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RNA-Seq-based transcriptomic 
and metabolomic analysis reveal 
stress responses and programmed 
cell death induced by acetic acid in 
Saccharomyces cerevisiae
Yachen Dong, Jingjin Hu, Linlin Fan & Qihe Chen

As a typical harmful inhibitor in cellulosic hydrolyzates, acetic acid not only hinders bioethanol 
production, but also induces cell death in Saccharomyces cerevisiae. Herein, we conducted both 
transcriptomic and metabolomic analyses to investigate the global responses under acetic acid stress 
at different stages. There were 295 up-regulated and 427 down-regulated genes identified at more than 
two time points during acetic acid treatment (150 mM, pH 3.0). These differentially expressed genes 
(DEGs) were mainly involved in intracellular homeostasis, central metabolic pathway, transcription 
regulation, protein folding and stabilization, ubiquitin-dependent protein catabolic process, vesicle-
mediated transport, protein synthesis, MAPK signaling pathways, cell cycle, programmed cell death, 
etc. The interaction network of all identified DEGs was constructed to speculate the potential regulatory 
genes and dominant pathways in response to acetic acid. The transcriptional changes were confirmed 
by metabolic profiles and phenotypic analysis. Acetic acid resulted in severe acidification in both cytosol 
and mitochondria, which was different from the effect of extracellular pH. Additionally, the imbalance 
of intracellular acetylation was shown to aggravate cell death under this stress. Overall, this work 
provides a novel and comprehensive understanding of stress responses and programmed cell death 
induced by acetic acid in yeast.

Nowadays, there is a great need for renewable biofuels to reduce reliance on fossil fuels1. Cellulosic ethanol is an 
ideal clean biofuel, which can be produced via saccharification and fermentation of acidic hydrolysates from the 
lignocellulosic biomass2. Saccharomyces cerevisiae is considered as a worthy biocatalyst for ethanol conversion 
owing to its high productivity and robust performance3. However, there are some inhibitors in lignocellulosic 
hydrolysates, which impair yeast growth and bioethanol yield. Specifically, acetic acid is a predominant inhibitor 
with the high concentration typically ranging from 1 to 15 g/L in the hydrolysates4. The productivity and yield 
of cellulosic ethanol have been economically hampered by the toxicity of acetic acid in the acidic hydrolysates. 
It is difficult to comprehensively understand the inhibitory effect of complex inhibitors in the hydrolysates. 
Nevertheless, we can take the first step to investigate the toxic effects of acetic acid on yeast growth under acidic 
conditions.

At an extracellular pH below 4.76 (pKa), the undissociated acetic acid enters yeast cells primarily by passive 
diffusion, and dissociates into acetate and protons in neutral cytoplasm5. The protons can be pumped out of cells 
by ATPase Pma1p under low concentration of acetic acid6. Meanwhile, acetate can be metabolized to acetyl-CoA 
by Acs1p (peroxisomal) or Acs2p (cytosolic), then oxidized in the tricarboxylic acid (TCA) cycle, consumed in 
the glyoxylate shunt, or used for the synthesis of macromolecules by gluconeogenesis7. These suggest a potential 
connection between acetic acid and the acetyl-CoA pool, which is essential for intermediary metabolism, histone 
acetylation, and transcriptional regulation8,9. However, the metabolism of acetic acid is generally subjected to 
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glucose repression in S. cerevisiae5. Little is known about the impact of acetate increasingly accumulating in yeast 
cells upon acetic acid stress.

High levels of acetic acid can inhibit yeast cell growth, but a low external pH causes comparable growth inhibi-
tion with a lower acetic acid concentration5, and even induces programmed cell death (PCD) with typical pheno-
types of morphology and physiology10. The mitochondria-dependent death process is also activated during acetic 
acid treatment11. Different approaches, such as phenotypic screening of the mutant collections, proteomics and 
metabolomics analysis, are applied to identify the genes, proteins, and metabolic pathways in response to acetic 
acid stress12–14. Moreover, Lee et al. have compared six transciptome datasets for genes regulated by acetic acid 
in yeast under various conditions, including different strains, extracellular pH, and acetic acid concentrations, 
but all of the data hardly agree well with each other15. Therein, five studies employed microarray analysis to eval-
uate the transcriptional changes in acetic acid treated cells16–20. With the advent of next-generation sequencing, 
high-throughput mRNA sequencing (RNA-Seq) has become an attractive alternative for transcriptomic analysis, 
which can uncover novel transcriptional-related events and quantify the expression genome-wide in a single assay 
with high resolution, better dynamic range of detection, and lower technical variation21,22.

The toxic effects of acetic acid in lignocellulosic hydrolysates mainly derive from three aspects: high con-
centration, low pH, and nitrogen limitation. Nitrogen starvation can also induce bulk degradation in yeast23. 
Therefore, we performed the experiments with 150 mM acetic acid (pH 3.0) for different times in a synthetic 
complete (SC) medium supplemented with only auxotrophic amino acids and nucleotides. Both transcriptomic 
and metabolomic analyses were used to investigate the global responses of yeast cells under acetic acid stress and 
identify the regulatory mechanisms for rerouting metabolic fluxes. Cell viability and mitochondrial degradation 
were firstly measured under different external pH or acetic acid concentrations. Cytosolic pH (pHcyt) and mito-
chondrial pH (pHmit) were in situ monitored using a pH-sensitive ratiometric pHluorin in treated and untreated 
cells24. Furthermore, the phenotypic properties of yeast cells were confirmed by PCD assay, scanning and trans-
mission electron microscopies. The imbalance of histone acetylation was also analyzed to evaluate the impact on 
cell death under acetic acid stress. These findings suggest new insights into how yeast cells respond to acetic acid 
stress, and contribute to the exploration of the engineered S. cerevisiae strains with a high inhibitor tolerance for 
bioethanol production.

Results
Acetic acid induces cell death and mitochondrial degradation differing from the effect of low 
extracellular pH. Acetic acid triggers PCD in yeast cells with a typical feature of mitochondrial degra-
dation11, and the weak acid toxicity is aggravated in the medium at a lower pH5. To distinguish the effects of 
extracellular pH and acetic acid on cell death, we respectively compared cell viability and mitochondrial degra-
dation in S. cerevisiae W303–1B. In this work, cell viability was measured by colony forming unit (CFU) counts. 
Mitochondrial matrix-targeted green fluorescent protein (GFP) has been proved to be an effective method to 
detect mitochondrial degradation by flow cytometry11, thus we analyzed mitochondrial degradation in W303 
strain transformed with pYX232-mtGFP under the control of TPI promoter25 by measuring the percentage of 
cells that lost mtGFP fluorescence.

We first compared the cell viability and mitochondrial degradation in yeast cells under different culture pH 
levels without acetic acid treatment. The culture samples were collected and spotted on the solid YPD medium at 
28 °C for 2 d. We observed no significant difference (P >  0.05, two-tailed Student’s t test) in cell survival with the 
culture pH from 6.0 to 3.0 (adjusted with 1 M HCl), but a steep decline in cell viability at extracellular pH levels 
of 2.0–2.5 (Fig. 1A). In contrast, the cell viability decreased significantly under acetic acid treatment (≥ 30 mM) at 
the same extracellular pH 3.0 (Fig. 1B). Likewise, there was no delay in GFP disappearance in the media without 
acetic acid at a pH range of 3.0–5.7, but a decrease in GFP-positive cells when the acetic acid concentration was 
more than 60 mM at pH 3.0 (Fig. 1C,D). A sharp increase in mitochondrial degradation was also observed when 
the pH fell to 1.5 in untreated cells (Fig. 1C). Thus, it can be seen that the change of extracellular pH from 6.0 
to 3.0 without acetic acid treatment has no significant impact on cell death in S. cerevisiae (P >  0.05, two-tailed t 
test), but acetic acid induces cell death with the concentration above 30 mM when the culture pH remains at 3.0. 
In order to explore the truth behind it, we chose a severe condition (150 mM acetic acid, pH 3.0) for further study.

Acetic acid results in typical phenotypes of programmed cell death. Though acetic acid-induced 
PCD has been widely reported in yeast strains5,10,11, there is still a need for a better understanding of the cascading 
events. Accordingly, the phenotypic properties of yeast cells were compared in SC1 medium (0.67% (w/v) yeast 
nitrogen base without amino acids (YNB), 2% (w/v) D-glucose, 0.004% (w/v) histidine, 0.008% (w/v) leucine, 
0.004% (w/v) tryptophan, 0.004% (w/v) adenine and 0.004% (w/v) uracil, pH 3.0) with and without 150 mM 
acetic acid. In Fig. 2A, we observed a typical S-shaped growth curve in the control group (CK). In the presence of 
acetic acid, yeast growth was seriously inhibited, although there was a slight increase during the first 8 h (Fig. 2A). 
Since FITC-conjugated Annexin V and propidium iodide (PI) have been employed to monitor phosphatidylser-
ine externalization and loss of membrane integrity, Annexin V/PI co-staining was performed to distinguish early 
apoptosis (Annexin V+ , PI− ), late apoptosis (Annexin V+ , PI+ ), and primary necrosis (Annexin V− , PI+ )26.  
During acetic acid treatment (150 mM, pH 3.0), W303-1B cells mainly showed an increase in late apoptotic pop-
ulations from 45 min to 200 min (Fig. 2B). In contrast, there were no significant changes (P >  0.05, two-tailed t 
test) in cell death during the treatment without acetic acid.

Next, transmission electron microscopy (TEM) analysis revealed the intracellular structures were greatly 
changed in many yeast cells treated with acetic acid (Fig. 2C). The untreated cells exhibited intact structures of 
organelles and cell nucleus, excessive accumulation of lipid droplets (LD, red arrows), with a thick and transpar-
ent cell wall. After acetic acid treatment, vacuolation of the cytoplasm was increasingly observed in yeast cells, 
intracellular organelles and cell nucleus were rapidly disintegrated or collapsed, the accumulation of LD was 
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abolished, and the cell wall became thinner with a darker color. There was extensive chromatin condensation 
along with DNA fragmentation in cells treated with acetic acid. In addition, the surface morphology in yeast cells 
with and without acetic acid treatment was compared using scanning electron microscopy (SEM). As shown in 
Fig. 2D, the rough surface in untreated cells became much smoother, and some cells were ruptured (red arrows) 
after incubation with 150 mM acetic acid (pH 3.0), indicating the yeast cells became vulnerable to this weak acid.

Intracellular acidification is induced upon acetic acid stress in cytosol and mitochondrial 
matrix. Intracellular pH (pHi) is tightly linked to cellular signal regulation in yeast27. It has been viewed as 
an effective method for in situ pHi measurements in S. cerevisiae by expressing the pH-sensitive GFP ratiometric 
pHluorin24,28. pHcyt and pHmit can be determined by transforming the multicopy plasmids pYES2-ACT1-pHluorin 
and pYES2-ACT1-mtpHluorin24. The latter was fused with a mitochondrial targeting signal of 69 amino acids 
in upstream of F0-ATPase subunit 9 in Neurospora crassa24, which made it possible to determine the pH value in 
the mitochondrial matrix. The in situ calibration curves for pHcyt and pHmit measurements are shown in Fig. S1.

In untreated cells, the pHcyt was 6.98 ±  0.03 at 45 min, and slightly increased to 7.08 ±  0.02 at 120 min, 
although the external pH in medium was 3.0 (Fig. 3A). These indicated that yeast cells could maintain a rela-
tively neutral pH in cytosol under the acidic condition. In contrast, the pHcyt decreased dramatically in yeast 
cells after acetic acid treatment for 45 min and 120 min, which were 4.66 ±  0.22 and 3.94 ±  0.22, respectively 
(Fig. 3A). Simultaneously, the pHmit in cells treated with acetic acid were respectively 5.38 ±  0.09 (45 min) and 
5.22 ±  0.17 (120 min), while the untreated cells showed a pHmit around 7.83 in different culture times (Fig. 3B). 
These data show that yeast cells can also maintain a mitochondrial pH with a slight alkalinity in acidic medium 
(pH 3.0), but acetic acid treatment results in severe intracellular acidification in the cytosol and mitochondrial 
matrix. Although yeast cells have an ability to restore pHi when the concentration of acetic acid is below 60 mM6, 
the pHi recovery was greatly suppressed at the concentration of 150 mM acetic acid. In view of the above data at 
same conditions, the severe acidification probably leads to intracellular damage and degradation, thus inducing 
programmed cell death.

Global transcriptional changes are stimulated by acetic acid stress. To investigate the stress 
responses under acetic acid stress, we performed transcriptome analysis in S. cerevisiae cells at different treatment 
times. Two high-quality mRNA samples were selected for RNA-Seq analysis from three independent experiments 

Figure 1. Cell viability and mitochondrial degradation of S. cerevisiae under different conditions.  
(A,B) CFU assay under different external pH or acetic acid concentrations, respectively. (C,D) Loss of 
mitochondrial GFP-positive cells under different external pH or acetic acid concentrations, respectively.  
Values are mean ±  S.D. (n =  3). *P <  0.05, **P <  0.01, ***P <  0.001, two-tailed t test.
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for each condition. All the raw data have been registered at the Sequence Read Archive in NCBI under accession 
number SRP075510. Further details of the RNA-Seq data are provided in Table S1. Q20 and Q30 of all clean reads 
were respectively more than 99.2% and 95.8%, thus the RNA-Seq data were of high quality for transcriptome 
analysis.

Next, RNA-Seq data were validated by quantitative real-time polymerase chain reaction (qPCR) for analysis 
of mRNA expression. Fifteen genes with distinct fold changes in different biological pathways were selected for 
verification (Fig. S2A). As shown in Fig. S2B, a high correlation was observed between the RNA-Seq and qPCR 
data (R2 =  0.96), demonstrating the validity of RNA-Seq data for genes with various transcript abundances.

The differentially expressed genes (DEGs) were identified to show significant change in transcriptional expres-
sion with more than 2-fold change (q-value <  0.05). There were respectively 893, 758, and 874 DEGs at 45 min, 
120 min, and 200 min after treatment of 150 mM acetic acid (pH 3.0) (Fig. 4). Comparing to the control groups 
(CK), 381, 307, and 377 genes were up-regulated in acetic acid treated groups (Ac) at three time points, while 512, 
451, and 497 genes were down-regulated (Fig. 4D). The large number of DEGs suggests that acetic acid has global 
effects on stress responses and PCD in S. cerevisiae, and more DEGs were down-regulated than up-regulated in 
general.

Figure 2. Comparison of phenotypic properties in yeast cells with and without acetic acid treatment at 
different times. (A) Growth curves of treated and untreated cells, with an enlarged image of treated cells in 
the insert. (B) PCD assay. Values are mean ±  S.D. (n =  3). *P <  0.05, ***P <  0.001, two-tailed t test. (C) TEM 
observation. Lipid droplets are indicated by arrows. (D) SEM observation. Disrupted cells are indicated by 
arrows.
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Figure 3. Change of pHi in yeast cells under acetic acid stress. (A) In situ pHcyt of treated (Ac) and untreated 
(CK) cells at different times. (B) In situ pHmit of yeast cells at different times. Values are mean ±  S.D. (n ≥  3).

Figure 4. Comparison of gene expression between yeast cells with and without acetic acid at different 
times. (A–C) Scatterplot matrix comparison of gene expression in treated (Ac) and untreated (CK) cells at 
45 min, 120 min and 200 min, respectively. (D) Venn diagram of DEGs at the three time points.
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More than 94.7% of DEGs at different times are annotated with GO terms. The overrepresented functional 
categories are presented in Fig. S3. Among all three GO functional categories, the proportions of DEGs in corre-
sponding subcategories at three time points were mainly consistent with each other. The most dominant subcat-
egories were involved in cellular process (88.9% DEGs at 45 min, 89.2% at 120 min, 88.8% at 200 min), metabolic 
process (71.6%, 71.0%, 73.5%), and biosynthetic process (35.2%, 39.3%, 41.6%) in biological process; organelle 
(71.1%, 70.8%, 73.7%), nucleus (37.1%, 33.0%, 32.7%), and membrane (35.5%, 37.3%, 33.9%) in cellular com-
ponent; binding (49.2%, 45.9%, 47.8%), catalytic activity (42.6%, 42.2%, 38.4%), and ion binding (29.5%, 26.4%, 
26.5%) in molecular function.

All DEGs were further mapped to terms in the Kyoto Encyclopedia of Genes and Genomes (KEGG, http://
www.kegg.jp/) database. There were 303, 321, and 418 DEGs at different times matched to KEGG pathways. 
As illustrated in Fig. S4, ‘metabolic pathways’ was the largest category, containing 16.9%, 17.3%, and 15.2% 
DEGs at three time points (45 min, 120 min, and 200 min). Among them, there were many DEGs (3.9%, 5.9%, 
and 3.9%) involved in ‘biosynthesis of amino acids’. It was indicated that some coordinated changes appeared 
in global metabolic pathways for yeast cells upon acetic acid stress over time, whereas the proportion of ribo-
some protein-coding genes in DEGs was rapidly increased from 2.7% (45 min) to 13.3% (200 min), suggesting 
that the expression of ribosomal genes was greatly changed over time during acetic acid treatment. Herein, the 
cross-DEGs at more than two time points were first selected for investigating the differential expression of core 
biological functions and pathways under acetic acid stress (Table S2).

Cross-DEGs reveal core biological functions and pathways in response to acetic acid 
stress. There are four renowned databases, namely KEGG, UniProt (The Universal Protein Resource, http://
www.uniprot.org/), SGD (Saccharomyces Genome Database, http://www.yeastgenome.org/), and MIPS (Munich 
Information Center for Protein Sequences, http://mips.helmholtz-muenchen.de/funcatDB), which are profes-
sional for the analyses of gene functions and metabolic pathways in S. cerevisiae. However, there are still some 
differences in functional annotations and classifications for yeast genes owing to different algorithms and update 
issues. Herein, 722 cross-DEGs (295 up-regulated and 427 down-regulated, Table S3) at more than two time 
points were systematically categorized using these four databases, and confirmed by literature retrieval. All of 
the DEGs were annotated according to the SGD and UniProt databases. In this section, the common DEGs 
at three time points were emphasized in bold, with up (↑ ) and down arrow (↓ ) respectively indicating up- and 
down-regulation. The well-represented biological pathways were involved in cellular homeostasis, central meta-
bolic pathway, stress response, transcription regulation and histone modification, cellular uptake and transport, 
ubiquitination process, protein synthesis, MAPK signaling pathway, cell cycle and DNA repair, and programmed 
cell death (Fig. 5).

Intracellular ionic and redox homeostases are essential for the maintenance of cell survival and metabolism. 
Upon acetic acid stress, 8 genes (GDT1, MIR1, NCE103, NHA1, OPT1, PMA1, PMA2, and VMA1) sustaining 

Figure 5. Functional classifications of the cross-DEGs upon acetic acid stress at more than two time points. 
The numbers of up-regulated and down-regulated DEGs are highlighted in red and blue, respectively.

http://www.kegg.jp/
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http://www.uniprot.org/
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pH homeostasis in cytosol were significantly down-regulated at different times. Likewise, 24 DEGs in NAD(P)/
NAD(P)H homeostasis were greatly inhibited by acetic acid, which were mainly correlated to NAD+  synthesis 
(SDT1, BNA2, BNA3, BNA4, and FUN26), and redox transformation from NAD(P) to NAD(P)H (ADH1, ALD3, 
ALD5, ALD6, GDH1, GDH2, GDH3, GLT1, GND2, IDP1, IDP2, ILV5, LYS9, MET13, MTD1, and YEF1). These 
would aggravate intracellular acidification induced by acetic acid in S. cerevisiae. Moreover, the up-regulated 
DEGs in calcium homeostasis and signaling pathway (CDC31, CMK2, LCB5, MDM10, MMM1, PTP2, RCN1, 
and REE1) likely had an important impact on signal transduction and stress responses in acetic acid treated cells.

Of the global metabolic pathway, 157 DEGs were identified in the central metabolic pathway, including amino 
acid metabolism (4 up-regulated and 66 down-regulated genes), carbohydrate metabolism (20 up-regulated and 
47 down-regulated genes), and lipid metabolism (9 up-regulated and 24 down-regulated genes). Almost all of the 
DEGs in the biosynthesis of amino acids were down-regulated, and 3 up-regulated genes (BAT2, CHA1, EHD3) 
were involved in the catabolism of amino acid, suggesting that the biosynthesis of amino acids was suppressed 
by acetic acid treatment. Interestingly, most of the DEGs in downstream of carbohydrate metabolism, which 
is next to amino acid metabolism, were also negatively influenced, but many upstream DEGs in carbohydrate 
metabolism were up-regulated in response to acetic acid stress. Specifically, the down-regulated DEGs mainly 
included glycolysis process (ADH1, ALD3, ALD5, ALD6, CDC19, ENO1, GID8, GLK1, HSP31, NDE2, PCK1, 
PDC1, PDC6, PGM1, and YIG1), pyruvate metabolism (ACC1, ALD5, ALD6, CDC19, DAL7, GLO4, HSP31, 
LYS21, PCK1, and PDC1), and NAD(P)/NAD(P)H homeostasis (ADH1, ALD3, ALD5, ALD6, GND2, IDP1, 
IDP2, NDE2, and YHM2). Among the up-regulated DEGs, there were 9 genes (EMI2, FLO11, GLC3, GSY1, 
HXK1, IMA1, MAL12, PRM15, and YPI1) involved in starch and sucrose metabolism. In addition, lipid metab-
olism was likely repressed by acetic acid stress, in which three key genes (FAS1, FAS2, and ACC1) of fatty acid 
biosynthesis were significantly down-regulated.

Transcription factors are essential for yeast cells in response to environmental stresses. There were 13 DEGs 
up-regulated by acetic acid stress, but more DEGs (23 genes) were repressed. These might explain why more genes 
in acetic acid-treated cells were down-regulated rather than up-regulated at three time points, in comparison 
with the untreated cells. These DEGs in transcription regulation were related to various biological processes, 
including biosynthesis of amino acids (LEU3, LYS14, and MET32), carbohydrate metabolism (MIG1, MIG2, and 
MIG3), histone modification (ADA2, BYE1, ESA1, HST3, SET2, and SGF29), MAPK signaling pathway (SMP1), 
cell cycle (BYE1, MSA2, NDT80, PPH22, SFH1, SWI5, and YOX1), ubiquitination process (RAD6), DNA repair 
(ESA1, NHP6A, and RAD6), and stress response (CIN5). In histone modification, there were four up-regulated 
DEGs (AHC2, ESA1, HPA2, and YAF9) required for histone acetylation, and three down-regulated DEGs (HOS1, 
HST3, and SET2) involved in histone deacetylation, suggesting that cellular histone acetylation was enhanced in 
response to acetic acid. In addition, ESA1 is required for the regulation of autophagy29.

Not only was intracellular metabolism greatly changed, but the uptake and transport of various nutrients were 
seriously inhibited by acetic acid (150 mM, pH 3.0). A number of genes encoding permeases (24 genes) and trans-
porters (25 genes) were down-regulated during acetic acid treatment. Among them, there were 14 amino acid 
permeases (AGP1, AGP3, BAP3, CAN1, DIP5, GAP1, GNP1, HIP1, LYP1, MMP1, MUP1, PUT4, SAM3, and 
UGA4), 15 plasma membrane transporters (ALP1, ATO3, DUR3, HNM1, HXT1, HXT5, ITR1, NHA1, OPT1, 
PHO84, QDR3, TAT1, TPO3, YHK8, and ZRT2), 5 mitochondrial inner membrane transporters (CTP1, GGC1, 
OAC1, ODC2, and SFC1), 3 vacuolar membrane transporters (CTR2, FUN26, and RTC2) and 2 endoplasmic 
reticulum transporters (FLC1and YKE4). Interestingly, 6 out of 10 up-regulated transporter genes (HXT6, HXT7, 
HXT9, HXT10, HXT11, and HXT13) are encoding genes of hexose transporters, which are consistent with the 
elevated gene expression levels upstream of carbohydrate metabolism.

Under acetic acid stress, 25 DEGs involved in protein folding and stabilization were induced to suppress pro-
tein aggregation and to promote protein stabilization. Especially among the up-regulated DEGs, 10 genes were 
respectively identified as Hsp70 family chaperones (FES1, SSA2, SSA3, SSA4, and SSC1) and Hsp90 family chap-
erones (CDC37, HSC82, HSP82, SSE1, and STI1). Interestingly, SGT2 encoded co-chaperone binds and regulates 
Hsp70, and HSP104 encoded disaggregase interacts with Ydj1p (Hsp40) and Ssa1p (Hsp70) to rescue denatured 
and aggregated proteins. Cyclophilin encoded by CPR6 and co-chaperone encoded by SBA1 can bind and reg-
ulate Hsp90, while YDJ1 is involved in regulating both the activities of Hsp70 and Hsp90. Simultaneously, large 
amounts of DEGs (40 genes) in the ubiquitin-dependent protein catabolic process were enhanced for degradation 
of damaged proteins and organelles. Thereinto, proteins encoded by 18 genes constituted subunits of the 20S and 
26S proteasomes. The expression of 21 DEGs in vesicle-mediated transport was also significantly elevated after 
acetic acid treatment. These data suggested that acetic acid activated the ubiquitination process and the intracel-
lular vacuolation in S. cerevisiae, in accordance with the above phenotypic analyses.

Up to 55 genes of ribosome, including ribosomal 40S and 60S subunits, were extensively repressed in the 
acetic acid-treated cells. There were 8 up-regulated DEGs (FAL1, FCF1, MTR2, REH1, REX4, RIX7, RNH70, and 
SNM1) involved in ribosome biogenesis, but the down-regulated UTP22 was required for the nuclear export of 
tRNAs. Moreover, gene expressions of 4 DEGs (DIA4, EFT2, FMT1, and PET122) in the translation process were 
down-regulated. These findings suggested that protein synthesis was also markedly repressed under the stress of 
acetic acid.

There are 18 DEGs involved in five mitogen-activated protein kinase (MAPK) signaling pathways in yeast30: 
high osmolarity/glycerol pathway (CDC37, PTP2, SSK22 ↑ , and PTC2, SMP1 ↓ ), filamentous growth pathway 
(FLO11 ↑ , and KSS1, YPS1 ↓ ), cell wall integrity pathway (PTP2, ZEO1 ↑ , and FKS1, GSC2, PKH1, YPS1 ↓ ), 
spore wall assembly pathway (AMA1, GSC2, SPS1 ↓ ), and pheromone response pathway (FUS1 ↑ , and FAR1, 
KSS1, PPQ1, STE3 ↓ ). Compared with other pathways, acetic acid stress had no systemic effects on the high 
osmolarity/glycerol pathway at the transcriptional level. There were 8 up-regulated and 8 down-regulated DEGs 
identified in the filamentous growth, which was a process in response to nutrient limitation, demonstrating that 
the filamentous growth pathway in S. cerevisiae was dysfunctional during acetic acid treatment. The same disorder 
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appeared in pheromone response (5 up-regulated and 5 down-regulated genes). By contrast, the cell wall integrity 
(CWI) pathway was greatly changed under this condition. Although 7 up-regulated genes of cell wall mannopro-
tein were identified, acetic acid systematically suppressed the CWI pathway at the mRNA level. There were 24 of 
28 DEGs in cell wall organization repressed after acetic acid treatment. Especially, three down-regulated genes 
(FKS1, GSC2, and KRE6) were required for the glucan biosynthesis in the cell wall. Additionally, the up-regulated 
PTP2 was involved in the inactivation of MAPK activity in cell wall organization31. These results might partly 
explain the changes of surface morphology in the cell wall. Likewise, three key genes (AMA1, GSC2, and SPS1) 
in the spore wall assembly (SWA) pathway were significantly down-regulated. Ascospore formation was also 
repressed in response to acetic acid stress, and 18 down-regulated DEGs were identified in this process. Among 
the DEGs, 11 genes (ADY3, AMA1, GAS2, GSC2, MUM3, QDR3, RRT12, SMA2, SPO73, SPO75, and SPS1) were 
responsible for the ascospore wall assembly.

Mating pheromones activate the pheromone response pathway, then induces cell cycle arrest32. Upon acetic 
acid stress, the cell cycle (29 up-regulated and 36 down-regulated genes) was in disorder in accord with the dys-
functional pheromone response pathway. Down-regulation of FAR1 might contribute to cell cycle progression, 
and the changes of other two essential genes (RAD53 and SFH1) likely caused the cell cycle arrest, since RAD53 
and SFH1 were required for cell cycle arrest and progression, respectively. In that case, a large number of genes in 
the mitotic and meiotic cell cycle were both affected by acetic acid stress.

DNA damage was characterized in S. cerevisiae cells treated with acetic acid33, thus DNA repair was elicited in 
response to this stress. There were 16 DEGs in DNA repair up-regulated in the yeast cells, providing assistance to 
alleviate the cell death process. As shown in Table S3, there were 22 DEGs (14 up-regulated and 8 down-regulated 
genes) identified in PCD, including apoptosis (11 genes), autophagy (9 genes) and mitochondrial degradation 
(6 genes). Among them, several genes (ATG8, ATG33, ATG32, and CDC13) were related to multiple cell death 
pathways. Five up-regulated DEGs (SNX4, MMM1, ATG8, MDM10, and ATG33) were involved in mitochon-
drial degradation, in accordance with the phenotypic characteristics visualized by monitoring mitochondrial 
matrix-targeted GFP.

Figure 6. Interaction network of common DEGs at three time points. (A,B) Interaction networks of up-
regulated and down-regulated DEGs with the confidence score > 0.5. (C) Highest confidence networks of 
common DEGs (score > 0.9). (D) Interaction networks of DEGs in the Ac group with four trends over time 
(score > 0.5). Interactions are indicated by edges, with thicker edges having stronger associations.
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Transcriptional regulation involves interaction networks among DEGs. The interactions of the 
identified DEGs are integrated and predicted in the STRING database (http://stringdb.org/)34. Figure 6A–C show 
the different interaction networks of up-regulated (113), down-regulated (183), and common (145) DEGs at three 
time points, respectively. In up-regulated DEGs, most heat shock protein genes (such as HSP82, HSC82, HSP104, 
HSP42, HSP78, SSA4, STI1, HSP60, SSE1, SSA3, etc.) have close and extensive interactions (confidence score > 
0.5). By contrast, the interactions (confidence score > 0.5) between the down-regulated genes are mainly clus-
tered into two groups, one for a number of closely interrelated genes (such as GLT1, ARO1, MET5, HIS4, SAM1, 
MET10, MET14, STR3, GAP1, ILV5, MET32, ALD3, MET2, SAM2, MET17, MET3, MET6, etc.) related to amino 
acid metabolism, and another one for interrelated ribosome genes (including RPL3, RPS9A, RPL4B, RPL18B, 
RPL15A, RPL1B, RPS14B, RPL22B, RPL31B, RPL7B, RPS7B). As mentioned above, gene expressions involved in 
heat shock protein, amino acid metabolism, and ribosome are affected differently by acetic acid.

To identify the potential regulatory genes induced by acetic acid, the interaction network of common DEGs 
over time is plotted in Fig. 6C, with the highest confidence score of more than 0.9. Clearly, there are four dom-
inant biological processes of highly interrelated genes: heat shock protein, amino acid metabolism, ribosome, 
and carbohydrate metabolism (HXK1, GLK1, ALD3, GSY1, TKL2, PRM15 (PGM3), EMI2, HXT6, HXT7, HXT1, 
DSF1, etc.). HSP82 is predicted to be specifically associated with the ribosome genes, thus the interaction between 
HSP82 and RPL3 may play a vital role in the cross-talk between heat shock protein and ribosome. Similarly, 
HSP104 and HSP42 are both closely related to the genes in carbohydrate metabolism. The close interaction also 
exists between heat shock protein and amino acid metabolism; therefore, HSP82, HSC82, and HSP60 may act as 
the potential regulatory genes.

Transcriptional responses show temporal- and spatial-specific expression in acetic acid treated 
cells. The core functions and pathways in response to acetic acid have been identified, but the temporal and 
spatial changes of gene expression over time under this stress remains unclear. Enrichment of MIPS functional 
categories from all of the DEGs at different times contributes to the assessment of the transcriptional changes 
upon acetic acid stress. The up-regulated and down-regulated genes are functionally categorized in Table S4, 
respectively. At different times, the ‘Protein with binding function or cofactor requirement (structural or cata-
lytic)’ and ‘Cell rescue, defense and virulence’ categories are overrepresented for the common genes up-regulated 
in response to acetic acid, and ‘Metabolism’ is overrepresented for the down-regulated genes. These findings 
demonstrate that most transcriptional events are involved in these three categories under acetic acid stress, and 
take place throughout the entire time. On the one hand, the yeast cells were trying to rescue themselves and put 
up a defense against this stress in various ways. On the other hand, intracellular metabolism was continuously 
suppressed, especially in amino acid and carbohydrate metabolism.

Interestingly, the other overrepresented categories are obviously temporal- and spatial-specific. At 45 min, a 
large number of genes in ‘Transcription’ and ‘Protein synthesis’ were up-regulated, meanwhile ‘Cellular transport, 
transport facilities and transport routes’, ‘Cell type differentiation’, ‘Interaction with the environment’, and ‘Energy’ 
were down-regulated. Subsequently, ‘Protein fate (folding, modification, destination)’ and ‘Cell cycle and DNA 
processing’ were both enhanced, but gene transcription in ‘Cellular transport, transport facilities and transport 
routes’ and ‘Protein synthesis’ were reduced at 120 min. Then, ‘Regulation of metabolism and protein function’ 
was improved as well as ‘Protein fate (folding, modification, destination)’ at 200 min. However, ‘Protein with 
binding function or cofactor requirement (structural or catalytic)’ and ‘Protein synthesis’ were greatly suppressed 
at the same time. Obviously, the biological functions and pathways in the yeast cells follow the spatial and tempo-
ral order under acetic acid stress.

In the Ac group, 73 DEGs at three time points were selected (FDR <  0.05), of which 36 genes were continu-
ously down-regulated and 9 genes were up-regulated. This further confirmed that more genes were inhibited by 
acetic acid. KEGG classification revealed glycolysis (ENO2, GPM1, CDC19, and FBA1) and oxidative phospho-
rylation (COX1, AI5_ALPHA, AI4, ATP1, ATP19, COX7, COX13, and COX17) were the main biological processes 
with a downward tendency, suggesting that both processes were mostly inhibited over time. The interactions of 
66 selected genes were plotted using the STRING database (Fig. 6D). ACT1 gene encoding actin was interrelated 
with 25 genes (the confidence score > 0.5), thus it might be an essential node in programmed cell death induced 
by acetic acid. Additionally, HSP82 (18 interactions) and HSC82 (14 interactions) both encode the chaperones of 
the Hsp90 family, and function respectively to promote cell survival and pro-death in acetic acid-induced apop-
tosis35. As shown in Fig. 6D, the difference in transcriptional changes implied their distinct roles with the time 
effect in the process.

NMetabolic fluxes in yeast cells are altered during acetic acid treatment. As mentioned above, 
the central metabolic pathway was greatly changed at the mRNA level during acetic acid treatment. The intra-
cellular metabolites were further analyzed using gas chromatography-mass spectrometry (GC-MS). Total ion 
current (TIC) chromatograms of the CK and Ac groups were presented in Fig. S5, and 89 metabolites in S. cer-
evisiae were compared at different times. Differential intracellular metabolites showing a significant difference 
(with the threshold |log2(fold change)| >  1, P value <  0.05) were summarized in Table S5. It was demonstrated 
that acetic acid had varying impacts on amino acid metabolism, carbohydrate metabolism, and lipid metabolism. 
Hereinafter, the common differential metabolites at different times are marked in bold.

Compared with untreated cells, all detected amino acids (alanine, asparagine, aspartic acid, glutamine, gly-
cine, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine, proline, serine, threonine, tyrosine, 
and valine) were dramatically reduced in the yeast cells treated with acetic acid at more than one time point (fold 
change > 2, P <  0.05, two-tailed t test). The related metabolites (2-aminobutyric acid, 4-aminobutyric acid, pyro-
glutamic acid, and uracil) were consistent with the decrease of amino acids. These results further supported that 
the uptake and biosynthesis of amino acids were suppressed upon acetic acid stress.

http://stringdb.org/
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By contrast, glycometabolism was significantly altered by acetic acid addition. The accumulations of four 
metabolites (mannitol, inositol-3-phosphate, frucose-6-phosphate, and glucose-6-phosphate) were varied at 
different times. However, there were three important monosaccharides (galactose, fructose, and glucose) that 
increased at more than one time point. Although citric acid and glyceric acid were higher in the Ac group than 
in the control, the accumulation of succinic acid and other related metabolites was definitely suppressed under 
acetic acid stress. Obviously, acetic acid blocked biosynthesis of amino acids from glycolysis, TCA cycle and 
other pathways. In addition, the contents of five long-chain fatty acids (linoleic acid, oleic acid, palmitelaidic acid, 
dodecanoic acid, and 11-cis-octadecenoic acid) in the yeast cells were mainly increased in response to acetic acid 
stress.

KEGG functional classification of differential metabolites in the Ac group (Table S5) indicated that bio-
synthesis of amino acids was still negatively influenced by acetic acid over time. There were a large amount of 
down-regulated metabolites in the metabolic pathways. Secondly, many metabolites related to carbohydrate 
metabolism were reduced in acetic acid-treated cells with the progression of time. These data verified the above 
findings derived from RNA-Seq analysis.

Acetylation imbalance aggravates cell death under acetic acid stress. Histone acetylation is a pro-
tein post-translational modification conserved in yeast, and mediates acetyl-Co A metabolism and cellular signa-
ling36. Acetylation of metabolic enzymes regulates cell growth and metabolic flux37. RNA-Seq data showed acetic 
acid enhanced histone acetylation in the yeast cells, but its impact on cell death is largely unknown. There were 10 
DEGs involved in histone acetylation and deacetylation (ADA2, AHC2, ESA1, EPL1, HPA2, HOS1, HST3, SGF29, 
YAF9, and SET2) that were further investigated. First, we overexpressed all of the genes in yeast cells to detect 
the cell mortality rate of the transformed strains compared with the control. It was found that overexpression of 
most genes (ADA2, AHC2, ESA1, EPL1, YAF9, and SET2) increased cell death induced by acetic acid (150 mM) in 
SC2 medium [0.67% (w/v) YNB, 2% (w/v) D-glucose, 0.008% (w/v) histidine, 0.02% (w/v) leucine, 0.003% (w/v) 
lysine and 0.032% (w/v) uracil, pH 3.0], whereas only the overexpression of HPA2 led to the opposite phenotype 
(Fig. S6A). Thereinto, SET2 encodes histone methyltransferase and signals for histone deacetylation38.

To further determine the relationship between cell death and acetylation balance, we compared the cell death 
between wild-type (WT) and mutants of genes in histone acetylation and deacetylation. Interestingly, the dele-
tion of six genes (ADA2, AHC2, HPA2, HOS1, SGF29, and YAF9) also enhanced cell death upon acetic acid 
stress (Fig. S6B). Apart from these six genes, we tried to delete the ESA1 or EPL1 gene in yeast, but we were not 
successful in obtaining the haploid mutants. Given the lethality of the ESA1 and EPL1 knockout39,40, we used the 
diploid mutants esa1Δ/ESA1, epl1Δ/EPL1 and wild-type strain from EUROSCARF for further research. The first 
two mutants were constructed by knocking out a single allele of the target genes in the diploid WT. As shown in 
Fig. S6C, no significant differences were observed in the death rate between the diploid mutants and wild-type 
(P >  0.05, two-tailed t test). It was probably because of the intact allele making up for the gene expression of the 
deleted one. In balance, unidirectional changes of histone acetylation and deacetylation are likely to be crucial 
to cell death during acetic acid treatment. To check the above inference, sodium butyrate (SB), a typical histone 
deacetylase inhibitor in yeast41, was used to change the acetylation balance before acetic acid treatment. As pre-
sented in Fig. S6D, SB increased the cell death rate in a dose-dependent manner. Pre-incubation with 10 mM SB 
had no significant effect on cell death in acetic acid-treated cells (P >  0.05, two-tailed t test); however, the cell 
death induced by acetic acid was greatly enhanced when the concentration of SB was above 20 mM. Overall, 
acetylation imbalance, especially over-enhanced histone acetylation, would aggravate cell death upon acetic acid 
stress.

Discussion
Acetic acid negatively influences yeast growth and ethanol yields4, and even triggers programmed cell death 
in S. cerevisiae10. A comprehensive understanding of stress responses and cell death in S. cerevisiae under ace-
tic acid stress is crucial for developing robust yeast strains in ethanologenic fermentation. A number of DEGs  
(≤ 200) were discovered upon exposure to acetic acid under different conditions based on the transcriptome 
datasets15–20, five of which were conducted by DNA microarray analysis. Unlike the studies of Lee et al.15, we chose 
more severe conditions with higher concentrations of acetic acid (150 mM, about 0.9% acetic acid) and lower 
culture pH (3.0) than that of Lee et al. (0.6% acetic acid, pH 4.5). Thus, we revealed more transcriptional changes 
of DEGs (295 up-regulated and 427 down-regulated cross-DEGs) under the extreme conditions. The transcrip-
tional responses in yeast cells followed the spatial and temporal order in response to acetic acid stress. There are 
some similar findings in MIPS functional categories between our data at 45 min and the one of Lee et al.15. For 
instance, ‘Protein synthesis’ and ‘Protein with binding function’ were up-regulated, while ‘Energy’ and ‘Transport’ 
were down-regulated. It might be because acetic acid treatment (150 mM, pH 3.0) in the early stage caused some 
similar transcriptional responses with a relatively moderate stress. Nonetheless, there were still opposite results in 
‘Metabolism’ and ‘Cell rescue, defense, virulence’, and more differences in other aspects.

Although it has been reported that the medium with lower pH aggravates PCD in yeast5, there is still no clear 
understanding of this phenomenon. In this study, we found that yeast cells are able to tolerate acidic conditions 
with a low environmental pH, ranging from 6.0 to 3.0. The cells untreated with acetic acid maintained a neutral 
pH (about 7.0) in cytosol and a weak alkaline pH (about 7.8) in the mitochondrial matrix at a low culture pH 
(3.0). In contrast, acetic acid (≥ 30 mM) induced cell death and mitochondrial degradation in a dose-dependent 
manner when the culture pH remained at 3.0. This suggested an intrinsic mechanism underlying acetic acid 
induced cell death, differing from the effect of extracellular pH. The undissociated acetic acid gets inside cells by 
facilitated and passive diffusion42, and then dissociates to generate protons and anions in the intracellular envi-
ronment at a neutral pH. In situ pHluorin measurements revealed that cytosolic and mitochondrial pH dropped 
to below 4.0 and 5.3 at 120 min, respectively, showing serious intracellular acidification. A series of transcriptional 
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events were initially induced after acetic acid treatment. Correspondingly, the expression of key genes involved in 
proton export (PMA1, PMA2, etc.) was significantly down-regulated. Although intracellular pH can be restored 
at a low concentration of acetic acid6, the restorability was obviously blocked by high concentrations of acetic 
acid. Especially, the down-regulated VMA1 gene encoded the V-type ATPase in various organelle membranes, 
which was required in proton transfer from cytosol to organelles, including vacuole, endosomes, and late Golgi 
apparatus27. The up-regulated HSP30 gene had a negative effect on the plasma membrane H+-ATPase Pma1p43, 
which exported protons out of the cell. Together, inhibition of proton export intensified the acidification in cyto-
sol and mitochondrial matrix. Since the binding and conformational stability of proteins are dependent on intra-
cellular pH27, this serious acidification could denature large amounts of proteins, and aggravated the damage to 
the plasma membrane and organelles over time, then activated a cascade of cell death.

The redox homeostasis between NAD(P)H and NAD(P) plays a major role in the modification of the meta-
bolic flux in yeast44. Intracellular pH is considered to have a crucial influence on the oxidation-reduction potential 
of specific reductases and dehydrogenases27. Acetic acid-induced acidification greatly suppressed the expression 
of many genes involved in redox transformation from NAD(P) to NAD(P)H. Consequently, the redox homeosta-
sis was disrupted by this acid, thus the metabolic process was dramatically inhibited. Additionally, it was found 
that acetic acid severely reduced adenosine triphosphate (ATP) levels and the gene expression of some nutrient 
transporters42, resulting in severe amino acid starvation14. Our transcriptomic analysis further revealed this acid 
not only decreased gene expression of almost all identified permeases and transporters located in intracellular 
membranes, but it also reduced biosynthesis of amino acids at the mRNA level. A change of intracellular metab-
olites is a direct mirror of transcriptional regulation and protein function in cells45. The findings at the transcrip-
tional level were emphasized by the metabolomics analysis (Fig. 7). Simultaneously, several genes in amino acid 
catabolism were significantly up-regulated. All of these proved that the uptake and biosynthesis of amino acids 
were comprehensively blocked by acetic acid at the both transcriptional and metabolic levels.

In accordance with the six up-regulated genes of hexose transporters, gene expression upstream of carbohy-
drate metabolism was enhanced in response to acetic acid. The main upstream metabolites also accumulated in 
the treated cells. In contrast, gene expression and metabolites in downstream of carbohydrate metabolism were 
decreased (Fig. 7). Under certain conditions, acetate might be consumed in the TCA cycle and fatty acid metab-
olism after conversion into acetyl Co-A7,9. Citric acid also accumulated in the acetic acid-treated cells under the 
given conditions, but the subsequent metabolic process in TCA cycle was suppressed. Furthermore, contrary to 

Figure 7. The central metabolic pathways of yeast cells in response to acetic acid. Up-regulated genes and 
metabolites at more than two time points are highlighted in red, while down-regulated genes and metabolites 
are highlighted in blue. Common DEGs and metabolites at three time points are emphasized in bold. The 
metabolites showing both significant increase and decrease are highlighted in green. *P value ≥  0.05, two-tailed 
t test.
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the substantial accumulation of long-chain fatty acids, most genes in lipid metabolism and the key genes (FAS1, 
FAS1, and ACC1) in fatty acid biosynthesis were transcriptionally down-regulated. The up-regulated genes 
(MCT1 and ELO1) in fatty acid elongation and degradation of lipid droplets might explain this difference. The 
dissociated acetate could not be metabolized via TCA cycle and fatty acid synthesis, thus intracellular acetylation 
was largely intensified. Intracellular acidification caused by dissociated protons has been reported5,6, but the fate 
and impact of dissociated acetate remain unclear. As demonstrated in our work, cell death under acetic acid stress 
was respectively enhanced by the overexpression or deletion of six different DEGs involved in histone acetylation 
and deacetylation. The increased cell death was also observed when the acetylation balance was changed by the 
histone deacetylase inhibitor (sodium butyrate). Therefore, the acetylation imbalance likely aggravated acetic 
acid-induced cell death. These experimental works might be not perfect, but provided important evidences for 
further research.

Another result of intracellular acidification is that a large number of proteins and organelles are impaired, pro-
tein misfolding and denaturation are increased by acetic acid. On the one hand, this would promote gene expres-
sion of the heat shock protein family and protein folding in endoplasmic reticulum. In view of the anti-apoptotic 
activities35,46, involvement of the heat shock proteins (like Hsp70 and Hsp90) possibly contributes to the alle-
viation of acetic acid stress. Consistently, many heat shock proteins are coordinated to refold and reactivate 
denatured and aggregated proteins upon acetic acid stress47. On the other hand, acetic acid greatly activated 
the ubiquitin-dependent protein catabolic process and the vesicle-mediated transport. These were in agreement 
with the vacuolation of cytoplasm observed by TEM, and organelles rapidly disintegrated or collapsed under this 
stress. These also resulted in mitochondrial degradation and loss of viability in the yeast cells. Protein synthesis 
was also significantly reduced in response to acetic acid stress, which was accompanied by the decreased gene 
expression of numerous ribosomal 40 S and 60 S subunits.

MAPK pathways, especially the CWI pathway, have been reported to affect yeast tolerance to various envi-
ronmental stresses48,49; however, the transcriptional responses to acetic acid stress remain largely unknown. As 
the first barrier to resist external stress in yeast, the cell wall protects cells from various injuries. Modulation of 
the CWI pathway was regard as an effective strategy to increase acetic acid resistance50. Maintenance of glucan 
synthase activity and cell integrity were required for yeast tolerance to this weak acid at pH 4.551. During acetic 
acid treatment, TEM and SEM images displayed that the treated cells became fragile with a thinner cell wall. 
Consistent with this phenotype, a large number of DEGs in the CWI pathway and cell wall organization were 
down-regulated by a high concentration of acetic acid at a low pH. Among the down-regulated DEGs, 9 genes, 
namely CWH41, FKS1, GAS2, GSC2, KRE6, PSA1, SCW11, SIM1, and YUR1, were involved in carbohydrate 
metabolism, which was essential for cell wall remodeling. It implied a potential link between the CWI pathway 
and carbohydrate metabolism in response to acetic acid stress. Moreover, the SWA pathway and ascospore wall 
assembly were suppressed at the transcriptional level under this condition, thus inhibiting ascospore formation 
in yeast. In addition, mitosis and meiosis were also disturbed by acetic acid, as was the dysfunctional pheromone 
response pathway.

Overall, it was not a simple physiological process in cell death induced by acetic acid, and yeast cells were 
likely to have multiple responses upon acetic acid stress. Various biological pathways could be connected by pro-
tein–protein interactions. The interaction networks predicted using STRING v10 have revealed the potential hubs 
of intracellular processes upon acetic acid treatment (Fig. 6). The heat shock protein family is predominant in 
up-regulated DEGs, while amino acid metabolism and ribosome are respectively interrelated in down-regulated 
DEGs. Several heat shock protein genes (HSP82, HSC82, HSP42, HSP60, and HSP104) are suggested as potential 
regulatory factors. Intriguingly, HSP82 and HSC82 have been proven to have distinct roles in the cellular modu-
lation of cell death induced by acetic acid35. Nevertheless, these potential regulatory genes still need to be further 
confirmed.

In acetic acid-treated cells, glycolysis and oxidative phosphorylation were found to be suppressed over time. 
Therefore, metabolic transformation and energy supply might be blocked by acetic acid as time progresses. 
Correspondingly, the metabolites associated with the biosynthesis of amino acids and carbohydrate metabolism 
were decreased in the treated cells over time. The interaction network indicated that the ACT1 gene was poten-
tially a crucial node in this process. In particular, actin cytoskeleton encoded by ACT1 was identified to be a major 
target in apoptotic processes, and it was closely tethered to the apoptotic response in S. cerevisiae52. In addition, 
HSP82 and HSC82 as well were interrelated with a large number of other genes, thus they may be key genes with 
time effect during acetic acid-induced cell death.

The fundamental issue of PCD in unicellular organisms is a vexing one. Some evidence explains why PCD 
occurs in unicells10,53, but no comprehensive investigation has been done on mechanisms and the genetic regula-
tion of PCD in a model organism like S cerevisiae based on the physiologic, genetic, transcriptomic, and metabo-
lomic data. This work helps address our general understanding of genetic mechanisms for PCD in another model 
organism like Chlamydomonas54.

Conclusions
Under low pH and nitrogen conditions, acetic acid has systemic effects on physiological, transcriptomic, and 
metabolomic responses in S. cerevisiae. It differs from the impact of change in extracellular pH. A high concen-
tration of acetic acid was dissociated in neutral cytosol after entering the cells. On the one hand, the dissocia-
tion caused intracellular acidification in both the cytoplasmic and mitochondrial matrix. Gene expression in 
maintaining intracellular pH and redox homeostasis was significantly suppressed. This stress greatly changed 
the global metabolism. Nutrient uptake was inhibited with the down-regulation of a series of permeases and 
transporters. Biosynthesis of amino acids and related carbohydrate metabolism were comprehensively decreased 
at both transcriptional and metabolic levels. Long-chain fatty acids were accumulated in this process, but the key 
genes in fatty acid biosynthesis and most DEGs in lipid metabolism were down-regulated. On the other hand, 
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the dissociated acetate largely intensified the intracellular acetylation level in yeast, and the acetylation imbalance 
aggravated cell death induced by acetic acid. Additionally, large amounts of proteins and cellular structures were 
denatured and damaged under this stress, which activated protein folding and stabilization, ubiquitin-dependent 
protein catabolic process, and vesicle-mediated transport. In contrast, protein synthesis was repressed by acetic 
acid owing to the reduced expression of numerous ribosomal subunits. The CWI pathway and cell wall organ-
ization were highly suppressed in response to acetic acid stress, and the cell cycle was also disturbed under this 
condition. Several heat shock protein genes were predicted as potential regulatory genes, which need further 
investigation. The findings in this study also demonstrated that the global responses in yeast have temporal- and 
spatial-specific effects under acetic acid stress.

Methods
Strains, culture conditions and acetic acid treatment. Yeast strains used in this work are listed in 
Table S6. To construct the plasmids for overexpression, the vector pESC-ura (Agilent Technologies) was inserted 
with different target genes using genomic DNA of W303-1B as template. All pESC plasmids containing a target 
gene were constructed by homologous recombination using ClonExpress™  II One-step Cloning Kit (Vazyme 
Biotech, Nanjing, China). W303-1B was transformed with pYES-ACT-pHluorin or pYES-ACT-mtpHluorin (gifts 
from Dr. Gertien J. Smits) for measuring pHi

24, and was transformed with pYX232-mtGFP (a gift from Benedikt 
Westermann, Addgene plasmid # 45052) to detect mitochondrial degradation25. Yeast cells were transformed by 
the lithium acetate method. Correctness of the transformed strains was verified using PCR analysis and LSM 780 
confocal microscope (Carl Zeiss MicroImaging, Göttingen, Germany). The primers and restriction enzymes for 
plasmid construction are shown in Table S7.

The yeasts were grown in YPD medium (1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) D-glucose) for 
non-selective propagation. W303-1B was grown in SC1 medium55, and BY4742 and BY4743 were grown in SC2 
medium for selective propagation26. The transformed strains were grown in selective media lacking appropriate 
amino acids or nucleotides. For strains harboring a pESC plasmid, 2% galactose (SG) was used for induction 
expression instead of D-glucose. All deletion strains were maintained in YPD medium containing 200 μ g/ml 
G418. Unless otherwise mentioned, freshly grown cells of exponential phase were harvested for cultivation or 
treatment after incubation with an agitation of 180 rpm at 28 °C in the selective medium.

For acetic acid treatment, yeast strains in the exponential phase were harvested and suspended in SC or SG 
broth at pH 3.0 (set with HCl) containing 150 mM of acetic acid, and cultured for different times at 28 °C, in an 
orbital shaker at 160 rpm, with a ratio of flask volume/medium of 5:1. After washing the cells with sterile distilled 
water, a small fraction was diluted to a suitable concentration and counted with a Scepter™  2.0 Cell Counter 
(Merck, Darmstadt, Germany). The initial inoculum concentration was 1 ×  107 cells/ml. At least three independ-
ent experiments were carried out for each condition unless otherwise stated. For RNA sequencing and metabo-
lomic analysis, the samples were taken at 45 min, 120 min, and 200 min after acetic acid treatment. The untreated 
cells served as the controls.

Cell survival and mitochondrial degradation. Cell growth of treated and untreated cells was followed 
by measuring culture OD660. Cell viability with treatment for 3 h was assayed by counting colony-forming units 
(CFU) on YPD agar plates after 2 d at 30 °C. Mitochondrial degradation was measured by quantifying mitochon-
drial GFP fluorescence using a FC500MCL flow cytometer (Beckman Coulter, USA)11.

PCD assay, TEM and SEM observation. The Annexin V-FITC/PI apoptosis kit (Lianke, Hangzhou, 
China) was used to evaluate acetic acid-induced cell death by flow cytometry. Briefly, yeast cells were first col-
lected and digested with 20 U/ml lyticase (Sigma-Aldrich) in sorbitol buffer (1.2 M sorbitol, 0.5 mM MgCl2, 
35 mM K2HPO4, pH 6.8) at 30 °C for 50 min. 1 ×  106 cells were washed and resuspended in 500 μ l 1 ×  binding 
buffer containing 1.2 M sorbitol, then co-stained with Annexin V and PI at room temperature for 10 minutes in 
the dark before determination.

To investigate the impact of acetylation imbalance on cell death induced by acetic acid, sodium butyrate (SB), 
a well-known histone deacetylase inhibitor41,56, was used to alter the acetylation balance by suppressing histone 
deacetylation. Cell death was quantified by flow cytometry using propidium iodide (PI) staining. Cells were incu-
bated with 0, 10, 20, and 40 mM SB in an orbital shaker for 30 min at 28 °C and 160 rpm before treatment with 
150 mM acetic acid for 120 min. The collected cells were resuspended in 500 μ l PBS with 5 μ g/ml PI for 10 min at 
28 °C in the dark, and then they were analyzed by flow cytometry.

For TEM and SEM, yeast cells were harvested at different times after acetic acid treatment. The intracellular 
morphology was analyzed using a JEM-1230 transmission electron microscope (JEOL, Japan). Extracellular mor-
phological analysis was performed using a S-3000N electron microscope (Hitachi, Japan).

Measurements of pHcyt and pHmit. The measurements of pHcyt and pHmit were respectively taken using 
the pH-sensitive ratiometric pHluorin in cytosol and mitochondria as references24,28. The strains expressing 
pHluorin during exponential growth were first transferred to Costar black 96-well microtitrer plates (Corning, 
USA), and incubated in 200 μ l Verduyn medium57 containing 5 g/L (w/v) glucose, with or without treatment of 
150 mM acetic acid (pH 3.0) for different times. The ratios of pHluorin emission at 512 nm by 390 and 470 nm 
excitation (R390/470) were measured using a SpectraMax M5 Multi-Mode Microplate Reader (Molecular Devices, 
USA). The calibration curves of R390/470 against the pH were plotted after background subtraction of untrans-
formed cultures24. Before that, yeast cells were permeabilized with 100 μ g/mL digitonin in PBS for 10 min, then 
washed and resuspended in phosphate-citrate buffers ranging from pH 3.5 to 8.0. pHcyt and pHmit can be accu-
rately calculated according to the calibration curves (r2 =  0.996 and 0.993). To analyze pHluorin expression in 
cytosol and mitochondria, the green fluorescence was visualized by confocal microscopy.
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RNA sequencing (RNA-Seq) analysis. Yeast cells were harvested as rapidly as possible for total RNA 
extraction at the three time points listed above. Aliquots of 4 ×  107 cells were taken at each time point before cen-
trifugation at 1000 g for 5 min at 4 °C. Total RNA was immediately extracted with the RNeasyMini Kit (Qiagen, 
Hilden, Germany) and treated with the RNase-Free DNase Set (Qiagen) to remove any contaminating genomic 
DNA, according to the manufacturer’s protocols. RNA quality and concentration were assessed using the Agilent 
2200 TapeStation system (Agilent Technologies, Santa Clara, USA) and NanoDrop 2000 Spectrophotometer 
(Thermo Fisher Scientific, Waltham, USA), respectively. Duplicate RNA samples with the best quality were 
selected for transcriptional analysis from three independent experiments for each condition.

RNA-Seq was performed by RiboBio Co., Ltd. Briefly, libraries for RNA-Seq were prepared with TruSeq®  
RNA LT/HT Sample Prep Kit (Illumina, USA) following the manufacturer’s protocol. The purified libraries 
were assessed using the Agilent 2200 TapeStation and Qubit® 2.0 (Life Technologies,USA), and subsequently 
sequenced on an Illumina HiSeq 2500 with 2 ×  100-bp paired-end reads. Raw reads were trimmed for clean data 
and mapped to the S288c genome with Tophat (v2.0.10)58. The gene expression abundance was normalized by 
FPKM (fragments per kilobase of exon per million fragments mapped) using Cufflinks (v2.2.1)59. Differentially 
expressed genes (DEGs) were identified, with the threshold |log2(Fold change)| >  1 and q-value <  0.05 as the 
criteria of significant gene expression difference.

Enrichment of GO terms and KEGG pathways was analyzed based on the identified DEGs. Enrichment 
of functional categories among DEGs was performed with the MIPS Functional Catalogue (http://mips.
helmholtz-muenchen.de/funcatDB/). Specific gene functions and biological pathways were annotated according 
to SGD (http://www.yeastgenome.org) and UniProt (http://www.uniprot.org/). The interaction networks of DEGs 
were obtained using the STRING v10 database (http://string-db.org/).

qPCR verification for transcriptomic data. To verify the transcriptomic findings, 15 genes were selected 
for qPCR analysis. The cDNA synthesis and elimination of genomic DNA contamination were performed by the 
HiScript®  Q RT SuperMix for qPCR (+ gDNA wiper) (Vazyme Biotech). Subsequently, qPCR measurement was 
carried out with ChamQ SYBR qPCR Master Mix (Vazyme Biotech) on a CFX Touch™  Real-Time PCR Detection 
System (Bio-Rad, Hercules, USA) following the manufacturer’s description. The ACT1 gene was used as a refer-
ence, and the fold change was quantified by the 2−ΔΔCt method. Specific primers were designed and confirmed by 
melting curve analysis. All primers used in qPCR are listed in Table S8.

Metabolite extraction and GC-MS analysis. Samples (approximately 100 mg of fresh weight) collected 
by centrifugation were added to 10 mL ddH2O, and mixed quickly with 25 mL of 60% (v/v) methanol quenching 
solution pre-cooled to − 40 °C. The pellets were washed with ice-cold ddH2O and then stored in liquid nitrogen 
until extraction after centrifugation at 3000 g for 5 min at 4 °C. Herein, intracellular metabolites were extracted 
according to the protocol described by Sellick et al.60. Six independent replicates were used to perform metabo-
lomic analysis for each condition.

The derivatized samples (1.0 μ l) were analyzed using an Agilent 7890 A GC/5975 C MS system (Agilent 
Technologies), and separated with a HP-5MS capillary column (5% phenyl methyl silox: 30 m ×  250 μ m i.d., 
0.25-μ m, Agilent J&W Scientific, Folsom, CA, USA) and a helium carrier gas flow rate of 1 ml/min. The split ratio 
was 1:20 (v/v). Temperatures of injection, ion source and interface were 280 °C, 250 °C and 150 °C, respectively. 
The temperature gradient was programmed at 40 °C for 5 min, 10 °C/min to 300 °C, and held for 5 min. Full scan 
mass spectra were obtained by electrospray ionization (ESI) at 70 eV, ranging from 35 to 780 (m/z).

Identification of metabolites was performed by searching the NIST 2008 mass spectra library and Golm 
Metabolome Database (http://gmd.mpimp-golm.mpg.de/), and 21 compounds (including alanine, valine, leu-
cine, isoleucine, proline, glycine, serine, threonine, methionine, aspartic acid, glutamine, ghenylalanine, asparag-
ine, lysine, tyrosine, arabinose, fructose, galactose, glucose, mannitol, and cellobiose) were further confirmed by 
authentic standard compounds. Raw GC/MS files were converted into the CDF format, and were subsequently 
pretreated by XCMS software (www.bioconductor.org/).
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