corresponding nucleotides there is approximately algebraical decay ρ ∝​ 1/ξ. The figure also shows that random 
shuffling of the DNA sequence leads, as expected, to the binomially distributed numbers of strongly- and weakly 
bonded base pairs as well as individual nucleotides in 150 bp segments.

DNA simulation algorithm.  Next we suggest an simulation algorithm which generates a DNA sequence 
with random genetic code where the local number of nucleotides within 150 bp segments exhibits similar distri-
butions and long-range correlation properties, like in the empirical bacterial genomes.

In the first step, we generate a long-range correlated dataset νxS  with H =​ 0.8 with zero mean and unit variance 
consisting of Nseg numbers. To determine the number of strongly bonded base pairs νnS  in each segment ν, we next 
multiply νxS  by the standard deviation σn =​ 9 that corresponds to the average standard deviation observed from 
empirical genomes and add the mean 〈​ns〉​ equal to the average number of strongly bonded base pairs per segment 
of the simulated genome.

In the second step, a simulated DNA sequence is created consisting of Nseg consecutive segments, with νth 
segment containing σ= ∗ + < >ν νn x nS S n S  strongly bonded base pairs ‘S’ that are randomly allocated within the 
segment. The remaining = −ν νn n150W S  positions are filled with weakly bonded base pairs ‘W’.

In the third step, the positions of strongly- and weakly bonded base pairs are filled by either purines (A or G) 
or pyrimidines (C or T) in the primary polypeptide chain by exchanging ‘W’ by either ‘A’ or ‘T’, and ‘S’ by either 
‘G’ or ‘C’. For that, two other long-range correlated dataset with H =​ 0.8 consisting of Nseg numbers each that are 
independent of the first dataset are created. One of these datasets gives the probabilities νpA  that a purine ‘A’ 
replaces ‘W’ for each segment ν. Accordingly, the number of ‘A’ in segment ν is given by =ν ν νn p nA A W , and the 
number of ‘T’ is given by = = −ν ν ν ν νn p n p n(1 )A T W A W . We found that the mean value 〈​pA〉​ =​ 0.5 and standard 
deviation σ = .0 06pA

 leads to the best agreement with the empirical data, independently of both local and global 
GC contents.

In contrast, for strongly bonded base pairs, ‘S’ is exchanged by purine ‘G’ with probabilities taken from the 
third long-range correlated dataset with mean < > = .νp 0 5G , but now with standard deviation σ ρ= k/pG

, where 
ρ =​ σn/〈​n〉​ is the coefficient of variation of the average number of strongly bonded base pairs per segment that is 
adjusted according to the global GC content of the studied genome, and k =​ 1.75 is the empirically adjusted cor-
rection coefficient. After that the remaining ‘S’ are exchanged by ‘C’. In all cases, particular positions of either 
purines or pyrimidines within segments are chosen randomly, due to vanishing short-range correlations.

We have simulated 72 datasets each corresponding to a single bacterial genome in terms of its size and global 
GC content. Figure 4 indicates that the simulated DNA follows the regression lines that indicate the represent-
ative σn and ρ for the given 〈​n〉​ and ξ, respectively. Indeed, a more specific adjustment to the particular host/
model organism genome properties is possible by taking its specific σn instead of the universal σn =​ 9 and fitting 
a specific empirical coefficient k for the purine-pyrimidine alternation procedure from empirical genome data.
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Nevertheless, Fig. 3 shows that the distributions of the numbers of given nucleotides or base pairs in local 
150 bp segments can be well reproduced by the superstatistical model and by the DNA simulation algorithm 

Figure 3.  Distribution of the numbers of strongly (•​) and weakly (○​) bonded base pairs (upper panels) 
as well as individual nucleotides (lower panels) in the local 150 bp DNA segments for genomes of 12 
representative organisms, 3 from each of the very low, low, intermediate and high GC conteof the local 
numbersnt groups (with GC content increasing from left to right). Corresponding model approximations 
are given by red * for strongly and by red ×​ for weakly bonded base pairs. Blue dash-dotted lines show model 
approximations by Γ​-distributions. Black dotted and dashed lines show the same distributions for the randomly 
shuffled DNA sequences and for the randomly generated nucleotide sequences with the same GC content like 
in the corresponding empirical sequences, respectively. Small black ☐ symbols show the same distributions for 
DNA reconstructed from the corresponding proteome after a randomized back-and-forth translation test.
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despite of using not exact, but typical σn values for the given GC content. To emphasize the reproducibility of our 
results for a larger set of bacterial genomes, more data are shown in the Supplementary information (available) 
as Figs S1 and S2 for very low, Figs S5 and S6 for low, Figs S9 and S10 for intermediate as well as Figs S13 and S14 
for high overall GC content.

Internucleotide interval distributions.  Since neither binomial nor χ2 distributions fit the combinations 
of 〈​n〉​ and σn observed in the empirical data, we next follow a more generalized model with a positive support that 
could represent P(n), and thus also the relative quantity P(β) for all considered cases, that is the Γ​-distribution

β λ
α

β λβ=
Γ

−
α

α−P ( )
( )

exp( ),
(3)

1

where β =​ n/150 plays the role of the local intensity parameter, Γ​(α) is the Γ​-function, α is the shape parameter 
and λ is the rate parameter. The average of the Γ​-distribution is given by 〈​n〉​ =​ α/λ and its variance equals 
σ α λ= /n

2 2. Accordingly, the shape parameter can be expressed as α =​ 1/(σn/〈​n〉​)2 =​ 1/ρ2 such that it depends only 
on the coefficient of variation ρ =​ σn/〈​n〉​, and the rate parameter λ =​ α/〈​n〉​ adjusts for the average number of a 
given nucleotide per 150 bp segment 〈​n〉​. Figure 3 shows that Γ​-distributions with above parameters provide 
reasonable quality approximations despite of using not exact, but typical σn values for the given GC content.

For the entire DNA molecule, we have the superposition of multiple DNA segments with exponential inter-
nucleotide interval distributions characterized by local averages 〈​l〉​ that are inversely proportional to the local 
numbers of nucleotides n, that in turn are proportional to the local “intensity parameter” β, and thus the overall 
interval distribution for the entire genome can be determined in the framework of the above superstatistical con-
cept. Following Eq. 1 with Γ​-distributed P(β) one easily obtains
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that is asymptotically equivalent to the q-exponential distribution P(l)∝​(1 +​ (q −​ 1)(α/λ)l)−1/(q−1) =​ (1 +​ (q −​ 1)  
〈​n〉​l)−1/(q−1), where q =​ 1/(1 +​ α) =​ 1 +​ (σn/〈​n〉​)2 =​ 1 +​ ρ2 determines the slope of the asymptotic power law 
behaviour and 〈​n〉​ adjusts the position of the crossover, in agreement with our previous empirical findings29. 
Accordingly, the observational power law tailed distribution can be obtained directly from the law of total prob-
ability and also can be expressed in a simpler form than the q-exponential. Furthermore, it seems likely that the 
reason for the wide occurrence of q-exponentials in complex systems is simply the superposition of some locally 
independent patterns with different local concentrations, that can be explained by similar superstatistical models.

Figure 5 shows that the internucleotide interval distributions are also quite well reproduced by both the super-
statistical model as well as by the corresponding distributions in the simulated DNA. The fitted distributions 
exhibit the same values of α and λ parameters as predicted by the above analytical treatment. In particular, for 

Figure 4.  Averages 〈​n〉​ and standard deviations σn of the local numbers (a) of strongly •​ or weakly ○​ bonded 
base pairs as well as (b) of individual nucleotides A, C, G and T in local 150 bp DNA segments from 72 bacterial 
genomes. Small coloured symbols show the same quantities for the shuffled DNA sequences as well as for the 
randomly generated nucleotide sequences with the same GC content like in the empirical data, both following 
the binomial distributions. Linear regressions are given by full lines, while theoretical combinations of 〈​n〉​ and 
σn for the binomial and χ2-distributions are given by dashed lines. Corresponding data for the simulated DNA 
sequences are shown by red * and red ×​ for strongly and weakly bonded nucleotides, respectively. Small black 
☐ symbols show the same data for the DNA sequences obtained by a reverse translation of the corresponding 
proteomes, as a result of the back-and-forth translation test. (c,d) The same data expressed as a relative measure, 
given by the coefficients of variation ρ =​ σn/〈​n〉​ as a function of the relative fraction of the given base pairs or 
nucleotides ξWS or ξACGT, respectively.
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Figure 5.  Distribution of the intervals between strongly (coloured •​) and weakly (coloured ○​) bonded 
base pairs (upper panels) as well as between individual nucleotides (lower panels) for genomes of 12 
representative organisms, 3 from each of the very low, low, intermediate and high GC content groups 
(with GC content increasing from left to right). Corresponding model approximations are given by red 
* for strongly and by red ×​ for weakly bonded base pairs. Blue dash-dotted lines show results of numerical 
integration according to Eq. 2, while black dashed lines show corresponding approximations by q-exponential 
distributions. Dotted lines show the same distributions for the randomly shuffled DNA sequences. Small black •​ 
symbols show the same distributions after the randomized back-and-forth translation test.
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the distributions of intervals between strongly or weakly bonded base pairs, α decreases from α ≈​ 200 to α ≈​ 20 
with increasing the coefficient of variation ρ from 0.07 to 0.23, that corresponds to decreasing ξ from ξ ≈​ 0.7 to 
ξ ≈​ 0.3 (see also outliers in Fig. 4). For the distributions of intervals between G and C nucleotides, α increases 
from α ≈​ 6 to α ≈​ 50 for ξ increasing from ξ ≈​ 0.13 to ξ ≈​ 0.35, while for the distributions of intervals between 
G and C nucleotides, α increases from α ≈​ 10 to α ≈​ 30 for ξ increasing from ξ ≈​ 0.13 to ξ ≈​ 0.35, due to their 
more narrow range of the coefficients of variation ρ (see also Fig. 4). The figure also shows that random shuffling 
of the DNA sequence, as expected, leads to the reduction of the internucleotide interval distributions to simple 
exponentials that can be observed as straight lines in the semi-logarithmic plots. To emphasize the reproducibility 
of our results for a larger set of bacterial genomes, more internucleotide interval distributions and their model 
predictions are shown in the Supplementary information (available) as Figs S3 and S4 for very low, Figs S7 and S8 
for low, Figs S11 and S12 for intermediate as well as Figs S15 and S16 for high overall GC content.

Back-and-forth translation test.  Next we simulated translations of each studied genome to obtain corre-
sponding proteomes, and then a reverse translation to obtain a DNA sequence that encodes the given proteome. 
While the first procedure is straightforward and unambiguous, the second one is less trivial due to the inherent 
redundancy of the genetic code. We used a reverse translation procedure that randomly selects one of the triplets 
corresponding to a given amino acid residue. Taking into account that well above 90% of the bacterial genome 
contains coding DNA, there are only minor differences between the sizes of the original and the back-and-forth 
translated datasets, and thus corresponding finite size effects should be comparable. Despite that, as one can 
clearly observe from the above figures, there are significant discrepancies between the distributions of the num-
bers of given nucleotides in local 150 bp segments as well as between the distributions of the internucleotide 
intervals for the original and back-and-forth translated DNA. Deviations are especially pronounced when the 
GC content is significantly different from 50%. This indicates that the random choice of triplets corresponding to 
a given amino acid disrupts the variations of the local average numbers 〈​n〉​ and fractions ξ of the strongly- and 
weakly bonded base pairs as well as individual nucleotides and, especially, the long-range correlations in the 
genome, leading to the significant changes in the fluctuation functions (see Fig. 1) as well as to the corruption of 
the internucleotide interval distributions (see Fig. 5). Moreover, the randomized back-and-forth translation test 
leads to the distributions that are considerably further away from the empirical data than similar distributions for 
the randomly shuffled DNA sequences. This is easy to explain, since random shuffling preserves the total number 
and thus also the fractions of nucleotides, while back-and-forth translation does not. More sophisticated reverse 
translation algorithms are often adjusted to fit the global properties of the given host/model organism such as 
its GC content or the fraction of each codon in the genome, which only partially resolves the problem, since the 
long-range correlations are nevertheless corrupted.

The effects of optimal living temperature and extreme living conditions.  In a recent study29 we 
have observed moderate discrepancies between the internucleotide interval distributions in organisms with dif-
ferent optimal living temperatures that might be a sign of their adaptation to the external conditions. In terms of 
genome statistics, an easily observed sign of adaptation to non-typical thermodynamical constraints are specific 
laws governing the variation of both global and local GC contents. We next verify the validity of the suggested 
model for a cohort of extremophile organisms belonging to the Archaea kingdom. Remarkably, among three 
groups consisting of genomes from organisms with optimal living temperatures below 50 °C, between 50 °C and 
80 °C and above 80 °C, the first and the last groups have comparable average GC contents29.

Supplementary Figure S17 (available) shows the fluctuation functions F(s) for the studied archaeal genomes. 
The figure shows that there are significant variations of the crossover position both in the normal and high living 
temperature groups. While it has been shown that DNA persistence length decreases with increasing tempera-
ture28, there might be additional effects arising from the adaptation to other extreme living factors such as high 
salinity and high pressure. 

In the Supplementary information (available) similar distributions as in Fig. 3 for extremophile Archaea can 
be observed. In particular, Figs S18 and S19, Figs S22 and S23 as well as Figs S26 and S27 (available) show the 
corresponding distributions for the organisms with optimal living temperatures below 50 °C, between 50 °C and 
80 °C and above 80 °C, respectively. The figures show that in several observed cases there are considerable devi-
ations between the empirical and the model distributions, indicating that direct extrapolation of the laws gov-
erning the local arrangement of nucleotides in free living Bacteria does not always work for other microbial 
organisms such as extremophile Archaea. Distribution asymmetry, skewness and other shape modifications such 
as flattening of the distribution indicated by a plateau in its central part can be observed in several examples from 
different groups of extremophile genomes.

Supplementary Figs S20 and S21, Figs S24 and S25 as well as Figs S28 and S29 (available) show the intervals 
between strongly and weakly bonded base pairs as well as between individual nucleotides in the genomes of 
extremophile Archaea with optimal living temperatures below 50 °C, between 50 °C and 80 °C and above 80 °C, 
respectively. The figures show that, while the results of numerical integration according to Eq. 2 leading to the 
power law tailed approximations according to Eq. 4 agree with the empirical internucleotide interval distributions 
to a certain extent, the DNA simulation algorithm in several cases fails to reproduce the asymptotic behaviour of 
the distributions indicating that the nucleotide arrangement differs from that one observed in Bacteria, and only 
an effective phenomenological description is possible.

Hierarchical model, or superstatistics of superstatistics.  Contrast to bacterial DNA, eukaryotic  
genomes exhibit complex multi-level hierarchical structural organization. In a recent publication29, we reported 
that in the genomes of higher eukaryotes including humans internucleotide intervals exhibit a complex 
two-compound distribution that could be well approximated by two additive q-exponentials with q ≈​ 1.11, that is 



www.nature.com/scientificreports/

9ScIenTIFIc REPOrtS | 7:43034 | DOI: 10.1038/srep43034

asymptotically equivalent to the power law tailed distributions of form (4) with α ≈​ 9. Supplementary Figure S30 
(available) shows that such a distribution can be to a certain extent reproduced in a simulated DNA sequence that 
is organized as a hierarchical cascade. The first level, like in the bacterial DNA model, contains 150 bp segments, 
that for eukaryotes is also close to another important characteristic scale, the 146 bp cycle of DNA wrapping 
around a histone5. Next, 150 segments are organized in a single supersegment, and an additional long-range 
correlated variability parameter with the same H =​ 0.8 is added for these larger 1502 bp supersegments, that 
are now of the common size of chromatin loops. Finally, a third-level variability parameter also with H =​ 0.8 is 
added for 1503 bp supersupersegments that correspond to the typical size of isochores, large fragments of eukar-
yotic genomes that are characterized by stable GC content. By tuning the weights for these large-scale variability 
parameters, one can obtain a distribution that exhibits similar shape like in the empirical genomes of higher 
eukaryotes.

Indeed, the approximate reproduction of the distribution of internucleotide intervals cannot guarantee that 
the simulated DNA sequence would correspond to the same spatial structure as the empirical DNA exhibits. The 
eukaryotic DNA architecture has seven known characteristic scales, which should be implemented explicitly in a 
proper model setting to reproduce its spatial organization. However, we believe that similar principles based on 
superstatistical approach could be applied to characterize also the large-scale organization of eukaryotic DNA, 
and the internucleotide interval distributions could be useful as a testbed to verify the implementation of the 
respective nucleosome packaging and chromatin positioning models.

Predicting DNA mechanical properties.  The suggested model could be also used for the statistical pre-
diction of some mechanical properties of long DNA strands. It is well known that particular composition of 
nucleotides determines the local DNA curvature46, bending energy and several other important mechanical prop-
erties. In particular, at short scales the local sub-elastic chain (LSEC)47,48 and at long scales the worm-like chain 
(WLC) models49,50 accurately predict the local bending energy, that is proportional to the linear and squared local 
cumulative bending angles for given DNA segments, respectively51. The suggested superstatistical model can be 
easily extended to describe the corresponding DNA curvature or bending energy distributions by considering 
the local cumulative bending angle Θ as the local intensity parameter β and to obtain the respective macroscopic 
curvature or energy distributions from Eq. 1. In the absence of particular nucleotide composition, representative 
statistics for a DNA fragment of given size and GC content could be obtained by using the representative model 
parameters that have been used above to simulate the DNA sequences.

Adahptation of synthetic DNA patches to the host organism architecture: An outlook towards 
potential implications for genetic engineering.  In most practical scenarios, a synthetic genetic con-
struction has to be inserted at a specific position i into the DNA of the host organism (see Fig. 6). The sim-
plest case is when only one of the synthetic DNA strands carries a gene, e.g., in the direction from 5′​ to 3′​.  
Our goal is to suggest the synthetic insertion that would appear like a natural extrapolation of the preceding 
DNA of the host/model organism. For that, we first analyze the preceding host DNA by splitting it into 150 bp 
non-overlapping segments at positions i −​ 150, i −​ 300 and so on and calculating the local fractions of strongly 
and weakly based pairs ξWS as well as the local fractions of individual nucleotides ξA,C,G,T in each segment. Next 
we use our suggested model to predict the local fractions of both strongly/weakly bonded based pairs as well as 
individual nucleotides by the optimal extrapolation of the same quantities from the preceding host DNA onwards 
to the synthetic fragment following ref. 52

∑ξ ξ= = − +
=

−
−a a H j, ( 1/2)( 1) ,

(5)
m

j m

m

j m j j
H 3/2

min

max

where m is the current segment number that changes between mmin and mmax spanning over both the preceding 
piece of host DNA and the synthetic DNA patch. The calculation starts from ξm0

 that corresponds to the first 
segment m0 in the synthetic DNA patch, while the data used for calculation considers also the fractions of 
strongly/weakly bonded base pairs in the preceding segments of the host DNA by taking into account also j <​ m0. 
The prediction is continued iteratively for 150 bp segments of the synthetic DNA patch up to its completion. After 
the local fractions of both strongly/weakly based pairs as well as of individual nucleotides are obtained for each 
150 bp segment, they can be used as target quantities for the reverse translation optimization. During the reverse 
translation procedure, the current fractions of strongly/weakly bonded base pairs are calculated from already 
back-translated codons. In each ambiguous case, when a single amino acid residue can be represented by several 
codons, one should always choose that codon that leads to the local fraction of strongly/weakly bonded base pairs 
characterized by the minimum square displacement from the prediction provided by the model for the current 

Figure 6.  A schematic representation of the synthetic DNA patch insertion into existing host DNA. Existing 
part of host DNA upstream of the synthetic DNA patch is split into 150 bp segments m0 −​ 1, m0 −​ 2, …​, mmin and 
is used to calculate the optimized local concentrations ξWS and ξACGT in the synthetic DNA patch segments m0, 
m0 +​ 1 and so on, according to Eq. 5. Further downstream the synthetic patch is connected with the remaining 
part of the host DNA (with or without an optional linker) in the way that the local concentrations ξWS and ξACGT 
in following DNA fragments m until mmax also follow Eq. 5.
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150 bp segment. Next, the same procedure is repeated for the purine-pyrimidine alternation, separately for choos-
ing between G and C in strongly and between A and T in weakly bonded base pairs, in each case taking the 
respective model parameters, this way resolving the remaining ambiguity.

Finally, similar optimization strategy can be employed to find the best ending position of the synthetic DNA 
patch including, if necessary, an optimal size and content of the linker between the synthetic patch and the for-
ward piece of host DNA. If the synthetic DNA patch has to encode functional genes on each of its strands, an 
optimization problem with two equations for the directions from 5′​ to 3′​ and from 3′​ to 5′​ similar to Eq. 5 arises, 
and a best fit can be found iteratively.

Conclusion
To summarize, we have suggested a superstatistical model that is capable of reproducing the statistical laws 
that govern the arrangement of nucleotides in the primary sequence of bacterial DNA. The model considers 
the entire DNA molecule as a concatenation of non-overlapping segments, with each segment characterized by 
its own number (or fraction) of strongly/weakly bonded base pairs as well as individual nucleotides. The size 
of the segments is determined by the DNA persistence length that is approximately 150 bp under physiological 
conditions. We assume that within each segment the nucleotides are allocated randomly, corresponding to the 
local equilibrium scenario, while the numbers (or fractions) of different nucleotides in consecutive segments 
alternate in a long-range correlated manner with H =​ 0.8. Based on this model, we have also suggested a DNA 
simulation procedure that explicitly reproduces the typical distributions of internucleotide intervals for bacterial 
genomes with very different GC contents. We have also shown that the predictions by the model can to a certain 
extent reproduce similar properties in other microbial genomes, while some deviations can be observed in several 
extremophile Archaea, that might be attributed to their adaptation to the extreme living conditions such as high 
temperatures, pressure and salinity, that also affects the DNA persistence length. We also show that the suggested 
superstatistical model can be organized in a hierarchical cascade, that could lead to a reasonable reproduction of 
the internucleotide interval distributions in higher eukaryotic genomes, and thus might be also useful as a testbed 
for the respective nucleosome packaging and chromatin positioning models. Finally, as an outlook, we suggest 
how the proposed model could be utilized to facilitate the adaptation of the synthetic genetic constructions by 
choosing the most appropriate codons that would lead to the best reproduction of the empirical laws governing 
the nucleotide arrangement at particular positions in the genomes of the respective host/model organisms, that is 
an important issue for genetic engineering of long DNA patches.

Methods
Detrended fluctuation analysis.  The detrended fluctuation analysis (DFA) method was originally sug-
gested by Peng et al. and generalized by Kantelhardt et al. and Hu et al.8,45,53. It is based on the analysis of the 
profile, or the cumulative sum = ∑ =Y yj i

j
i1  of the raw series of numbers yi. The profile is split into Ns non-over-

lapping segments of size s. In each segment k one determines the best polynomial fit yk(j) and obtains the variance 
= ∑ −= − +F s s Y y j( ) (1/ ) ( ( ))k j

s
k s j k

2
1 [( 1) ]

2 between the local trend and the profile in each segment k. Finally, one 
obtains the fluctuation function F(s) by averaging over all segments
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For long-range correlated data F(s) scales with s as F(s)~sH, where H is the Hurst exponent directly related to the 
autocorrelation function C(s) by C(s)~s−γ, where γ =​ 2 −​ 2H. When the correlations are vanishing, C(s) =​ 0 for 
s >​ 0, and H =​ 1/2.

Fluctuation analysis deals with sequences of numbers, not nucleotides, and thus in general the results depend 
on the way how the studied DNA sequence has been replaced by a numeric sequence. Early studies focused 
mainly on the replacement of a given nucleotide (A, C, G or T) or their combination by one, while the others by 
zero54, or on the “DNA walks” which increase by one when a pyrimidine (C or T) is observed and decrease by 
one when a purine (A or G) is observed in a DNA sequence7. Since we are mostly interested in the properties that 
determine the mechanical and thermodynamical properties of DNA, we exchange the nucleotide base pairs by 
their bond enthalpies, −​11.8 for A:T and −​23.8 kcal/mol for G:C, respectively4.

Interval distributions.  Distributions of intervals between similar items in a series are known to explicitly 
reflect the persistence properties of data sequences. If the items of interest are allocated randomly, intervals 
between them follow a simple exponential distribution = −P l l l l( ) (1/ )exp( / ), where 〈​l〉​ is the average inter-
val, and are uncorrelated. In linearly long-range correlated data, one expects the asymptotic PDF of the intervals 
to follow a stretched exponential ∝ − γP l l lln [ ( )] ( / ) , with exponent γ =​ 2 −​ 2H55,56, where H is the Hurst 
exponent characterizing the LRC. In the presence of nonlinear correlations, the PDF gets even broader and decays 
asymptotically by a power-law P(l)~(l/〈​l〉​)−δ, where the exponent δ decreases when the LRC gets more pro-
nounced57,58. Related analytical results on gap sizes and cluster sizes for widespread models including random 
walks, Levy flights as well as for systems exhibiting phase transitions have been obtained59–61. In recent years, 
interval distributions have been shown to efficiently reflect structural and dynamical features of complex systems 
in physics, biology, geoscience, climate, finance and many other applications35–37,55–58,62. Besides already men-
tioned application to the primary structure of DNA29, very recently an approach to the prediction of structural, 
localization and functional properties of unknown proteins based on their explicit reflection in the distributions 
of intervals between similar amino acid residues has been suggested63.
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This Article contains errors. An improper normalization factor was inadvertently applied, resulting in an incor-
rect form of Eq. (4). In the Introduction section,

“In this setting, according to the law of total probability, the macroscopic energy distribution is then given by

∫ ∫β β β β
β

β= = β∞ ∞ −P E P P E P e( ) ( ) ( ) d ( ) 1
Z( )

dE
0 0

where P(β) is the distribution of β over all local cells in the macroscopic system and Z(β) is a normalization factor 
for e−βE at specified β41.”

should read:

“In this setting, according to the law of total probability, the macroscopic energy distribution is then given by

∫ ∫β β β β
β

β= = β∞ ∞ −P E W P E W e( ) ( ) ( ) d ( ) 1
Z( )

dE
0 0

where W(β) is the distribution of β over all local cells in the macroscopic system and Z(β) is a normalization 
factor for e−βE at specified β41.”

Therefore in the Results and Discussion section under the subheading ‘Superstatistical model’,

“Due to the effective absence of correlations at short scales (see Fig. 1), we assume that the nucleotides are 
arranged randomly within each segment, and thus the internucleotide intervals l are distributed exponentially 
P(l) =​ 1/〈​l〉​ exp(−​l/〈​l〉​), where 〈​l〉​ is the local average interval for each given segment. However, since the numbers 
of respective nucleotides or base pairs per segment n exhibit pronounced segment-to-segment variations along 
the DNA sequence, this also leads to the variations of the local average interval 〈​l〉​ that is inversely proportional 
to n. In this model, for known P(n), the marginal distribution is given by

∫ ∫β
β

β= =








β∞ − ∞ −P l P
Z

e P n n e n( ) ( ) 1
( )

d
150 150

d ,l nl

0 0

/150

where β =​ n/150 is the fraction of specific nucleotides or base pairs in each of the local fragments that plays the 
role of the local intensity parameter and is bounded between 0 and 1.

Next we focus on the shape of the distributions P(n).”

should read:

“Due to the effective absence of correlations at short scales (see Fig. 1), we assume that in each of the Nseg seg-
ments of length 150 bp we have nν randomly located sites, where nν could stand for the number of S,W,A,C,G or T 
in segment ν. Then in the ν-th segment, the mean interval length 〈​lν〉​ =​ 150/nν and the probability Pν(l) of finding 
an interval of length l is given by
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http://doi: 10.1038/srep43034


www.nature.com/scientificreports/

2ScIenTIFIc REPOrtS | 7:46917 | DOI: 10.1038/srep46917

= 〈 〉 − 〈 〉 ≅ 〈 〉 − 〈 〉 = − .ν ν ν ν ν ν ν
−P l l l l l l n l n( ) (1/ ) (1 1/ ) (1/ ) exp ( / ) ( /150) exp( /150)l 1

Accordingly, the probability P(l) of finding an interval of length l in all Nsegsegments is given by

=
∑

∑
.ν ν ν

ν ν

=

=

P l
n P l

n
( )

( )N

N
1

1

seg

seg

By introducing βν =​ nν/150 that specifies the local fraction of the considered sites in segment ν, P(l) becomes

β β

β
=

∑ −

∑
.ν ν

ν ν

=

=

P l
l

( )
exp( )N

N
1

2

1

seg

seg

By introducing the probability density W(β) the sum over the segments can be replaced by an integral,

∫

∫

β β β β

β β β
=

−
P l

W l

W
( )

( ) exp( ) d

( ) d
0

1

0

1

By substituting ∫β β β β β β=P W W( ) ( ) / ( ) d
0

1  we finally obtain

∫ β β β=P l P P l( ) ( ) ( ) d (2)0

1

in agreement with the law of total probability (1).

Next we focus on the shape of the distributions P(β). For simplicity, we study the related distributions of the num-
bers n of sites in each fragment P(n) =​ P(150 · β)/150. ”

In addition, under the subheading “Internucleotide interval distributions”,

“Since neither binomial nor χ2 distributions fit the combinations of 〈n〉 and σn observed in the empirical data, we 
next follow a more generalized model with a positive support that could represent P(n), and thus also the relative 
quantity P(β) for all considered cases, that is the Γ​-distribution

β λ
α

β λβ=
Γ

−
α

α−P ( )
( )

exp( )
(3)

1

where β =​ n/150 plays the role of the local intensity parameter, Γ​(α) is the Γ​-function, α is the shape parameter 
and λ is the rate parameter.”

should read:

“Since neither binomial nor χ2 distributions fit the combinations of 〈n〉 and σn observed in the empirical data, we 
next follow a more generalized model with a positive support that could represent P(n) for all considered cases, 
that is the Γ​-distribution

λ
α

λ=
Γ

−
α

α−P n n n( )
( )

exp( )
(3)

1

where β =​ n/150 plays the role of the local intensity parameter, Γ​(α) is the Γ​-function, α is the shape parameter 
and λ is the rate parameter.”

Furthermore,

“Following Eq. (1) with Γ​-distributed P (β) one easily obtains

∫
λ
α

β λβ β β λ
α

α
λ

λ
λ

∝
Γ

− − =
Γ

Γ
+

=


 +





α
α

α

α

α∞ −P l l
l l

( )
( )

exp( ) exp( ) d
( )

( )
( ) (4)0

1

that is asymptotically equivalent to the q-exponential distribution.

α λ∝ + − = + −− − − −P l q l q n l( ) (1 ( 1) ( / ) ) (1 ( 1) )q q1/( 1) 1/( 1), where α σ= + = + =q n1/(1 ) 1 ( / )n
2   

ρ+1 2 determines the slope of the asymptotic power law behaviour and n  adjusts the position of the crossover, 
in agreement with our previous empirical findings29.”
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should read:

“Accordingly, for Γ​-distributed P(n) the local fractions W(β) are also Γ​-distributed as β =W ( )  
λ α β λ βΓ −α α−[ / ( )] exp ( )0

1
0 , with 〈​β〉​ =​ α/λ0 and σ α λ=β /2

0
2, where the shape parameter α is the same as for 

P(n), while the rate parameter λ0 =​ 150 · λ. Then P(β) is also Γ​-distributed with the shape parameter (α +​ 1), and 
thus the marginal distribution of intervals follows

∫
λ
α

β λ β β β β

λ
α

α α α
λ

λ α α
λ

=
Γ

− −

=
Γ

Γ +
+

=
+

+

α
α

α

α

α

α

∞ −

+

+

P l l d

l

l

( )
( )

exp( ) exp( )

( )
( ) ( 1)
( )

( 1)
( )

,
(4)

0
0 1

0
2

0

0
2

0

0
2

that is equivalent to the q-exponential distribution τ = + − − −P C b q l( ) [1 ( 1) ] q1/( 1) with α= + +q 1 1/( 2), 
α λ= +b ( 2)/ 0 and α α λ= +C ( 1) / 0

2, in agreement with our previous empirical findings29.

This discrepancy, while providing different asymptotic behavior, can hardly be observed for real bacterial DNA 
sequences. The reason is that α ρ= 1/ 2 is inversely proportional to the squared coefficient of variation ρ σ β= β/  
of the fractions of given sites β. Since under normal conditions long DNA segments with nearly no strongly 
bonded base pairs cannot exist over long time due to their instability, and long DNA segments with nearly solely 
strongly bonded base pairs would require irrelevantly high energy consumption for unwinding that precede rep-
lication and transcription thereby lacking its function, we always remain at ρ  1. This leads to α  1 thus 
making the decay rates of α and α +​ 2 hardly distinguishable in observational plots. Our tests indicate that within 
the available range of P(l) up to the maximum internucleotide interval l that can be observed in studied bacterial 
DNA sequences this correction does not change significantly the PDF shapes and affects neither the validity of the 
figures of P(l) in the original version of this Article nor the conclusions that have been drawn specifically for the 
bacterial DNA. However, this correction may appear important when modeling considerably longer (e.g. eukar-
yotic) DNA sequences as well as other complex systems where similar laws can be observed with ρ ≅ 1,with 
exponentially distributed intensity parameter β as a prominent example.
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