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Quantitative bioassay to identify 
antimicrobial drugs through drug 
interaction fingerprint analysis
Zohar B. Weinstein1 & Muhammad H. Zaman2,3

Drug interaction analysis, which reports the extent to which the presence of one drug affects the 
efficacy of another, is a powerful tool to select potent combinatorial therapies and predict connectivity 
between cellular components. Combinatorial effects of drug pairs often vary even for drugs with similar 
mechanism of actions. Therefore, drug interaction fingerprinting may be harnessed to differentiate 
drug identities. We developed a method to analyze drug interactions for the application of identifying 
active pharmaceutical ingredients, an essential step to assess drug quality. We developed a novel 
approach towards the identification of active pharmaceutical ingredients by comparing drug interaction 
fingerprint similarity metrics such as correlation and Euclidean distance. To expedite this method, we 
used bioluminescent E. coli in a simplified checkerboard assay to generate unique drug interaction 
fingerprints of antimicrobial drugs. Of 30 antibiotics studied, 29 could be identified based on their drug 
interaction fingerprints. We present drug interaction fingerprint analysis as a cheap, sensitive and 
quantitative method towards substandard and counterfeit drug detection.

Drug interactions for a given phenotype are defined as a combinatorial effect of two drugs that is different than 
expected1. Drug interactions may be described as positive or negative depending on whether relatively more 
or less drug, respectively, is required to achieve a particular phenotype compared to single agents1. Sensitive 
drug interaction testing is limited by the combinatorial explosion necessary to evaluate multiple doses of drugs. 
Traditional checkerboard testing involves isobologram analysis for a square matrix of increasing concentrations 
of two drugs on each axis. Berenbaum theorized a simplified method of testing for drug interactions in which 
approximately equi-inhibitory doses of two agents are combined, titrated and compared to single agent dose 
response curves2.

Drug interaction analysis is a powerful tool to select potent combinatorial therapies3, predict connectivity 
between cellular components4 and drug mechanism of action5. Drugs with similar mechanism of action tend to 
have similar but not identical drug interaction profiles6. For instance, Yeh et al. report that the two 30S ribosome 
inhibitors doxycycline and tetracycline cluster together in a network analysis based on their drug interaction pro-
files. However, amongst the 21 antibiotics they are tested against, they show unique interactions with ampicillin 
and chloramphenicol, suggesting these varied combinatorial responses may be used to create a unique interaction 
fingerprint for these agents. A study of antifungal drug interactions found that two ergosterol synthesis (ERG11) 
inhibitors fluconazole and miconazole varied in their tendency towards suppressive drug interactions7. This sug-
gests that drug interaction fingerprinting may be possible for any active pharmaceutical ingredient (API) that 
imparts a quantifiable phenotype such as luminescence or growth inhibition.

A key feature of drug quality assessment is the detection of APIs. Current methods to detect APIs are of 
limited utility due to great expense (HPLC8, NMR9), or low sensitivity/specificity (thin layer chromatography 
and colorimetric assays) of detection systems10. These technologies are often of prohibitive cost, grid power and 
expertise to be of widespread use in low- and middle-income countries (LMICs). Biosensors may fill the gap 
for a fast drug detection system that transduces a change in growth phenotype to a specific change in lumines-
cence output. Bacteria based biosensors are inherently reproducible and are low cost to maintain and propagate. 
The luminescence phenotype is especially desirable as it limits the possibility of false positives that may arise 
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from contamination in assays evaluating turbidity. Previous bacterial biosensors have been used for the detec-
tion of antibiotic susceptibility in mycobacteria11 and in drug mechanism of action studies by pharmaceutical 
companies12.

Approximately 25% of medicines in LMICs are counterfeit or substandard, the majority of which are anti-
microbial agents13. Substandard medicines may contain impurities such as synthetic byproducts and deg-
radation products or the wrong dose of active ingredient14. A recent survey of thousands of antimalarials, 
anti-mycobacterials and other antibiotics found 40% of sampled drugs failed quality testing in some world 
regions15. This is of particular concern due to the high global burden of malaria and tuberculosis. Tuberculosis 
alone accounts for 1.5 million deaths annually16. Besides the immediate concerns about treatment failures, sub-
standard medicines are also hypothesized to contribute to the worldwide trend toward antimicrobial resistance17,18.  
Successful treatment of tuberculosis requires months of medication, the mainstay of which is rifamycins (e.g., 
rifampicin, rifapentine, rifabutin), often in combination therapy with 2–3 other agents19. Multidrug-resistant 
and extensively drug-resistant tuberculosis in particular necessitate prolonged combination therapy with up to 
5 medications20. In 2014, there were an estimated 9.6 million new cases of tuberculosis, and 190,000 deaths due 
to multi-drug resistant tuberculosis16. Novel means to address the issue of substandard medicines may therefore 
decrease the health and financial burden associated with long-term treatment of all forms of tuberculosis.

In this study, we report a simplified checkerboard assay to quantify drug interactions between pairs of com-
pounds in Escherichia coli expressing luciferase to expedite experiments. This methodology combines the sen-
sitivity of larger checkerboard assays1 to identify cellular response at varying levels of inhibition with the ease 
of setup of high throughput 2 ×  2 drug interaction matrices by the Bliss independence model, which is a mul-
tiplicative model assuming drugs act independently. Using this method, we are able to generate unique profiles 
of bacterial response to varying combinations of drugs to create unique fingerprints for four anti-mycobacterial 
agents and a major rifampicin degradation product. By comparing drug interaction profile similarity metrics, we 
developed a novel approach towards the identification of APIs.

Results
Drug interaction profiling from a systematic screen of 25 antibiotics in E. coli. In order to deter-
mine the feasibility of drug interaction profiling for API identification, we first analyzed a previously published 
dataset and unpublished data (literature set) of all pairwise interactions among 25 antibacterial drugs in E. coli for 
unique drug interaction profiles21. Figure 1a illustrates the experimental and analytical system for assessing drug 
interactions with the checkerboard method. In this paradigm, drug interactions are scored based on the concavity 
of isophenotypic contours. Concavity is determined by the logit function: log(x/(1 −  x)) −  log(y/(1 −  y)); where 
x and y are normalized drug concentrations to achieve a similar level of inhibition. Figure 1b shows a subset of 
interaction scores for two drugs tested against a panel of 25 antibiotics in replicate. Drug interaction fingerprints 
(or profiles) are defined as a series of drug interaction scores for each query drug tested against a set of array 
drugs. Drug interaction fingerprints can be utilized for drug identification if the same drug tested against an 
array of other drugs is more similar to biological replicates than to the profile of other drugs. We used Spearman’s 
correlation and Euclidean distance between profiles as a metric of similarity (Fig. 1c).

To account for systematic experimental biases, we created 1,000 sets of profiles (25 ×  25 ×  1000, per set) with 
randomized replicate order from the literature set. The randomized profiles were then compared to identify drug 
identity based on minimal Euclidean distance and maximum correlation between interaction scores in replicate 
2 vs. replicate 1, with each agent’s replicate 1 interaction score iteratively compared to replicate 2 scores of all 25 
other agents. The most frequent replicate 2 ‘match’ of 1000 randomizations was compared to replicate 1 identity 
to assess successful identification of API. Distance metrics alone could identify up to 8/25 antibiotics using drug 
interaction scores with a single drug partner (Fig. 1d). Kanamycin, fusidic acid and erythromycin had the greatest 
single agent identification value (8, 7, 6 correct identifications, respectively). Starting with kanamycin, each of the 
remaining drugs was iteratively added to the analysis based on rank of single drug identification success. With 
all agents considered, 22/25 drugs were identified by distance alone (Fig. 1e). Considering the entire dataset, the 
Spearman’s correlation between replicate profiles successfully identified 23/25 agents. A combined analysis of 
correlation and distance scores allowed the successful identification of all but one of the 25 drugs (spectinomycin 
incorrectly identified as chloramphenicol). However, spectinomycin ranked as the second most likely agent by 
these metrics.

A simplified sensitive method to assess drug interactions. To expedite the construction of novel 
drug interaction profiles, drugs were evaluated based on the inhibition of luminescence of a constitutively 
expressed luciferase plasmid in E. coli. We used a simplified approach to the classic 8 ×  8 checkerboard method of 
drug interaction by sampling 24 concentrations of single or combined drugs (Fig. 2a). An interaction score was 
computed based on the amount of drug mixture required to achieve 40% inhibition of luminescence compared 
to constituent drugs as single agents: log2(observed/expected dose) (Fig. 2b). Positive and negative interactions 
indicate that relatively more or less drug respectively was required for the combination to achieve the same level 
of inhibition than expected based on constituent drugs and a score of zero indicates no interaction (Fig. 2c).

We validated our method by assessing the pairwise interactions between 5 query drugs and 8 array drugs. 
The 5 query drugs contained 4 anti-mycobacterial agents [dapsone, rifampicin, rifabutin, rifapentine] and one 
major degradation product of rifampicin [rifampicin quinone]. The array drugs consisted of antibiotics of vary-
ing mechanisms of action [chloramphenicol, erythromycin, mupirocin, nalidixic acid, nitrofurantoin, oxacillin, 
streptomycin, and tetracycline]. The query drugs were selected based on their significance in tuberculosis treat-
ment; array drugs were selected to provide a diverse range of interactions. All query drugs were also tested in com-
bination with each other. Interaction score biological replicates were highly reproducible (Spearman’s r =  0.87, 
p =  5 ×  10−16) (Fig. 3a) and normally distributed (Fig. 3b). Clustering analysis revealed that the rifampin related 
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agents and degradation products had similar interaction profiles compared to the anti-folate agent dapsone 
(Fig. 3c). Rifampin-related drugs were enriched for antagonistic interactions (mean interaction scores, 0.47–0.58)  
while dapsone was more likely to have negative or null interactions (mean interaction score, 0).

Drug interaction profiling of anti-mycobacterial agents in E. coli. In accordance with the literature 
set, drug profile similarity of the bioluminescent set was initially assessed by examining correlation and distance 
between 1,000 sets of randomized profile replicates (13 ×  5 ×  1000, per set). Array drugs varied greatly in their 
identification power for query drugs (Fig. 4a). When only single drug interaction scores were considered among 
the profile, streptomycin was the drug with the best identification power (4/5 drugs identified accurately for 
the majority of 1,000 randomizations). Nitrofurantoin and rifabutin had the next best identification power (3/5 
drugs each). The remainder of agents could be used to accurately identify up to 2 of the 5 query drugs (Fig. 4b). 
Dapsone, the only non-rifamycin agent tested, was unsurprisingly the simplest of the five query drugs to identify 
with 10/13 array drugs correctly identifying dapsone as single agents. For the majority of cases the rifampicin 
related drugs could be identified with 3–4 array drug data. In all, 4 array drugs were required to accurately dis-
criminate between all 5 query drugs (Fig. 4c). Perhaps due to the close relationship between the query drugs, 
correlation scores could at best identify 3/5 query drugs and weakened the identification overall when combined 
with distance scores.

Discussion
The World Health Organization has increasingly recognized the role of counterfeit and substandard medicines in 
the emergence and spread of antimicrobial resistant diseases22. Assuring drug quality of anti-mycobacterial agents 

Figure 1. Drug interaction profile based identification of antibiotics. We first analyzed all pairwise 
interactions among 25 antibacterial drugs in E. coli for unique drug interaction profiles21. Drug interactions 
were approximated by the concavity of isophenotypic contours in a 2D grid of linearly increasing drug 
concentrations on each axis (a). Positive interactions are represented in blue, negative in magenta. A 
subset of interaction score replicates for query drugs, 5-fluorouracil and amikacin tested with array drugs 
chloramphenicol, ciprofloxacin, clarithromycin, erythromycin, fusidic acid and gentamicin (b). Drug 
interaction profiles are defined as a series of drug interaction scores for each query drug tested against a set 
of array drugs. Drug interaction profiles can be utilized for drug detection systems if the correlation of drug 
interaction profiles is greater for replicates than for comparison to other drug profiles (c). Alternatively, profile 
similarity may be based on minimum Euclidean distance between vectors of interaction. Euclidean distance 
between randomized replicates for query drugs against a single array drug could accurately identify 8/25 query 
drugs (d). Drugs were ranked based on their single agent identification value, serially added to the profile array 
and assessed for identification value based on Euclidean distance and/or rank correlation of profiles (e). Using 
the entire dataset, Euclidean distance, rank correlation and combined data could be used to correctly identify 
the vast majority of query drugs (22, 23, 24 correctly identified of 25, respectively).
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has the potential to improve outcomes for the millions of people suffering from tuberculosis in LMICs worldwide. 
The current challenges in cost, training and infrastructure to assess drug quality requires novel approaches to 
identifying active pharmaceutical ingredients. Here, we utilized differential responses to drug combinations to 
create unique fingerprints for anti-mycobacterial drugs.

We used bioluminescent E. coli to assess drug interactions between pairwise combinations of 5 
anti-mycobacterial agents and 8 additional antibacterial drugs for a total of 50 drug pairs in replicate. Overall, 
this expedited approach to drug interaction testing was highly reproducible, retaining the ease of experimental 
setup normally associated with 2 ×  2 dose combination matrices6, while providing data for multiple levels of inhi-
bition classically observable in checkerboard assays23. The use of luminescence rather than turbidity as a proxy for 
cellular growth reduces experimental runtime from the typical 12–24 hours to one hour, which is more amenable 
to the quick assessment of drug quality.

Biosensors have previously been shown to relay broad drug mechanism of action such as nucleic acid, cell wall 
or protein inhibition using luciferase and GFP reporters for drug target expression12,24. These biosensors have util-
ity in drug discovery and environmental toxicology, but cannot distinguish between drugs with the same target. 
Drug interaction profiling can further narrow drug mechanism as drugs within the same class tended to cluster 
together, and unique drug interactions within classes can distinguish individual compounds.

This technique should extend to any type of drug, so long as it elicits a quantifiable phenotype, such as lumi-
nescence. Although E. coli is in the phylum of Proteobacter while mycobacterium is in the phylum Actinobacteria, 
there is a large overlap in anti-mycobacterial agents and drugs that inhibit the growth of E. coli. In particular, 
RNA polymerase inhibiting drugs such as rifampicin, rifabutin and rifapentine are generally broad-spectrum 

Figure 2. An expedited approach to drug interaction testing. We used a simplified, yet sensitive, approach to 
the classic 8 ×  8 checkerboard method of drug interaction by sampling 24 concentrations of single or combined 
drugs for inhibition of E. coli luminescence (a). Drug interactions were assessed based on the amount of drug 
mixture (1/2 each drug 1 and drug 2, relative to individual drug dose) required to achieve the same inhibitory 
level as the constituent drugs2 for 40% inhibition of luminescence (IC40). Doses are plotted in Cartesian 
coordinates with the x and y intercepts set to drug 1 and drug 2 IC40; the intersection of the line y =  x and 
that connecting the two intercepts defines the expected IC40 of the combination (b). The interaction score is 
defined as log2(observed/expected distance from the origin). Deviations are classified as negative or positive 
interactions. Representative experiments for additive, positive and negative interactions (c upper, middle and 
lower panels, respectively). At left are plots of raw RLU over time superimposed on a heatmap of luminescence 
output. Luminescence output was defined as the area under the RLU curve normalized to the no drug 
condition. At right are plots illustrating expected (black dot) and observed (grey, cyan and magenta dots) doses 
of drug mixture required to achieve 40% inhibition of luminescence, based on drug 1 and drug 2 IC40 levels. 
CHL =  chloramphenicol, DAP =  dapsone, NIT =  nitrofurantoin, RFQ =  rifampicin quinone, MIX =  mixture of 
drug 1 and drug 2.
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antibiotics and therefore effective across a wide range of bacterial species25,26. In our assay, E. coli are acting as a 
sensor and a one to one biological equivalent to mycobacteria is not essential for its utility in differentiating anti-
microbial agents. However, not all anti-mycobacterial compounds affect E. coli growth. In such cases, the model 
organism M. smegmatis could be an alternative bacterium for creating drug interaction fingerprints27.

The analyses above suggest that interaction testing with only four array drugs are required to successfully 
identify the majority of query drugs from the literature and bioluminescent sets. Therefore, several unknown 
compounds could be identified on a single 96-well plate of interaction assays. Of all thirty query drugs evaluated 
in the literature and bioluminescent sets, only one could not be accurately identified based on the analytical meth-
ods described herein. The misattribution of chloramphenicol as spectinomycin suggests a high similarity between 
these two ribosome inhibitors. Our method therefore allowed for near complete identification of a large subset of 
antimicrobial agents, even for highly similar agents such as rifampicin, rifabutin and rifapentine. Furthermore, 
this method could differentiate rifampicin from rifampicin quinone, which indicates that drug interaction profil-
ing can be used to detect the presence of drug degradation products.

A potential drawback of this approach may be the complexity of analyzing large drug-interaction datasets. 
This study used technologies such as a spectrophotometer and Matlab software for sensitive assessment of drug 
interactions. To convert this to a field test, photographic film may be used in lieu of a spectrophotometer to assess 
luminescence levels over time, and visual inspection can be used to verify if the drug interaction pattern matches 
the control drug. Alternatively, this assay could be adapted to a microfluidics based platform such as a lab in a 
suitcase (e.g., PharmaChk), which translates luminescence signal intensity to active pharmaceutical ingredient 
concentration28.

While this study evaluated 100 drug interactions overall to find unique drug interaction patterns among 5 
query drugs, we found that as few as 4 array drugs are needed to differentiate even the highly similar rifamycin 
related compounds. Currently, there are approximately one hundred antibiotics that are in clinical use. Our study 
presented a quantitative bioassay to identify 30 antimicrobial drugs, which is a large subset of available medicines. 
Further studies could expand the repertoire of drug fingerprints, with prioritization given to other essential med-
icines that are most likely to be counterfeit or substandard. Thus, quantitative drug interaction profiling has the 
capacity to transform ongoing efforts to reduce the harm due to substandard drugs.

Systematic drug interaction profiling has many potential applications in drug discovery, mechanism of action 
and underlying cellular component connectivity. This manuscript presents the possibility of utilizing new drug 
interaction fingerprints in order to improve drug identification with applications in the detection of substandard 
and counterfeit medicines. Compared to the gold standard detection system of HPLC, our approach presents a 
fast, inexpensive and scalable method to assess drug quality.

Figure 3. Interactions of pairwise combinations of anti-mycobacterial and antibiotic drugs are highly 
reproducible. Interaction score replicates for 50 drug pairs were highly reproducible (Spearman’s r =  0.87, 
p =  5 ×  10−16) (a) and normally distributed based on the one-sample Kolmogorov-Smirnov test (b). The mean 
interaction score of all tested drug pairs (c). Clustering analysis reveals that dapsone had the most distinct 
interaction profile of all the query drugs, and rifapentine and rifabutin were most similar to each other. Of the 
rifampicin-related compounds, rifampicin quinone had the least similar correlation of interaction profiles, 
suggesting that drug interaction profiling may be used to differentiate rifampicin from its oxidation product.
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Materials and Methods
Experimental conditions. Experiments were conducted with wild-type strain E. coli K12 strain DL41 with 
luciferase expressing SC101 plasmid29. Luciferase expression showed that luminescence output is highly repro-
ducible. Replicates of area under the luminescence curve were highly correlated (r =  0.99, p =  2 ×  10−16) and well 
correlated with inoculum density (r =  0.97, p =  8 ×  10−7) (data not shown). All drugs were dissolved in DMSO 
and stored at − 20 °C. Bacterial cells were grown in LB liquid culture overnight and diluted 1/100 and incubated at 
37 °C for 1 hour before final plating on 96-well plates at a final OD600 of 0.05 in LB with the desired drug concen-
trations controlled for final solvent concentration of 2% DMSO. Plates were incubated at 37 °C in a temperature 
controlled microplate reader; with luminescence readings every 5 min. The following drugs were used in this 
study: chloramphenicol(CHL), dapsone (DAP), erythromycin (ERY), mupirocin (MUP), nalidixic acid (NAL), 
nitrofurantoin (NIT), oxacillin (OXA), rifabutin (RFB), rifapentine (RFP), rifampicin (RIF), rifampicin quinone 
(RFQ), streptomycin (STR), tetracycline (TET).

Drug interaction metrics. Dose response was assessed for each single drug and combination (a one to one 
mixture) with linear dilutions. Drug combinations are an equal mixture of single agents containing approximately 
one half minimal inhibitory concentration of each single agent. Dose-response curves were generated based on 
the area under the luminescence curve, standardized to the drug free condition, over a one-hour interval. All 
doses are adjusted to fraction of minimal inhibitory concentration from zero to one.

In Cartesian coordinates, the x and y intercepts are set to the concentration of drug 1 and drug 2 to reach 40% 
inhibition of luminescence. The interaction score is defined as log2(observed/expected dose) along the y =  x axis; 
where the expected is determined by the intersection of y =  x with the line connecting the x and y intercepts and 
the observed is the dose of the drug mixture required to reach 40% inhibition of luminescence (Fig. 2b). The same 
drug combined with itself is assumed to have zero interaction.

Drug identification metrics. Drug interaction score replicates were randomized to generate 1000 sets of 
replicates in order to limit systematic experimental bias in the data (Supplementary Figure 1). This translates to 
2 sets of matrices of 25 query drugs ×  25 array drugs ×  1000 randomizations for the literature set, and 2 sets of 
matrices of 5 query drugs ×  13 array drugs ×  1000 randomizations for the bioluminescent set. The Euclidean 
distance from each row of query drug data from set 1 to all other rows from set 2 was iteratively determined for all 
1000 randomizations. Overall, this generated a matrix of 25 ×  25 ×  1000 comparisons of distance scores for the 

Figure 4. Drug identification success among the bioluminescent set of anti-mycobacterial agents. Drug 
profile similarity was assessed by examining correlation and distance between 1,000 sets of randomized profile 
replicates of the bioluminescent set. Array drugs varied greatly in their identification power for query drugs (a). 
Euclidean distance between randomized replicates for query drugs against a single array drug could accurately 
identify 4/5 query drugs (b) based on interactions with streptomycin alone. Drugs were ranked based on their 
single agent identification value, serially added to the profile array and assessed for identification value based 
on Euclidean distance and/or rank correlation of profiles (c). Using the entire dataset, Euclidean distance, rank 
correlation and combined data could be used to correctly identify all query drugs. Using more than 8 array 
drugs in the analysis weakened the number of correctly assigned query drugs.
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literature set and 5 ×  5 ×  1000 comparisons for the bioluminescent set. A correct identification of the query drug 
was considered when the minimum Euclidean distance between each row in set 1 corresponded to the same row 
in set 2 (for example, rifabutin replicate 1 to rifabutin replicate 2). The same randomized datasets were assessed 
for the Spearman’s correlation between each row of set 1 and all rows in set 2. In this setup, a correct identification 
of the query drug was considered when the maximum correlation between each row in set 1 corresponded to 
the same row in set 2 (for example, rifapentine replicate 1 to rifapentine replicate 2). Overall prediction success 
was determined by whether or not the correct query drug was identified by the mode of 1000 predictions for 
Euclidean distance and Spearman’s correlation, respectively.

For the combined analysis, drug interaction score replicates were randomized to generate 1000 sets of repli-
cates to limit systematic experimental bias in the replicates. Euclidean distance and Spearman’s correlation were 
determined between all query drugs across replicates for all 1000 sets. For each set of replicates, the drug identi-
fication algorithm identified the query drug from replicate 1 with the minimum Euclidean distance as well as the 
maximum correlation with the query drug from replicate 2, for a total of 2000 predictions overall. A successful 
identification was based on whether the correct drug was selected by the mode of the 2000 predictions.

References
1. Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 

47, 331–385 (1995).
2. Berenbaum, M. C. A method for testing for synergy with any number of agents. J. Infect. Dis. 137, 122–130 (1978).
3. Zimmermann, G. R., Lehár, J. & Keith, C. T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug 

Discov. Today 12, 34–42 (2007).
4. Lehár, J. et al. Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3, 80 (2007).
5. Farha, M. A. et al. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl 

diphosphate synthase. Proc. Natl. Acad. Sci. USA 112, 11048–11053 (2015).
6. Yeh, P., Tschumi, A. I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet. 38, 

489–494 (2006).
7. Cokol, M. et al. Large-scale identification and analysis of suppressive drug interactions. Chem. Biol. 21, 541–551 (2014).
8. Liu, J., Sun, J., Zhang, W., Gao, K. & He, Z. HPLC determination of rifampicin and related compounds in pharmaceuticals using 

monolithic column. J. Pharm. Biomed. Anal. 46, 405–409 (2008).
9. Salem, A. A., Mossa, H. A. & Barsoum, B. N. Quantitative determinations of levofloxacin and rifampicin in pharmaceutical and 

urine samples using nuclear magnetic resonance spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 62, 466–472 (2005).
10. World Health Organization (WHO). Survey of the quality of anti-tuberculosis medicines circulating in selected newly independent 

states of the former Soviet Union. (2013).
11. Riska, P. F. et al. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a 

luciferase reporter phage and the Bronx Box. J. Clin. Microbiol. 37, 1144–1149 (1999).
12. Urban, A., Eckermann, S., Fast, B. & Metzger, S. Novel whole-cell antibiotic biosensors for compound discovery. Appl. Environ. 

Microbiol. 20, 6436–6443 (2007).
13. Pincock, S. WHO tries to tackle problem of counterfeit medicines in Asia. BMJ 327, 1126 (2003).
14. Johnston, A. & Holt, D. W. Substandard drugs: a potential crisis for public health. Br J Clin Pharmacol 78, 218–243 (2014).
15. Nayyar, G. M. L., Breman, J. G. & Herrington, J. E. The global pandemic of falsified medicines: laboratory and field innovations and 

policy perspectives. Am. J. Trop. Med. Hyg. 92, 2–7 (2015).
16. World Health Organization. Global tuberculosis report 2015. (2015).
17. Nayyar, G. M. L., Breman, J. G., Newton, P. N. & Herrington, J. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan 

Africa. Lancet Infect. Dis. 12, 488–496 (2012).
18. Baker, S. Infectious disease. A return to the pre-antimicrobial era? Science 347, 1064–1066 (2015).
19. Horsburgh, C. R., Barry, C. E. & Lange, C. Treatment of Tuberculosis. N. Engl. J. Med. 373, 2149–2160 (2015).
20. World Health Organization. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant 

tuberculosis. (2014).
21. Chandrasekaran, S. et al. Chemogenomics and orthology-based design of antibiotic combination therapies. Mol. Syst. Biol. 12, 872 

(2016).
22. World Health Organization. The evolving threat of antimicrobial resistance: options for action: executive summary. (2012).
23. Cokol, M. et al. Systematic exploration of synergistic drug pairs. Mol. Syst. Biol. 7, 544 (2011).
24. Hong, H. & Park, W. TetR repressor-based bioreporters for the detection of doxycycline using Escherichia coli and Acinetobacter 

oleivorans. Appl. Microbiol. Biotechnol. 98, 5039–5050 (2014).
25. Zenkin, N., Kulbachinskiy, A., Bass, I. & Nikiforov, V. Different rifampin sensitivities of Escherichia coli and Mycobacterium 

tuberculosis RNA polymerases are not explained by the difference in the beta-subunit rifampin regions I and II. Antimicrob. Agents 
Chemother. 4, 1587–90 (2005).

26. Xu, M., Zhou, Y. N., Goldstein, B. P. & Jin, D. J. Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance 
to different antibiotics. J. Bacteriol. 8, 2783–92 (2005).

27. Gordon, S., Parish, T., Roberts, I. S. & Andrew, P. W. The application of luciferase as a reporter of environmental regulation of gene 
expression in mycobacteria. Lett. Appl. Microbiol. 5, 336–40 (1994).

28. Ho, N. T., Desai, D. & Zaman, M. H. Rapid and specific drug quality testing assay for artemisinin and its derivatives using a 
luminescent reaction and novel microfluidic technology. Am J Trop Med Hyg. 6, S24–30 (2015).

29. Kishony, R. & Leibler, S. Environmental stresses can alleviate the average deleterious effect of mutations. J. Biol. 2, 14 (2003).

Acknowledgements
Z.B.W. is supported by NIGMS Training Program in Biomolecular Pharmacology T32GM008541. M.H.Z. is 
supported by US Pharmacopeia: Developing Superior Screening Technology for Medicines Quality Control in 
Low Resource Countries. This publication is made possible by the generous support of the American people 
through the United States Agency for International Development (USAID). The contents are the responsibility of 
M.H.Z. and do not necessarily reflect the views of USAID or the United States Government. Support from Saving 
Lives at Birth is gratefully acknowledged. The authors would like to thank Susan E. Leeman, Juliette O. Flam 
and Fabian Spill for critical review of the manuscript, the Cokol lab for providing pre-publication access to drug 
interaction data and Adam Palmer for providing bioluminescent E. coli.



www.nature.com/scientificreports/

8SciEnTific RepoRts | 7:42644 | DOI: 10.1038/srep42644

Author Contributions
Z.B.W. and M.H.Z. designed the study; Z.B.W. conducted the experiments and analysis; Z.B.W. and M.H.Z. wrote 
the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Weinstein, Z. B. and Zaman, M. H. Quantitative bioassay to identify antimicrobial 
drugs through drug interaction fingerprint analysis. Sci. Rep. 7, 42644; doi: 10.1038/srep42644 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Quantitative bioassay to identify antimicrobial drugs through drug interaction fingerprint analysis
	Introduction
	Results
	Drug interaction profiling from a systematic screen of 25 antibiotics in E. coli
	A simplified sensitive method to assess drug interactions
	Drug interaction profiling of anti-mycobacterial agents in E. coli

	Discussion
	Materials and Methods
	Experimental conditions
	Drug interaction metrics
	Drug identification metrics

	Additional Information
	Acknowledgements
	References




