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Non-patchy strategy for inter-
atomic distances from Extended 
X-ray Absorption Fine Structure
Gu Xu1, Guifang Li1,2, Xianya LI3, Yi Liang3 & Zhechuan Feng3

Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available 
for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis 
involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to 
ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the 
inter-atomic distances from the experimental data by a single step minimization, in order to replace 
the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and 
made straightforward and undeniable. The finding demonstrates that it is possible to break off from 
the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the 
structure to be matched with experimental data, making it a much more powerful technique than the 
existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is 
anticipated that the current work to be the motivation and inspiration to the further efforts.

As a unique method of probing short range order in atomic scale, Extended X-ray Absorption Fine Structure 
(EXAFS) is routinely used in a wide range of scientific fields, including biology, environmental science, catalysts 
research, and material science1. It has even made profound impact on our understanding of the local metrical 
structure of the active sites in many metallo-proteins2, as well as been utilized extensively to provide unique struc-
tural insights into enzymatic intermediates3. More importantly, crystallinity is not required for EXAFS measure-
ments, making it one of the few structural probes available for non-crystalline and highly disordered materials, 
including solutions1,4. As an atomic probe, it places few constraints on the samples that can be studied. Since all 
atoms have core level electrons, EXAFS spectra can be measured for almost every element on the periodic table4.

However, as a long standing problem, in order to extract the results from the EXAFS data, such as inter-atomic 
distances, the current state-of-art calls for a patchy and tinkering process, when one has to go back-and-forth to 
perform the fitting and filtering5–8, including the Fourier transform9,10 of individual coordination shell, leading to 
a possibly wrong answer due to the interference, whereas the simultaneous fitting of multiple coordination shells 
involves too many variables and becomes unreliable11–14.

To resolve the problem, we develop here a non-patchy, non-ambiguous strategy of obtaining the inter-atomic 
distances, which no longer relies on the Fourier transform. Our new method is based on the mathematical anal-
ysis of existing theory, the cause of the problem in the current state-of-art, in particular the discrepancy between 
the individual coordination shell and the overall Fourier transform, which is then reverted to become the key to 
the development of new strategy, where a single calculation step generates the needed results without ambiguity. 
In addition to the verification by the existing data, the new strategy brings in extra surprises where some variables 
may be ignored initially, making it a much more powerful tool than the existing methods.

As usual the EXAFS data are collected from synchrotron x-ray facilities either in transmission or fluorescence 
geometries1,4,6,7. The X-ray absorption coefficient μ​(E), expressed as a function of energy, E, is normally converted 
into χ​(k), to highlight the fine structure, i.e., the oscillating part of the X-ray absorption, where k is the wave 
number of the photo-electrons, given by (2 m(E-E0)/ħ2)1/2, and E0 marks the absorption edge1,4 (Fig. 1).

According to the standard theory6–10, the χ​(k) is related to a number of terms, such as; S0, the amplitude 
reduction due to the relaxation of all the other electrons in the absorbing atom to the hole in the core level; 
fj(k) and ϕ​j(k), the scattering amplitude and phase-shift of the atoms in the jth coordination shell neighboring 
the excited atom; λ​(k), the mean-free-path of the photo-electron; Nj, the number of neighboring atoms; Rj, the 
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distance from the absorbing to the neighboring atoms; and σ​j2, the disorder in the neighboring atoms of the jth 
coordination shell; as shown by Eqn (1):
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To achieve the main goal of obtaining the structural information, it is possible, at least in principle, to extract 
the desired results by the data fitting, the inter-atomic distances R1, R2, (or more precisely the respective scatter-
ing path lengths), the coordination numbers N1, N2, and the disorder factor σ​j, based on the phase information 
ϕ​j(k), scattering amplitude fj(k) and photo-electron’s mean-free-path, λ​(k), which could all be calculated before-
hand1,4,7. However, because there are too many unknowns here, it is usually very difficult, if not impossible, to 
achieve the correct results by this data fitting, unless much more has already been known a priori, thus beating 
the original purpose. As a result, the current state-of-art calls for the separation of coordination shells through 
Fourier transform, to “isolate” the individual peaks of the χ​(R), the Fourier transform of χ​(k), to be linked to 
each coordination shell surrounding the absorbing atom. The overall process becomes inevitably tinkering and 
patchy, when one has to go back-and-forth to perform the fitting and filtering14–21. Although there have been 
non-Fourier methods attempted, but none solves the problem, or there would have been no need for the Fourier 
Transform till this day.

Moreover, this is mathematically problematic, since a number of single peaks added together may not nec-
essarily produce a multiple peak which matches the peak positions of the original, due obviously to the possible 
interference and complications caused by the peak shoulders. For example, when we Fourier transform the two 
sine functions, simulating the oscillating part of χ​(k) using a typical set of phases (Fig. 2a), it is evident that the 
sum of the two does not match each individual transform in terms of the peak positions (Fig. 2b). The mismatch 
arises due to the existence of peak shoulders, viz., the interference between the truncated coordination shells. In 
addition, there may also be extra peaks emerging from the summation caused by the truncation error, such as 
the one found in between the two major peaks (Fig. 2b). Therefore, it becomes clear that, the Fourier transform 
of individual coordination shells may lead to possibly wrong answers. Worse off, one could never tell beforehand, 
when this happens, how much different it would be, or even the direction of the deviation, all of which place the 
whole process onto a logically fallacious position.

To resolve the problem, let us first break off from the traditional route, by redirect the attention onto the zeros 
of the χ​(k), as they are the key features – oscillations of EXAFS, and in fact the key to the solution. When we 
consider a zero-point of the χ​(km), where km (m =​ 1,2,3.) are the roots of χ​(k), it is obvious that, the multiples 
to the right side of Eqn (1) become unimportant, as a zero times anything is still zero. For example, when there 
are only two coordination shells involved, Eqn (1) can just be re-written as the sum of merely two sine functions:

χ ϕ ϕ= = + + +⁎k k R k r k k R k( ) 0 sin [2 ( )] ( ) sin [2 ( )] (2)m m m m m m1 1 2 2

where r(k) is:

Figure 1.  EXAFS experimental setup for the transmission mode, the absorption energy oscillation, and the 
data extraction, where the jump in μ(E) marks the absorption edge. 
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Obviously Eqn (2) is much simplified from Eqn (1), and the tedious multiple parameter fitting is now reduced 
to a set of algebraic equations, of just four unknowns of, R1, R2, N2/N1, and (σ​22–σ​12). Indeed, with a given set of  
ϕ​j(km), fj(km) and λ​(km), it is possible to employ Eqn (2) four times, each with a different zero point of km, to solve 
for the unknowns from the equation set.

Rather than solving these transcendental equations, however, a much better strategy can be developed here, 
to obtain atomic distances of R1 and R2 directly, by a minimization algorithm. Due to the oscillating nature of 
sine functions, for a given root of km, Eqn (2) produces a number of zeros, or minima when the square of χ​(km) 
is constructed, on a two dimensional mesh spanned by R1 and R2 (Fig. 3a). They form the periodical solutions 
of Eqn (2), where the “roots” of R1 and R2 are separated by a “period” of π​/km along Rj axes. The periodicity is 
not changed by the presence of the phases ϕ​(k) included in the sine function, which would only make it less har-
monic, or broaden the peak spectra, when taken as a sinusoidal function of k instead of R.

However, when a number of such squared χ​(km) are added together, each corresponding to a different perio-
dicity π​/km, the resulting sum becomes aperiodic. In particular, when up to 5 or more such χ​2(km) are collected, 
the summation produces few minima instead of periodic, often with the smallest corresponding to the correct 
solution of R1 and R2 (Fig. 3b,c), as long as physically meaningful boundaries of Rj are imposed. Naturally, this can 
also be expanded to include a third or even fourth coordination shell, when Eqn (2) involves more sine functions 
of 2kR3, 2kR4, etc.

In the meantime, a prominent feature of the new method can be discovered here; these minima are so insensi-
tive to, but not totally independent of, the change of r(k), as given by Eqn (3), that the minimization result varies 
little with respect to the choice of r(k), which consists of non-zero factors anyway. In fact, it is easy to verify that, 
except for the relative heights, the locations of the minima are almost unchanged by a variation of r(k) up to 25%, 
which is about the maximum change of r(km), caused by km, which varies from 1.5–5.0, and the accompanying 
fj(km), λ​(km). This implies, we do not need to know, a priori, the knowledge of fj(k) and λ​(k), although they can 
be calculated beforehand. This pleasant surprise can be understood by the fact that, Rj is only related to ϕ​j(k), 
through the sine function in the theory, which decides where the zeros are, and has little to do with the scattering 
amplitude and the mean-free-path. Nonetheless, the ratio(s), r(k), could well be set as extra variables, regardless 
the number of shells, and/or k ranges. Of course, we are able to figure out the Nj, as well as σ​j, through the usual 
fitting process afterwards, which becomes much less ambiguous now, due to the settlement of R1, R2. In any case, 
the new method provides a much more powerful tool to achieve the most needed answer, the atomic distances, 
without ambiguity. And with these answers, the tedious, patchy job can largely be reduced, to allow for the further 
refinement.

Based on the logical analysis above, the experimental/numerical verification becomes trivial. The new strategy 
can be tested by a common software, such as Matlab™​, where there are a number of simple, built-in loops, such as 
“fminsearch” based on Nelder-Mead minimization algorithm22. It takes only one line of instruction in Matlab™​ 
command window. As an example, we employ the existing data of FeO (Fig. 4a), involving non-monotonic phase 
functions due to the Ramsauer-Townsend effect, which produced a number of zeros of χ​(k) at; km =​ 1.80, 2.10, 
2.40, 3.25, 4.10, 4.90, (m =​ 1..6)23,24. We then construct the target to be minimized by adding up the squares of the 
right hand side of Eqn (2), for each km, together with the given ϕ​(km)23,24, and a common r for all m =​ 1..6. It takes 
only a few seconds for the Matlab™​ on a Pentium to generate the correct answers of R1 =​ 2.14 Å, and R2 =​ 3.06 Å, 
respectively, ending with a residual of about exp(−​4.5), or 0.011 (Fig. 3c). The same procedure is then repeated 
to allow for the variations of all 6 r(km), when a much lower residual of 6 ×​ 10−10 can be achieved. And the corre-
sponding r(km) are shown in Fig. 4b.

Figure 2.  (a) Examples of the scattering phases between an absorbing atom and scattering atoms. (b), the 
mismatch between the sum of the two Fourier transforms (black), and the individual transform (blue: dash; red: 
dash-point), where the peak positions differ due to the peak shoulders.
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To obtain convincing evidence for the legitimacy of the procedure, Fig. 5a and b are presented to show a), the 
variation of χ​2(k1) against R1, involving only the first root (k1) of χ​, and b), the variation of Σ​χ​2(kj), the sum over 
all roots (km) of χ​, both with R2 near the correct answer of 3.06 Å. It is clear that the former gives roughly close 
results but still with ambiguity, whereas the latter produces a unique and un-mistakable answer.

The same can be done to compare the variation of χ​2(k1) against R2, by Fig. 6a, with that of Σ​χ​2(kj), by Fig. 6b, 
when only a common r is used in the minimization, and with that by Fig. 6c, when all 6 r(km) are employed, all 
with R1 near the correct answer of 2.14 Å. Although a single minimum is visible in Fig. 6a, it does not represent 
the correct answer, which will be better obtained by Fig. 6c, where all the possible variations are involved.

Figure 3.  (a) A periodical set of minima (dark-red) on a two dimensional mesh spanned by R1 and R2, caused 
by the oscillating nature of sine functions in Eqn (2) when the square of χ​(km) is constructed by km =​ 1.0. 
(b) The summation of χ​2(kj) over five km’s, instead of periodic, it produces the smallest minimum (dark red) 
corresponding to the solution of R1 and R2. (c) Three dimensional view of (b), where the smallest minimum is 
shown by the highest peak in red-black.
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Figure 4.  (a) χ​(k) from the EXAFS data of FeO. (b) r(km) obtained from the proposed minimization process.

Figure 5.  (a) The variation of χ​2(k1) against R1, involving only the first root (k1) of χ​, with R2 near the correct 
answer, giving close results but still with ambiguity. (b) The variation of Σ​χ​2(kj), the sum over all roots (km) of χ, 
with R2 near the correct answer, producing a unique and un-mistakable answer.

Figure 6.  (a) The variation of χ​2(k1) against R2, involving only the first root (k1) of χ​, with R1 near the correct 
answer, giving close results but a little off the correct answer. (b) The variation of Σ​χ​2(kj), the sum over all roots 
(km) of χ​, with R2 near the correct answer, but using only a common r during the minimization. (c) The variation 
of Σ​χ​2(kj), the sum over all roots (km) of χ​, with R2 near the correct answer, employing all r(km) as variables.
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Since the error is mainly originated from the data input, as the minimization process does not introduce addi-
tional uncertainty, the overall % error remains the same as the km. Although the km accuracy affects the analysis, 
this influence is much less than the old method, when the whole oscillation curve is employed. Of course, as with 
many minimization routines, we have to establish sensible initial values of R1, R2, and to avoid being trapped into 
local minima. An easy choice could be to require R2 >​ R1 during the searching, and/or to preset physically mean-
ingful R-values to begin with, e.g., letting R1 to be within {1,3}, and R2 within {2,4} (Fig. 3b). The new method has 
also been tested by a number of other samples and the results were consistent, which confirm the correct math-
ematics. Even when more R’s than the actual inter-atomic distances are employed in the procedure, the correct 
results can still be achieved, where the extra R’s will be associated with negligible r’s after the minimization. As 
an example, a triple shell case of AlGaN was also tested, where km =​ 2.47, 3.53, 4.51, 5.85, 6.23, 6.96, 8.15, 9.29, 
the target to be minimized was then constructed by the same manner, and the resulting R1, R2, R3 match well the 
correct answers: 1.91, 3.11, 3.14, respectively. Mathematically, as long as the theory is true (Eqn.1 & 2), correct 
answers should be expected, unless there is an input error. Nevertheless, a further test was done to the system of 
SiC, involving a certain degree of disorder. With the following roots of χ​: 1.07, 1.85, 2.65, 3.54, 4.35, 4.68, 5.23, 
5.93, the minimization process produces a pair of R1/R2 to be 1.83/3.03, both a little smaller than the crystalline 
results (1.90/3.06).

To summarize, a simple and straightforward strategy has been proposed here to extract the main structural 
information, such as the inter-atomic distances, from the EXAFS, which has otherwise required a lengthy tink-
ering and patchy process. Our findings demonstrate that it is now possible to break off from the various patching 
of the Fourier transform method, and to remove the mathematical flaw of separating coordination shells to be 
matched with experimental data, which has been dominating for many years. Even though one may still need 
to employ curve-fitting for other parameters, however, the new method still offers tremendous benefit, since, 
once the inter-atomic distances are settled, the problem becomes solvable, whereas it may be impossible by the 
curve-fitting alone. We hope the new method will re-establish the EXAFS as a far less ambiguous technique 
during the data analysis. We believe that the new method has far reaching implications for the use of EXAFS 
technique, not only in physical sciences but also in life sciences, where EXAFS analysis plays an important role.
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