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Finite-temperature scaling of trace 
distance discord near criticality in 
spin diamond structure
W. W. Cheng1, X. Y. Wang1, Y. B. Sheng1, L. Y. Gong1,2, S. M. Zhao1 & J. M. Liu2

In this work we explore the quantum correlation quantified by trace distance discord as a measure to 
analyze the quantum critical behaviors in the Ising-XXZ diamond structure at finite temperatures. It 
is found that the first-order derivative of the trace distance discord exhibits a maximum around the 
critical point at finite temperatures. By analyzing the finite-temperature scaling behavior, we show 
that such a quantum correlation can detect exactly the quantum phase transitions from the entan-
gled state in ferrimagnetic phase to an unentangled state in ferrimagnetic phase or to an unentangled 
state in ferromagnetic phase. The results also indicate that the above two kinds of transitions can be 
distinguished by the different finite-temperature scaling behaviors. Moreover, we find that the trace 
distance discord, in contrast to other typical quantum correlations (e.g., concurrence, quantum discord 
and Hellinger distance), may be more reliable to exactly spotlight the critical points of this model at 
finite temperatures under certain situations.

For a quantum many-body system, the ground state properties may undergo qualitative and dramatic changes 
owing to quantum fluctuations at zero temperature. This phenomenon, known as a quantum phase transition 
(QPT), is attributed to the interplay between the different orders associated with competing interactions in the 
Hamiltonian1. However, the QPT can also emerge and be observed at sufficiently low temperature if thermal 
fluctuations are not sufficient to drive the system away from its ground state to excited states. In the other words, 
the quantum fluctuations still dominate at these temperatures. Recently, the finite-temperature properties of QPT 
have been attracting attention due to the fact that all experiments are confined to finite temperature2–4. Thus, an 
understanding of only the zero-temperature properties of a quantum system is not sufficient from the perspective 
of experimental results.

On the other hand, quantum correlations among the subsystems of a many-body system are closely related 
to the emergence of the QPT. In recent years, such relationships have been studied from many different perspec-
tives in varies quantum systems5–22. For instance, entanglement has been widely employed to identify QPT with 
great success7–20. However, entanglement may fail to measure the quantum correlations for a state in some spe-
cific cases (e.g., the case with remote spin pairs in a spin chain system8). That’s to say, there exist other quantum 
correlations which can not be grasped by entanglement. In addition, entanglement might signal a pseudo tran-
sition point18. These facts stimulate many works to classify and quantitate the quantum correlations from other 
perspectives in order to avoid this disadvantage23–29. In particular, Ollivier and Zurek introduced the so-called 
quantum discord (QD), which is based on the fact that two equivalent ways to define the mutual information in 
classical world turn out to be inequivalent in the quantum ones, in order to quantify all nonclassical correlations 
among quantum systems23. And QD has been attracted much attention in many branches of physics. One impor-
tant aspect is the relationship of QD with QPT30–38. Moreover, Werlang et al. found that QD can characterize 
exactly the critical points of the XXZ Heisenberg chain even at finite temperatures, while entanglement seems 
not39. Unfortunately, an analytical solution to QD is known only for typical two-qubit states. Subsequently, many 
distance-based quantum correlation measures have been proposed, such as geometric quantum discord defined 
via the Hilbert-Schmidt distance24 (which may be changed by trivial local actions on the unmeasured party25) 
and its modified version via the Hellinger distance26,27. Another important version is the trace distance discord28, 
which is defined through the Schatten one-norm. This quantum correlation exhibits some attractive features, and 
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thus can be a physically meaningful measure. For instance, the trace distance obeys a contractive property, owing 
to the definition in terms of the Schatten one-norm, and this property is invariant under the unitary transforma-
tion. Recently, Ciccarello et al. showed that the trace distance discord can be analytically obtained for an arbitrary 
X state29. Taking account of the great success and flaw of previous quantum correlations in detecting QPT, it is 
meaningful to investigate the behavior of the trance distance discord for a typical quantum critical system, so that 
the capability and advantages of this measure to detect the QPT can be tested.

Regrading the QPT itself, the low-dimensional frustrated quantum spin models with competing interactions 
have attracted considerable attention due to their attractive quantum critical behaviours. For instance, the spin-
1/2 quantum Heisenberg model with diamond chain structure is actively engaged in the investigations of geomet-
ric frustration40–45. Interestingly, this quantum spin model can be employed to explain the properties of some real 
materials such as azurite which has the 1/3 magnetization plateau and exhibits the double peaks in both magnetic 
susceptibility and specific heat45. On the other hand, the Ising-XXZ diamond model can also provide an excellent 
ground for rigorous study of pairwise quantum correlations at finite temperature in an infinite chain structure. 
The goal of this work is to check whether the trance distance discord as a measure can be used to describe the 
quantum critical behaviors in the spin diamond structure at finite temperature. The main properties of the quan-
tum criticality(e.g., the finite-temperature scaling behavior, universality and critical exponents) will be visited 
both numerically and analytically.

Results
Ising-XXZ model and ground state phase diagram. The Ising-XXZ model with interstitial anisotropic 
Heisenberg spins and mixed nodal Ising spins on a diamond-structure chain in the presence of an external mag-
netic field is illustrated in Fig. 1. The Hamiltonian operator can be expressed as follows40–44:
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, , , , , , , ,  denotes the Heisenberg dimer interaction, Δ  is the anisotropy 
parameter, Sα,i stands for the quantum Heisenberg spin operators of the i-th cell along the chain, α =  a,b numbers 
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,  are three components of the Pauli operator, respectively. 

σi =  ± 1 denotes the classical Ising spin, while h and h0 are the external magnetic fields acting on Ising spins and 
Heisenberg spins, respectively. The parameters J1 and J correspond to the coupling constants of Ising interaction 
and XXZ interaction, respectively. For convenience, we set J1 =  1, J =  1 and h0 =  h throughout this work. L is the 
number of cells in the chain and will be treated as infinite. The Heisenberg spin coupling can be expressed using 
matrix notation as following,
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By fixing the values for σi and σi+1, we can obtain the eigenstates in terms of basis {|↑ ↑ 〉 , |↑ ↓ 〉 , |↓ ↑ 〉 , |↓ ↓ 〉 } given 
by,

ψ = ↑↑ , (3a)1

ψ = ↑↓ + ↓↑
1
2 ( ),

(3b)2

Figure 1. The schematic picture of Ising-XXZ diamond chain. The solid (dash) lines denote the Heienberg 
XXZ (Ising) interactions between two spins. The red (oliver) circles denote the Ising (Heisenberg) spins.
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ψ = ↑↓ − ↓↑
1
2 ( ),

(3c)3

ψ = ↓↓ (3d)4

And the corresponding eigenvalues are λ σ σ σ σ= + − + −+
∆

+( ) h( , ) 1 ( )i i
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respectively. In earlier work, three magnetic phases were observed (frustrated phase, ferrimagnetic phase and 
ferromagnetic phase) for the system40. In the present study, we take the tactic proposed by Rojas et al., to 
re-arrange these phases into two main regions (entangled and unentangled)41, which are closely related to the 
above three different magnetic phase, i.e., entangled state in the frustrated phase, ψ µ= ∏ ⊗=ENT i

N
i i1 3 , 

unentangled state in the ferrimagnetic phase ψ= ∏ ⊗ −=UFI i
N

i i1 1  and unentangled state in the ferromag-
netic phase ψ= ∏ ⊗ +=UFM i

N
i i1 1 . Here, |μ〉 i stands for an arbitrary value (μ =  ± 1/2) of the nodal spin in 

the ith block. According to the Bell states given in Eqs (3b) and (3c), at zero temperature the entangled state in the 
frustrated state is fully spanned at zero magnetic field, while the ferrimagnetic and ferromagnetic state are 
spanned by the unentangled states, respectively. The eigenvalues for the UFM is given by EUFM =  1 +  Δ /4 −  3h/2 
and the eigenvalue for UFI state is EUFI =  − 1 +  Δ /4 −  h/2. The entangled state (quantum ferrimagnetic state), 
denoted by ψ= ∏ ⊗ +=ENQ i

N
i i1 3 , has its eigenvalue EENQ =  − 1/2 −  Δ /4 −  h/2. Thus, the boundary 

between these critical phases at zero temperature can be exactly figured out according to these eigenvalues.

Trace distance and QPT at finite temperature. It is noted that the thermal entanglement for such a 
model on different critical phases was once discussed in the previous works41–44. The results showed that the 
entanglement may disappear as temperature exceeds a threshold Tc, making the entanglement fail to characterize 
the critical points above the critical temperature. Here we focus on the relationship between the trace distance 
discord and the quantum critical phenomenon at finite temperature. Without loss of generality, we plot the t as 
a function of Δ  and h for a fixed finite temperature T =  0.1 as an example in Fig. 2(a). Obviously, one can see that 
the UFI and ENQ regions (or phases) are separated by line Δ  =  1 with h <  2, and the UFM and ENQ regions (or 
phases) are separated by line Δ  −  2h +  3 =  0 with h >  2. The trance distance discord almost equals to one in the 
ENQ region and approaches to zero in the other two regions. Around the boundary between the unentangled 
state and entangled one, the trace distance discord falls quickly and approaches to zero asymptotically. Here it 
should be mentioned that the quantum state for Heisenberg dime is the unentangled state |ψ1〉  and thus all quan-
tum correlations(concurrence, quantum discord, trance distance discord, etc.) equal to zero when the system is 
in the UFI or UFM phase. In the other words, these is no change for these correlations when the system goes 
across the critical line between the two phases. In Fig. 2(b), we plot the first-derivative of t  with respect to Δ  for 
the fixed finite temperature T =  0.1. Again and obviously, the maximal appears around the critical lines. It is 
known that the first-derivative with respect to the driving parameter shows an extremal behavior near these crit-
ical lines and will be divergent in the thermodynamic limit T →  0.

To this stage, one is convinced that these properties of the trance distance discord indeed can reveal the critical 
regions at finite temperature for this model. In the following, we shall proceed to perform quantitative analysis on 
the t around the critical lines at finite temperature.

Quantum criticality from ENQ to UFI. Given the discussion above, it is clear that there exists a transition 
from ENQ phase to UFI phase around line Δ  =  1 with h ≤  2. In Fig. 3(a) is plotted the the density of t as a func-

Figure 2. (a) The trance distance discord t and (b) its first-derivative ∆d d/t  with respect to Δ  and h under 
temperature T= 0.1. In the ENQ phase, the value of t almost equals to one and it approaches asymptotically to 
zero in the UFI and UFM phases at low temperature. Around the critical lines, Δ  =  1(h <  2.0) and 
Δ  −  2h +  3 =  0(h >  2), and then the first-derivative  ∆d d/t  exhibit a maximal, marking a QPT at finite 
temperature.
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tion of T and Δ  for a fixed h =  1. Clearly t does not equal to zero over the whole parameter region and it is finite 
even at high temperature where the entanglement may disappear41,44. As addressed above, the reason is that t 
can measure the total quantum correlations of a state ρ while the entanglement can only reflect part of them. This 
property of t makes it possible to detect the quantum critical point at finite temperature. We also note that t  
may increase with temperature in a given region, which is very similar to QD in the Heisenberg XYZ model46. 
Naturally, this character tends to disappear as temperature goes too high. In Fig. 3(b), t as a function of temper-
ature T for several different values of Δ  are plotted. Obviously, for Δ  >  1, Dt decreases monotonically with 
increasing T and approaches to zero asymptotically in the high temperature region. However, for Δ  <  1, t almost 
equals to zero in the low temperature region, and then increases up to a maximal before going down to zero 
asymptotically as T increases further. These results also indicate that there indeed exists a transition when the 
system goes across Δ  =  1.

To explore the effect of finite-temperature on t, we present the calculated t  as a function of Δ  at several 
temperatures T around the point Δ  =  1.0 in Fig. 4(a). t increases monotonically with increasing Δ  and this 
trend becomes more significant as temperature T is lower. We plot the first-derivative of t  with respect to Δ  in 
Fig. 4(b) to reflect such trend. The ∆d d/t  exhibits a clear singularity around the critical point Δ  =  1.0 in the 
limit T →  0. Generally speaking, the appearance of nonanalytic behavior of a physical quantity is fundamentally 
a feature of QPT. It is accompanied with a scaling behavior due to the divergency of the correlation length. 
Fig. 4(b) shows the shift of the anomaly position, marked by the sharp peak, and the peak height with increasing 

Figure 3. (a) The trance distance discord t as a function of T and Δ . (b) The trance distance discord t as a 
function of T at different values of parameter Δ .

Figure 4. The calculated t  (a) and its first-derivative  ∆d d/t  (b) as a function of parameter Δ  around the 
critical point Δ  =  1.0. (c) The peak position Δ m can be regarded as a pseudo-critical point which shifts with 
increasing temperature T following relationship ∆ − ∆ = +k constlog( )c m T1

1  in approaching to the critical 
point Δ c. This behavior implies that Δ m →  Δ c as T →  0. (d) The maximum value of  ∆d d/t  at the pseudocritical 
point Δ m as a function of T.
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temperature. In details, the peak position Δ m can be regarded as a pseudo-critical point which shifts with temper-
ature T following the scaling law:

∆ − ∆ = + .k
T

constlog( ) 1
(4)c m 1

The numerical results are plotted in Fig. 4(c), implying Δ m →  Δ c as T →  0. On the other aspect, the value of the 
derivative of t is logarithmically divergent at the pseudo-critical point Δ m in the thermodynamic limit,

 ∆| = + .∆d d k
T

constlog( / ) 1
(5)t 2m

The numerical results are plotted in Fig. 4(d), suggesting that  ∆d d/t  shows a singularity at the critical point 
as temperature approaches to zero.

As a comparison, it is rather interesting to check the behaviors of some other typical quantum correlations 
around the critical point. In Fig. 5(a), we plot concurrence  as a function of Δ  at several different temperatures 
T with h =  0. Although the  ∼ ∆ curves are continuous, there would exist two points where the corresponding 
first-derivative ∆d d( / )  is continuous instead of divergent. The discontinuity at Δ c =  1 does indicate the QPT of 
the present model. However, the unexpected discontinuity occurs at Δ f where entanglement  disappears, sug-
gesting that this is a false critical point. This behavior for entanglement  is very similar to the counterpart in the 
XX spin model with multi-site interaction18. It is known that the origin of nonanalyticity in the concurrence at  
Δ f comes from the requirement that the concurrence should be non-negative instead from the nonanalyticity of 
ρ. Therefore, the discontinuity in ∆d d/  does not necessarily indicate the existence of QPT. In Fig. 5(b) and (c), 
dependences of Hellinger distance h  and quantum discord q on Δ  at several temperatures with h =  0 are plot-
ted. Obviously, both of them exhibit a cuspate behavior when the anisotropy parameter Δ  increases. These phe-
nomena cannot appear under the influence of magnetic field. For the QD, such phenomena can be also observed 
in other models46. Thus we see that the first derivative of these quantum correlations would show discontinuities 
at both points Δ c =  1 and Δ p. The discontinuity at Δ c =  1 does indicate the QPT of the present model. However, 
the unexpected discontinuity point occurring at Δ p is not a real critical one. In comparison with the behaviors of 
above typical quantum correlations, we also plot the trance distance discord in Fig. 5(d). Obviously, the ∼ ∆t  
curve is continuous and smooth, and we can anticipate that there would be one point where the first derivative of 

t  is discontinuous as temperature approaches to zero, marking the critical point exactly. Therefore, we can rea-
sonably state that the trace distance, in contrast to other quantum correlations (e.g., concurrence, quantum dis-
cord and Hellinger distance), may be more reliable to spotlight the critical points for this model under certain 
situations at finite temperature.

Figure 5. Several typical quantum correlations, (a) concurrence , (b) Hellinger distance h, (c) quantum 
discord q , and (d) trance distance discord t as a function of parameter Δ  around the points(Δ ,h) =  (1,0) at 
various temperatures T, respectively. Obviously, they are all smooth functions of Δ . However, the first-
derivatives for , q  and h would exhibit an unexpected discontinuity point Δ f, which is unfortunately not a 
real critical point except normal discontinuity point Δ c for the QPT.
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Quantum criticality from ENQ to UFM. Based on the above discussion, one understands that there exists 
another transition from ENQ phase to UFM phase around critical line Δ  −  2h +  3 =  0 with h >  2. Figure 6(a) and 
(b) present the t as a function of parameters Δ  and T for a fixed external field h =  2.5. The t  pattern is very 
similar to the counterpart around critical line Δ  =  1 with h <  2. For instance, t  decreases monotonically with 
increasing T and approaches to zero at high temperature when Δ  >  2.0. For Δ  <  2.0, t is nearly zero in the low 
temperature limit, but increases rapidly to a maximal and then falls gradually down to zero again with increasing 
T. These results also suggest that the system undergoes a QPT as parameters Δ  or h pass across the critical line 
Δ  −  2h +  3 =  0 with h >  2 at finite temperature.

To further understand the properties of t  around the critical line Δ  −  2h +  3 =  0, we investigate the 
finite-temperature scaling behavior quantitatively. In Fig. 7(a), we present t with respect to Δ  around the point 
(Δ , h) =  (2.0, 2.5) at different temperatures T. t increases monotonically with increasing Δ  and this dependence 
becomes more significant at lower temperature T. To characterize this dependence, we also plot the first-derivative 
of t with respect to Δ  in Fig. 7(b), and a singularity around the critical point (Δ , h) =  (2.0, 2.5) in the limit T →  0 
is displayed. One also observes that the peak position marking the anomaly shifts and the peak height decreases 
with increasing temperature, and the peak position Δ m as a pseudo-critical point can be described by the follow-
ing scaling law:

Figure 6. (a) The trance distance discord t  as a function of T and Δ . (b) The trance distance discord t  as a 
function of T at several different values of parameter Δ .

Figure 7. (a) t  and (b) its first-derivative  ∆d d/t  as a function of parameters Δ , respectively, around the 
critical line Δ  −  2h +  3 =  0. (c) The peak position Δ m can be regarded as a pseudo-critical point which shifts 
with temperature T following relation ∆ − ∆ = +k constlog( )c m T2

1  in approaching to the critical point Δ c. 
This character implies Δ m →  Δ c as T →  0. (d) The maximal value of  ∆d d/t  at the pseudocritical point Δ m as a 
function of T. The scaling behavior is very different from the counterpart in the quantum criticality from ENQ 
to UFI.
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∆ − ∆ = +k
T

constlog( ) 1
(6)c m 3

in approaching to the critical point Δ c. The numerical results are plotted in Fig. 7(c), implying Δ m →  Δ c as T →  0. 
On the other hand, at the pseudo-critical point Δ m, the value ∆d d/t  diverges logarithmically with decreasing 
temperature T, according to

∆ | = + .∆d d k log T constlog( / ) ( ) (7)t 4m


The numerical results are plotted in Fig. 7(d). Here, it should be mentioned that the scaling behaviors are very 
different from the counterpart in the quantum criticality from ENQ phase to UFI phase. The two kinds of transi-
tions can be distinguished by the different finite-temperature scaling behaviors.

Furthermore, by proper scaling and taking into account the distance of the maximum of ∆d d/t  from the 
critical point, all the data at different temperatures can be properly re-scaled onto the single curve using the scal-
ing transform relation: = − ∆ − ∆ |∆F d d d d[1 exp( / / )]t t m

   against ∆ − ∆ νT( )/m
1 7. The results around the 

point(Δ , h) =  (2, 2.5) are plotted in Fig. 8(a), demonstrating the scaling of the critical behaviors. The critical 
exponent ν =  1 is obtained.

We understand that the transitions across the critical line Δ  −  2h +  3 =  0 can be driven by Δ  or h. It is also well 
known that the most important ingredient of physics with quantum phase transitions is the universality class, 
which means that different driving parameters may exhibit the same behavior around the critical point and thus 
have the same critical exponent1. To check this universality behavior, we investigate the scaling behaviors given 
different values of driving parameter, i.e., external field h. In our calculations, we find that they do exhibit similar 
behaviors. We ignore the details and only focus on the results from which the critical exponent can be extracted. 
By proper scaling treatment and taking into account the distance of the maximal point of d dh/t  from the critical 
point, we plot the scaling function  = − − |F d dh d dh[1 exp( / / )]t t hm

 against − νh h T( )/m
1
 for different tem-

peratures T around the point(Δ , h) =  (2, 2.5) in Fig. 8(b). Obviously, all the data collapse onto a single curve, 
confirming the scaling behavior. The extracted critical exponent is ν =  1. These results also demonstrate convinc-
ingly that the quantum critical behaviors can be characterized by the trace distance even at nonzero (finite) 
temperature.

Discussion
Here the quantum criticality in the Ising-XXZ diamond structure at finite temperature have been studied by the 
trance distance discord calculations. Around the critical lines, the first-order derivative of the trace distance dis-
cord exhibits a maximal at a finite temperature and diverges under the thermodynamic limits T →  0. By analyzing 
the finite-temperature scaling behaviors, we show that the trace distance discord can detect exactly the quantum 
phase transition from the entangled state in ferrimagnetic phase to an unentangled state in ferrimagnetic phase 
or to an unentangled state in ferromagnetic phase. The results also show that the trace distance can distinguish 
the two kinds of transitions by consulting to the different finite-temperature scaling behaviors. As a comparison, 
we also study the behaviors of some other typical quantum correlations (e.g., concurrence, quantum discord and 
Hellinger distance) around the critical points, and the results state that the trance distance discord is more reliable 
than the others to spotlight the critical points for this Ising-XXZ diamond structure at finite temperatures.

Surely, this model system has three different critical phases, and it would be significant and challenging in 
the future to consider the multipartite quantum correlations which may grasp all these transitions. The bipartite 
quantum correlations imposed on this Ising-XXZ diamond structure, as studied in this work, can not detect the 
transition from UFI phase to UFM phase at finite temperature, an issue for future investigations.

Figure 8. (a) The evaluated  = − ∆ − ∆|∆F d d d d[1 exp( / / )]t t m
 as a function of (Δ  −  Δ m)/T at different 

temperatures. (b) The evaluated  = − − |F d dh d dh[1 exp( / / )]t t hm
 as a function of (h −  hm)/T at different 

temperatures. Given the fixed parameter h =  2.5 (a) or Δ  =  2 (b), all the data collapse on a single curve, 
respectively, as expected from the finite temperature scaling ansatz.
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Methods
By employing the transfer-matrix method, the reduced density operator for the Heisenberg spin pairs can be 
obtained exactly41,
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For a bipartite system described by the density operator ρAB, the trance distance discord is defined as28,29

ρ χ= −
χ ρ∈
min ,
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B are the orthogonal projector for A and the density operator for 
B, respectively. For a two-qubit X state ρ, which only contains nonzero elements along the main diagonal and 
anti-diagonal, the calculation of the trace distance discord can be simplified by29

γ γ γ χ γ γ γ

γ γ χ γ γ γ γ
=









+ −

+ − + −









max { , } min { , }
max { , } min { , }

,
(13)

t
1
2

3
2

2
2

3
2

2
2

1
2

3
2

3
2

2
2

3
2

1
2

3
2

1
2

2
2

1
2



here, γ1,2 =  2(|ρ23|± |ρ14|), γ3 =  1 −  2(ρ22 +  ρ33), and χ3 =  2(ρ11 +  ρ22) −  1.

References
1. Sachdev, S. Quantum Phase Transition (Cambridge University Press, Cambridge, UK, 1999).
2. Kopp, A. & Chakravarty, S. Criticality in correlated quantum matter. Nature Physics 1, 53 (2005).
3. Yang, Z. H., Yang, L. P., Dai, J. H. & Xiang, T. Rigorous solution of the spin-1 quantum Ising model with single-ion anisotropy. Phys. 

Rev. Lett. 100, 067203 (2008).
4. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226 (2005).
5. Shan, C. J., Cheng, W. W., Liu, J. B., Cheng, Y. S. & Liu, T. K. Scaling of geometric quantum discord close to a topological phase 

transition. Sci. Rep. 4, 4473 (2014).
6. Liu, X. M., Cheng, W. W. & Liu, J.-M. Renormalization-group approach to quantum fisher information in an XY model with 

staggered dzyaloshinskii-moriya interaction. Sci. Rep. 6, 19359 (2016).
7. Osterloh, A., Amico, L., Falci, G. & Fazio, R. Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002).
8. Osborne, T. J. & Nielsen, M. A. Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002).
9. Vidal, G., Latorre, J. I., Rico, E. & Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003).

10. Syljuåsen, O. F. Entanglement and spontaneous symmetry breaking in quantum spin models. Phys. Rev. A 68, 060301 (2003).
11. Gu, S.-J., Lin, H.-Q. & Li, Y.-Q. Entanglement, quantum phase transition, and scaling in the XXZ chain. Phys. Rev. A 68, 042330 

(2003).
12. Glaser, U., Büttner, H. & Fehske, H. Entanglement and correlation in anisotropic quantum spin systems. Phys. Rev. A 68, 032318 

(2003).
13. Wu, L.-A., Sarandy, M. S. & Lidar, D. A. Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004).
14. Vidal, J., Palacios, G. & Mosseri, R. Entanglement in a second-order quantum phase transition. Phys. Rev. A 69, 022107 (2004).
15. Somma, R., Ortiz, G., Barnum, H., Knill, E. & Viola, L. Nature and measure of entanglement in quantum phase transitions. Phys. 

Rev. A 70, 042311 (2004).
16. Amico, L., Osterloh, A., Plastina, F., Fazio, R. & Massimo Palma, G. Dynamics of entanglement in one-dimensional spin systems. 

Phys. Rev. A 69, 022304 (2004).
17. Verstraete, F., Popp, M. & Cirac, J. I. Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004).



www.nature.com/scientificreports/

9SCIeNtIfIC REPORtS | 7:42360 | DOI: 10.1038/srep42360

18. Yang, M.-F. Reexamination of entanglement and the quantum phase transition. Phys. Rev. A 71, 030302 (2005).
19. Amico, L. & Patanè, D. Entanglement crossover close to a quantum critical point. EPL 77, 17001 (2007).
20. Justino, L. & de Oliveira, T. R. Bell inequalities and entanglement at quantum phase transitions in the XXZ model. Phys. Rev. A 85, 

052128 (2012).
21. Li, Y.-C. & Lin, H.-Q. Quantum coherence and quantum phase transitions. Sci. Rep. 6, 26365 (2016).
22. Qin, M., Ren, Z.-Z. & Zhang, X. Universal quantum correlation close to quantum critical phenomena. Sci. Rep. 6, 26042 (2016).
23. Ollivier, H. & Zurek, W. H. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001).
24. Dakić, B., Vedral, V. & Brukner, C. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 

(2010).
25. Piani, M. Problem with geometric discord. Phys. Rev. A 86, 034101 (2012).
26. Chang, L. & Luo, S. Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013).
27. Girolami, D., Tufarelli, T. & Adesso, G. Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 

240402 (2013).
28. Paula, F. M., de Oliveira, T. R. & Sarandy, M. S. Geometric quantum discord through the schatten 1-norm. Phys. Rev. A 87, 064101 

(2013).
29. Ciccarello, F., Tufarelli, T. & Giovannetti, V. Toward computability of trace distance discord. New Journal of Physics 16, 013038 

(2014).
30. Dillenschneider, R. Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008).
31. Sarandy, M. S. Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009).
32. Maziero, J., Guzman, H. C., Céleri, L. C., Sarandy, M. S. & Serra, R. M. Quantum and classical thermal correlations in the XY spin-1

2
 

chain. Phys. Rev. A 82, 012106 (2010).
33. Li, Y.-C. & Lin, H.-Q. Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin 

interaction. Phys. Rev. A 83, 052323 (2011).
34. Rulli, C. C. & Sarandy, M. S. Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011).
35. Tomasello, B., Rossini, D., Hamma, A. & Amico, L. Ground-state factorization and correlations with broken symmetry. EPL 96, 

27002 (2011).
36. Modi, K., Brodutch, A., Cable, H., Paterek, T. & Vedral, V. The classical-quantum boundary for correlations: Discord and related 

measures. Rev. Mod. Phys. 84, 1655–1707 (2012).
37. Campbell, S., Richens, J., Gullo, N. L. & Busch, T. Criticality, factorization, and long-range correlations in the anisotropic XY model. 

Phys. Rev. A 88, 062305 (2013).
38. Huang, Y. Scaling of quantum discord in spin models. Phys. Rev. B 89, 054410 (2014).
39. Werlang, T., Trippe, C., Ribeiro, G. A. P. & Rigolin, G. Quantum correlations in spin chains at finite temperatures and quantum 

phase transitions. Phys. Rev. Lett. 105, 095702 (2010).
40. Ananikian, N. S., Ananikyan, L. N., Chakhmakhchyan, L. A. & Rojas, O. Thermal entanglement of a spin-1/2 Ising-heisenberg 

model on a symmetrical diamond chain. J. Phys.: Condens. Matter 24, 256001 (2012).
41. Rojas, O., Rojas, M., Ananikian, N. S. & de Souza, S. M. Thermal entanglement in an exactly solvable Ising-XXZ diamond chain 

structure. Phys. Rev. A 86, 042330 (2012).
42. Rojas, M., de Souza, S. M. & Rojas, O. Rise of pairwise thermal entanglement for an alternating Ising and heisenberg spin chain in 

an arbitrarily oriented magnetic field. Phys. Rev. A 89, 032336 (2014).
43. Sterćka, J., Rojas, O., Verkholyak, T. & Lyra, M. L. Magnetization process, bipartite entanglement, and enhanced magnetocaloric 

effect of the exactly solved spin-1/2 Ising-heisenberg tetrahedral chain. Phys. Rev. E 89, 022143 (2014).
44. Gao, K., Xu, Y. L., Kong, X. M. & Liu, Z. Q. Thermal quantum correlations and quantum phase transitions in Ising-XXZ diamond 

chain. Physica A 429, 10 (2015).
45. Rule, K. C. et al. Nature of the spin dynamics and 1/3 magnetization plateau in azurite. Phys. Rev. Lett. 100, 117202 (2008).
46. Werlang, T. & Rigolin, G. Thermal and magnetic quantum discord in heisenberg models. Phys. Rev. A 81, 044101 (2010).

Acknowledgements
W.W.C, X.Y.W. and Y.B.S are supported by the Natural Science Foundation of China(NSFC) (Grant No.11105049, 
No.11474168). L.Y.G. and S.M.Z acknowledge the financial support from the NSFC (Grant No.61271238, 
No.61475075). J.M.L thank the support of NSFC (Grant No.51431006) and the National Key Research Programs 
of China (Grants No. 2016YFA0300101).

Author Contributions
W.W.C. proposed the idea. W.W.C and X.Y.W carried out the calculations. Y.B.S., L.Y.G., S.M.Z. and J.M.L 
commented the model. W.W.C and J.M.L wrote the paper. All authors discussed the results and commented on 
the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Cheng, W. W. et al. Finite-temperature scaling of trace distance discord near criticality 
in spin diamond structure. Sci. Rep. 7, 42360; doi: 10.1038/srep42360 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Finite-temperature scaling of trace distance discord near criticality in spin diamond structure
	Introduction
	Results
	Ising-XXZ model and ground state phase diagram
	Trace distance and QPT at finite temperature
	Quantum criticality from ENQ to UFI
	Quantum criticality from ENQ to UFM

	Discussion
	Methods
	Additional Information
	Acknowledgements
	References




