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Analysis of Influenza and RSV 
dynamics in the community using a 
‘Local Transmission Zone’ approach
Gal Almogy1,2, Lewi Stone2,3,*, B. Andrei Bernevig4, Dana G. Wolf5, Marina Dorozko5, 
Allon E. Moses5 & Ran Nir-Paz5,*

Understanding the dynamics of pathogen spread within urban areas is critical for the effective 
prevention and containment of communicable diseases. At these relatively small geographic scales, 
short-distance interactions and tightly knit sub-networks dominate the dynamics of pathogen 
transmission; yet, the effective boundaries of these micro-scale groups are generally not known 
and often ignored. Using clinical test results from hospital admitted patients we analyze the spatio-
temporal distribution of Influenza Like Illness (ILI) in the city of Jerusalem over a period of three winter 
seasons. We demonstrate that this urban area is not a single, perfectly mixed ecology, but is in fact 
comprised of a set of more basic, relatively independent pathogen transmission units, which we term 
here Local Transmission Zones, LTZs. By identifying these LTZs, and using the dynamic pathogen-
content information contained within them, we are able to differentiate between disease-causes at the 
individual patient level often with near-perfect predictive accuracy.

Seasonal epidemics of Influenza-Like Illness (ILI) are a major source of winter morbidity typically affecting some 
10–50% of a given population1–5. While the Influenza virus may cause ILI, there are many other respiratory 
diseases such as Respiratory Syncytial Virus (RSV), ParaInfluenza, Adenovirus, and other pathogens that may 
be equally responsible6–10. Disease manifestations of ILI range across the spectrum from mild presentation to 
acute respiratory failure11. The spatio-temporal dynamics of the different pathogens that can lead to ILI, and 
their interactions, is an area of research for which little is known. Recent work has emphasized that transmission 
is tightly linked to the underlying structure of the host community: a complex, dynamic network of short- and 
long-distance social interactions. The long-distance interactions facilitate disease transmission over great geo-
graphic distances12,13, for example via international airplane routes, and can play an important role in controlling 
the global distribution and spread of ILI and pandemics14,15.

However, the fundamental processes of pathogen transmission are found at much smaller geographic scales, 
since close physical proximity between infected and susceptible individuals is a requirement for occurrence 
of disease16,17. This is a regime where short-distance interactions dominate, and tightly knit sub-networks or 
‘cliques’18 such as families, kindergartens or schools are the high-risk groups in the population19,20. The effective 
boundaries of these micro-scale groups are generally not known, and it is difficult to determine which groups 
within a large community form a pathogen’s basic ‘epidemiological unit.’ Moreover little is known about the 
spatio-temporal dynamics of ILI at these smaller spatial scales. Here we develop new methods that focus on the 
unexplored patterns and dynamics of ILI epidemics on these smaller scales by developing a new theory of ‘Local 
Transmission Zones’ (LTZs). We demonstrate how a single urban area can be subdivided into a set of smaller 
geographic zones, that are relatively independent of one another and each individually may be considered as a 
pathogen’s basic epidemiological unit. The disease dynamics within the urban area cannot be fully understood 
without subdividing it into its subcomponent LTZs. Our study outlines a new approach for identifying LTZs and 
explores their properties with regard to pathogen transmission.
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LTZs are defined by the property that the transmission rate of an infectious disease within an LTZ is signifi-
cantly greater than the average transmission rate of the disease between the different LTZs. This means that the 
population within an LTZ is in relative terms highly connected, and we suppose sufficiently connected to justify 
the assumption of ‘random mixing,’ so that an invading pathogen could come into contact reasonably rapidly 
with most of members of the LTZ. However, an invading pathogen may have difficulty in spreading beyond the 
confines of the relatively isolated LTZ. Extreme examples of LTZs have been documented in the literature and 
include confined military bases or cruise ships21–24 or other small isolated communities (e.g. religious or ethnic) 
through which diseases rapidly propagate, reaching most members of the population.

To investigate the possibility of LTZs in a large regional area, we analyze clinical data from a healthcare medi-
cal center in the city of Jerusalem, containing the clinical test results for Influenza virus and Respiratory Syncytial 
Virus (RSV) from patients presenting with ILI symptoms. Using a ‘k-means clustering’ algorithm, putative LTZ 
groups are identified solely based on the physical distance between home locations of the patients. The method-
ology is akin to the procedure of ‘community detection’ applied in the study of complex networks and designed 
to locate highly connected clusters of nodes25,26. Our analysis finds that while Influenza and RSV incidences tend 
to overlap and show more or less equal number of cases over the whole region, individual LTZs show a far more 
homogeneous disease content at most given times, with some being dominated by RSV while others by Influenza. 
We use these findings to arrive at a prediction algorithm that, applied to patients presenting at the hospital with 
ILI, is capable of differentiating between cases of Influenza and RSV, often with near-perfect accuracy.

Results
Defining Local Transmission Zones. The transmission dynamics of respiratory pathogens in a population 
are constrained by the physical distance between infected and susceptible individuals. An LTZ for a given path-
ogen represents a group of individuals within the general population, such that the transmission probability of 
the pathogen within the group is greater than transmission probability between that group and any of the other 
groups. Thus we suppose the population of a region can be subdivided into a set of k groups or LTZs, such that 
for any two LTZs i and j:

.P LT Z LT Z P LT Z LT Z( , ) ( , ) (1)i i i j

Here P(LTZi, LTZj) is the average probability that an individual from LTZi infects an individual from LTZj.
In our case we are given the geographic coordinates of a group of individuals, and we assume that the proba-

bility of transmission between two individuals is proportional to the Euclidean distance between them. To divide 
the population into a set of k distinct LTZs we make use of an optimization technique known as k-means clus-
tering that calculates the k different geographic zones while attempting to ensure that Eq. 1 holds in an optimal 
fashion25.

For any preassigned k we are able to divide the set of all patients home-locations into a set of k LTZs using the 
aforementioned clustering method, after determining all pair-wise Euclidean distance between address locations 
of the full patient set (see also methods). Thus the resulting LTZs represent k groups of patients, partitioned 
purely on the basis of the physical proximity between these patients’ home locations27,28. Note that when exam-
ined over the entire period (2009–12), the spatial distributions of Influenza and RSV are very similar and we have 
found that the LTZs obtained using only the Influenza or RSV data for clustering purposes are very similar to 
those obtained when using the entire data (not shown).

Figure 1. Geographic context of LTZs. The approximate home-location of all patients in the dataset (circles), 
shown in geographical context after dividing the set into k =  36 LTZs, which are identified by their respective 
colors; k =  36 is used here as a representative example of results obtained for the other k values tested. The 
shaded area represents the city municipality of Jerusalem. Arrows point to the Gilo (bottom, left) and Bet-Safafa 
(top, right) neighbourhoods. The cartography in the image was adapted from OpenStreetMap, licensed under 
CC BY-SA (www.openstreetmap.org/copyright).

http://www.openstreetmap.org/copyright
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The clustering method used was effective at identifying geographically distinct areas as clusters, e.g. neigh-
borhoods outside the Jerusalem municipal boundary (Fig. 1, highlighted area). Here we chose k =  36 LTZ groups 
as a representative example because it guaranteed that the smallest LTZ consisted of at least 100 individuals. 
Interestingly, the clustering algorithm was also able to make meaningful distinctions within the municipal bound-
aries, e.g. between the ‘Bet-Safafa’ and ‘Gilo’ neighbourhoods (indicated on map as circles).

Disease-signal overlap. The time-series of Influenza and RSV clinical test results collected at The 
Hadassah-Hebrew university Medical Centers between 2009 and 2012 is shown (Fig. 2a). The unusual dynam-
ics in 2009–10 may be the result of the unusual ILI dynamics during this season, caused by the then emerging 
H1N1 Influenza pandemic strain (H1N1pdm, ref. 12). In the 2009–10 season, we note the occurrence of first an 
Influenza epidemic followed by an RSV epidemic, with very small overlap between the two epidemics. As such 
there is a notable time-delay between the peaks of the epidemic curves of Influenza and that of RSV. In contra-
distinction, over the 2010–11 season, the Influenza and RSV epidemics peak at almost the same time and overlap 
almost totally.

Ideally we expect to find that within a single well defined working LTZ, the two disease signals show relatively 
small overlap. The underlying concept is that any pathogen arriving at a susceptible LTZ is able to spread rapidly 
through the entire local population. This domination within an LTZ is to be expected since disease transmission 
within an LTZ is stronger than transmission between them. Such a situation would be particularly favoured if 
only a limited number of infected individuals invade a susceptible but heterogeneous region. The pathogen dom-
inating an LTZ is likely to be the first successfully invading pathogen. In this extreme case, there would be zero 
overlap of the diseases in any LTZ, because each LTZ has only a single pathogen. Here, our working assumption 
is that transmission between LTZs has relatively minor impact at these time-scales. Hence, even if at the whole 
region scale (i.e. k =  1) disease signal overlap is high, as say in 2010–11, in the individual LTZs within the region 
the disease signal overlap should be expected to be far smaller, ideally close to zero.

This motivates us to develop a quantitative index for measuring disease Signal Overlap (SO). To do so, we let 
the number of Influenza and RSV cases at time t be represented by I(t) and R(t) respectively. Let ρI,R(τ) be the 
lagged cross-correlation between I(t) and R(t −  τ), that is, the cross-correlation between the Influenza and RSV 
time series when there is a time-delay τ between the signals. The signal overlap SOI,R between the two time-series 
is then defined as (see also Methods):

ρ ρ τ= = | |τSO M M max(0)/ where ( ) (2)I R I R I R, , ,

Here ρI,R(0) is precisely the usual Pearson correlation between I(t) and R(t) and this is divided by the max-
imum such correlation possible when the time-series are delayed for a time τ, ranging from minus to plus 13 
weeks.

The index is first used to examine the disease signal overlap when the whole region is considered a single LTZ 
(i.e., k =  1). The overlap for Influenza and RSV ranges from a minimal value of SO =  0.11 during the 2009–10 sea-
son, to a maximal value of SO =  0.98 in 2010–11, with the 2011–12 season also showing a high degree of overlap 
at SO =  0.78 (Fig. 2b). These overlap values match well what might be expected when judging by eye the overlap 
of the epidemic curves (Fig. 2a).

Now compare these values to the average overlap values found when the region is divided into LTZs. In the 
2010–11 and 2011–12 seasons there is a remarkable decrease in the per season temporal overlap of Influenza and 
RSV disease signals as k, the number of LTZs, is increased (Fig. 2b, dark blue bars). In 2010–11 the overlap drops 
from SO =  0.98 (k =  1) to SO =  0.4 (k =  84) and in 2010–11 and from SO =  0.78 (k =  1) to less than SO =  0.1 for 

Figure 2. Per season signal overlap of Influenza and RSV. (a) Influenza (red) and RSV (blue) incidence 
(y-axis), summed over one-week time periods (x-axis) in the whole region. The three ‘seasons’ (2009–10,  
2010–11 and 2011–12) are marked. (b) The signal overlap (y-axis) per season was calculated using Eq. [2] 
for a single area (blue) and for the different LTZ groups (k =  12, 24, 36, 48 and 84, indicated by color). The 
whole region area values were SO =  0.11, 0.98 and 0.78, for the first, second and third seasons respectively. The 
reduction in signal overlap compared to the whole region was significant for all k values in 2010–11 and 2011–
12, but not significant during 2009–10.
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k =  84 (p <  0.01 for all k values). During the 2009–10 season, the reduction in overlap was less pronounced and 
not statistically significant, changing from SO =  0.11 (k =  1) down to SO =  0.06 (k =  48).

Disease ratios. Disease signal overlap is a useful index for studying and comparing the intersection of two 
diseases over a season. For shorter term dynamics we make use of the disease ratio index (DR) of the weekly 
incidence of the two pathogens. For a particular week, the disease ratio for Influenza and RSV is defined here as 
(see also Methods):

=
−
+

DR I R
I R

[ ] [ ]
[ ] [ ] (3)I R,

where [I] and [R] are the number of new cases of Influenza and RSV respectively, for that week.
The disease ratio quantifies the degree to which one pathogen is dominant over the other during a period of 

one week. When only Influenza is detected over a week, the disease ratio is DR =  + 1, when only RSV is detected 
then DR =  − 1, and hence the absolute value of the DR is maximal when only one pathogen is present (|DR| =  1). 
If the pathogen incidences are equal over the week then DR =  0.

We show the disease ratio for the whole region (k =  1) colour-coded and plotted as a function of time in 
consecutive weeks (Fig. 3a). In the first half of the 2009–10 season there are only cases of Influenza and DR =  + 
1 (red), whereas for the second half of the season there are only RSV cases (DR =  − 1, blue). In contrast, during 
most of the 2010–11 season DR =  0 (green), as expected given the almost complete overlap of the Influenza and 
RSV disease signals.

In the 2011–12 season, despite the high degree of overlap in the entire season, there is initially a period of RSV 
dominance, reflected in a negative DR (blue). This dominance erodes into a disordered, mixed pattern where 
neither pathogen achieves strong dominance for any contiguous period.

It is informative to repeat the above qualitative examination of the whole region but in terms of its individual 
LTZ groups. Plotting the disease ratio for k =  36 LTZs as a representative example (Fig. 3b), reveals substantial 
variation in the DR of different LTZs. In the first season (2009–10), nearly all LTZs reflect the pattern observed 
for the k =  1 analysis. Namely, for the first part of the year DR =  + 1 (Influenza dominance) while for the second 
half of the year DR =  − 1 (RSV dominance). Note however, that the individual LTZs show a large degree of vari-
ability in terms of when the appearance of the first pathogen was detected in a patient, and when the dominance 
pattern changed from Influenza to RSV. The 2011–12 season shows a different phenomenon. Most importantly, 
even when there are roughly equal number of Influenza and RSV cases in the whole region, the DR in individual 
LTZs will often show a more binary pattern, with long periods where some LTZs contain only Influenza (red), 
while others only RSV (blue). The inset in Fig. 3b shows in detail a period of over 2 months (2011–12 season) 
where the single area DR for k =  1 is near zero while 3 of the 4 highlighted LTZs contain (almost) only RSV, and 
the remaining LTZ contains only Influenza consistently over the entire season.

We make these visual observations concrete by calculating the average per-season absolute disease ratio (|DR|) 
and making quantitative comparisons between analyses based on the whole area (k =  1) and analyses based on 
an LTZ approach (k >  1). We are particularly interested in knowing when the LTZ is dominated entirely with 
Influenza or dominated entirely with RSV. For either case the absolute disease ratio attains the value |DR| =  1.

Dividing the whole region into LTZ groups (k >  1) led to a significant increase (p <  0.01, n =  30, using 2-sided 
student t-test) in the absolute value of the disease ratios compared to the whole region (k =  1) results for all k val-
ues (Fig. 3c). For the 2009–10 season the ratio increased from |DR| =  0.7 in the whole region to |DR| =  0.9 using 
k >  12 LTZs. For the 2010–11 season, there was an increase from |DR| =  0.5 to |DR| =  0.8 for k >  24, and from 
|DR| =  0.6 to DR >  0.9 for k >  12 in the 2011–12 season. Shortly, we use the concept behind this index to assess the 
likelihood of someone residing in that LTZ to be infected by Influenza or infected with RSV.

Figure 3. Average per week disease ratios. (a) Color-coded per week DR for the whole region (Jerusalem area) 
data; red indicates DR =  + 1, blue indicates DR =  − 1 and green indicates DR =  0. (b) Color coded per week DR 
for each LTZ (y-axis), with k =  36 as a representative example. Inset shows DR in 4 arbitrary LTZs during the 
2011–12 season. (c) The average absolute |DR| (y-axis) per season + /−  SD are shown for the whole region, k =  1 
(blue) and the different LTZ groups (k =  12, 24, 36, 48 and 84, indicated by color). All changes were significant at 
p <  0.01.
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Frequency-based differentiation of Influenza and RSV. The above results show that compared to the 
regional level (k =  1), there is a reduced coexistence of Influenza and RSV when examined at the LTZ level (k >  1), 
leading to lower signal overlap (Fig. 2b), and increased disease ratios within LTZs (Fig. 3).

Together, these results support our hypothesis that patients from the same LTZ will have a strong propensity 
to carry the same pathogen. This suggests that the pathogen incidence within an LTZ may be better predicted by 
considering the data from that LTZ, rather than the more abundant, yet less specific data collected at the whole 
region level (k =  1).

We now make use of the LTZ concept to implement a test-algorithm designed to predict whether a patient has 
Influenza or RSV given that a person arrives at hospital with ILI symptoms, based solely on previous data kept 
in the hospital database. The test depends on determining the specific LTZ that the patient resides in and recent 
information about the pathogens present in that LTZ. If the LTZ hypothesis is correct, LTZ-based predictions 
should significantly outperform predictions based on the whole region data, where LTZs are ignored. If on the 
other hand, the LTZ hypothesis is incorrect, then an attempt to predict a patient’s disease by using LTZ-specific 
pathogen content would be no better than predictions where the whole region is considered as a single unit.

The test proceeds on a day-by-day basis beginning from the earliest time-point in the data (January 2009) and 
advances in chronological order (up to May 2012). Predictions are made on each day t for all patients that arrive 
in the hospital with ILI symptoms on that day. Predictions for a newly presenting patient arriving on day t are 
made as follows:

      (i) The LTZ associated with the patient is determined.
    (ii) The clinical test results of all previous patients belonging to the patient’s LTZ are retrieved. The clinical test 

results give accurate diagnoses of all patients arriving before day t. This allows determination of the propor-
tion p of Influenza cases in the LTZ out of the total positive test results (Influenza and RSV) over the week 
preceding day t.

 (iii) A random number r is drawn from a uniform distribution in the interval [0, 1]. If r <  p the patient is predict-
ed to have Influenza, otherwise the patient has RSV. For example, if p =  1 the algorithm will always predict 
the patient has Influenza.

 (iv) After making predictions for all patients over the season, the ‘Accuracy’ (A) of the algorithm is simply the 
proportion of correct predictions in the season.

Figure 4. Predictive accuracy in differentiating Influenza from RSV cases. (a) the mean per season 
predictive accuracy (y-axis) for the whole region (k =  1) and for the LTZ groups (k =  12, 24, 36, 48 and 84, 
indicated by color). Significant improvement over the whole region results (p <  0.01) are marked with asterisks. 
(b) Per day incidence of Influenza(red)/RSV(blue) (top panel), per-day DR values (red =  1, blue =  − 1) and the 
per day predictive accuracy (bottom panel), during 2009–10, for k =  1. (c) predictive accuracy figure as in (a), 
only with the 10% worst performing LTZs removed.
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It is to be expected that the per season accuracy of the predictions will improve with smaller signal overlap and 
increased disease ratio. The per season predictive accuracy for the three seasons as a function of the number of 
LTZs k are presented (Fig. 4a). During the first season, where signal overlap was minimal, the predictive accuracy 
was greater than A =  80% in all tests, ranging from a minimum of approximately A =  83% for the whole region, up 
to A =  96% for k =  48 LTZs. This high accuracy, even for the whole region, reflects the low signal overlap between 
RSV and the pandemic Influenza strain that emerged in 200912.

During the 2011–12 season, the whole region (k =  1) predictions were accurate only in about A =  60% of cases, 
whereas the LTZ-based predictions (k >  1) reached accuracy of over A =  90%. This is consistent with what might 
be expected given the great reduction in signal overlap during that season for larger k values (Fig. 2b). During the 
2010–11 season, where the signal overlap was almost unity, predictions based on the whole region were similar 
to predictions made at random, with an accuracy level of A =  50%. The LTZ-based approach (k >  1) preformed 
significantly better but only achieved an accuracy of A =  60% correct predictions (k =  48). The increase in pre-
dictive accuracy when using the LTZ-based approach was significant (p <  0.01) for all values of k in 2010–11 
and 2011–12, but only for k =  24, 36 and 48 during the 2009–10 season (Fig. 4a, significant changes marked with 
asterisk). These results are consistent with the differences in the signal overlap between the whole region and LTZs 
groups, which we describe above (Fig. 2b).

In summary, the increased predictive accuracy using LTZ-data compared to the whole region data is sufficient 
to prove the LTZ concept, and that home-location can provide a good basis for identifying LTZs.

Increasing the value of k did not always improve the accuracy of the predictions; e.g. k =  48 performed better 
than k =  84 in 2009–10 and in 2010–11, and k =  24 provided better accuracy than k =  36 in 2011–12. However, 
higher |DR| (and lower SO) values were associated with improved predictive accuracy over a given season (com-
pare Figs 2, 3 and 4). This observation held true on shorter time scales; in Fig. 4b we show the time-series of 
Influenza and RSV (red and blue, top panel), the per-day DR values (center panel, ranging from − 1 to 1) and 
the predictive accuracies (bottom panel) during the 2009–10 season, with k =  1 as a visually clear example; the 
trend was similar in all 3 seasons and for all k values. The accuracy varied over the season, but generally periods 
of higher accuracy correlated with periods of a high absolute |DR| value, i.e. periods dominated by one of the 
pathogens. There was no discernible relationship between the predictive accuracy and the number of Influenza/
RSV cases.

Examination of the predictive performance of individual LTZs made clear that a small proportion of LTZs 
were far less accurate than others; by removing 10% of the LTZs that have the worst performance, the remaining 
LTZs, representing approx. 90% of patients, provide predictions that are nearly 100% accurate (Fig. 4c) for the 
2009–10 and 2011–12 seasons (k =  36, 48, 84).

While the majority (approx. 60%) of LTZs included in the top 90% (Fig. 4c) were common to all 3 seasons, 
we did not find any obvious characteristics that distinguish these LTZs from those included in the 10% worst 
performers. Poor predictive accuracy in a specific LTZ might be the result of limitations in the data itself, or dif-
ficulties in achieving perfect clustering by the k-means clustering method, i.e. it is quite possible that some LTZs 
were poorly identified or in fact ‘misidentified’ due to errors introduced by the k-means clustering25.

Discussion
This study is the first of its kind in using a combination of clinical and geographical data to demonstrate that from 
a ‘pathogen’s perspective’ even a geographic unit as small as one urban area is not a single, perfectly mixed ecol-
ogy, but is in fact comprised of more basic transmission components, i.e. LTZs, which should be seen as tightly 
connected micro-community structures that allow for rapid pathogen transmission.

Specifically, we proposed the hypothesis that in terms of the spread of ILI, the city of Jerusalem and its sur-
rounding areas are not a single disease transmission unit but may be more appropriately described by a set of 
multiple smaller-scale component LTZs. These LTZs, due to spatial fragmentation and isolation effects, will tend 
to have extended time-periods in which only a single disease dominates, often completely.

To test this hypothesis we examined the geographic distribution of Influenza and RSV cases in Jerusalem over 
3 seasons, from 2009–10 to 2011–12. Analysis of the putative LTZ groups showed unusually small Signal Overlap 
and large absolute Disease Ratio (Figs 2 and 3) as compared to the whole region values (i.e. k =  1). These results 
show that the spatial distribution of Influenza and RSV incidences may be better differentiated in location-based 
groups of patients than it is in the entire area as a whole. This confirms our hypothesis that the Jerusalem region 
is comprised of multiple LTZs, and is not by itself a single transmission unit.

We also measured the performance of a simple algorithm for predicting whether incoming hospital patients 
with ILI symptoms were infected with RSV or Influenza. The prediction scheme made use of a frequency based 
approach and at the regional (k =  1) level, the predictions simply matched the relative prevalence of the diseases. 
Dividing the whole region into LTZs led to a substantial increase in predictive accuracy in all seasons (Fig. 4a) 
and moreover, after taking into account that a proportion (10%) of the LTZs used may have been misidentified, 
when removed the predictions for two of the seasons attained routine prediction accuracy often of 100% in differ-
entiating between cases identified as associated with Influenza and those that were associated with RSV (Fig. 4c).

An important part of the work preformed by hospitals and health organization consists of the diagnosis and 
surveillance of communicable disease, which may be carried out at the molecular and/or the symptomatic levels. 
The results presented here hint at the potential epidemiological importance in examining disease data at the 
LTZ scale,and the possibility for generating ‘maps’ of the real-time distribution of pathogens at resolution levels 
sufficient to guide improved public health policies. Furthermore, the improved predictive accuracy achieved by 
focusing the analysis at the patient-specific LTZs (Fig. 4) indicates a potential utility in data-driven diagnostics, 
where more sophisticated algorithms taking into account LTZ information as well as other relevant population 
parameters, such as the patients’ age, medical background etc. is expected to further increase the predictive accu-
racy. We hope to explore this further in future research.



www.nature.com/scientificreports/

7Scientific REpoRts | 7:42012 | DOI: 10.1038/srep42012

Our choice of LTZs was based entirely on patients’ approximate home-locations, without any reference to 
urban motifs, e.g. socioeconomic divisions, public transportation etc.28,29 and clearly provides only a partial pic-
ture of the complexity of urban transmission ecology. The social and spatial structures differ among cities, and 
Jerusalem may not be representative of any ‘generic’ city; e.g. it might be that in some areas the population con-
nectivity pattern is far more homogenous, and hence the ability to leverage LTZ-based identification of a patho-
gen might be limited, or provide better results at other values of k. The “optimal value” of k will be the true number 
of LTZs in a given area, and for a given choice of pathogens, and as such is expected to vary. Unfortunately, there 
is no simple way of determining this optimal k in advance of the analysis, which is a key problem with many clus-
tering algorithms and “community detection” network algorithms in particular26.

It would be of great interest to test the methodology presented here in other geographical locations, on a more 
comprehensive list of pathogens, and include a wider dataset of human social activities20,27,28,30, which together 
could provide a finer, and more dynamic definition of area- and pathogen-specific real life LTZs.

Methods
Settings. The study was performed using data obtained from the computerized database of Hadassah-
Hebrew University Medical Center, Jerusalem, Israel, a tertiary care medical institution serving a population of 
approximately 1 million people from the entire Jerusalem metropolitan. The demographics and microbiological 
data included in this study were collected from the institutional database between January 2009 and May 2012. 
The dataset contained 16,000 positive and negative clinical test results for two causing agents: Influenza virus 
(Influenza) and RSV. The area considered in the analysis is a square shape of approximately 700 sq. km. with 
vertices at: (32, 35); (31.6, 35); (31.6, 35.4); (32, 35.4). The whole Jerusalem urban area population is well covered 
by this sample since the hospital provides care to over 60% of the referrals from the population in all parts of the 
city homogeneously.

Diagnosis of both Influenza and RSV at the Hadassah-Hebrew university was done on routine basis for 
patients arriving either to the emergency room or being admitted. The diagnosis was based on direct immuno-
fluorescence assay using commercial monoclonal antibodies (Chemicon, Temecula, California) until 7th March 
2010, and by in house RT-PCR assay after that date31.

The original data contained patient addresses in free text format collected from patients during admission 
(e.g. ‘house number x, street y, town z’), which were converted into standard coordinate system using a process 
of reverse geocoding. In order to maintain patient anonymity the last 3 digits of the obtained coordinates were 
omitted, resulting in a location resolution of 110 on 110 meters. The study was approved by the Hadassah institu-
tional ethics committee.

Clustering. Patients were partitioned into k groups using the k-means clustering method25, applied to the 
(approximate) home locations of the entire patient set.

The minimal number of individuals in any LTZ was reduced as k increased, however at the highest k value 
tested (k =  84) there was still a minimum number of 37 individuals in any LTZ (with minimum numbers of 776, 
196, 121, and 55 individuals for k =  12, 24, 36, and 48, respectively). Thus our schemes provides reasonably suffi-
cient data for statistical estimates even for k-values as large as k =  84.

The k values tested were arbitrarily set to multiples of twelve. Results for the values k =  60 and k =  72, or of 
other intermediate k-values we tested (e.g., k =  13 or k =  31) provided qualitatively similar results and are not 
presented in this study for clarity. Note the number of meaningful clusters that may be found is limited by data 
type/availability. As k is increased, more data is required to accurately extract LTZs. This is because a minimum 
number of data-points is needed in an LTZ before it can be identified accurately by the algorithm.

Adding a temporal element to the clustering process would be critical for detecting “pathogen hotspots” (using 
SatScan, www.satscan.org, Kulldorff, Harvard Medical School, Boston, MA), typically characterized by a signif-
icantly elevated incidence of one disease/pathogen. There is no question that detection of disease hotspots is an 
important activity in modern disease surveillance where it may be used as a real-time warning alert of any atypi-
cal activity. Our aims however are quite different, since here our goal is to determine if a city-area (i.e. Jerusalem) 
is essentially a single, well-mixed ecology in terms of pathogen transmission, or if there are additional spatial 
partitions within this limited geographic scope. To address the question in the most direct way, we make use of 
the robust k-means clustering algorithm, based only on proximity between home locations addresses.

Disease-signal overlap. We define the general form of a disease signal (DS) for some causing agent v as a 
function:

DS A T( , ) (4)v

DSv(A, T) is the number of positive cases of infection v in a monitored area A over a time period T. For our 
analysis below, v is a boolean variable, where 1 denotes the Influenza virus and 2 denotes RSV. From the data 
available to us, this function can be immediately constructed for any chosen area A and time period T. The time 
period T is usually defined to be a week at a time, hence DSv(A, T) represents the total number of positive cases of 
disease v in area A during week T. We choose ∈ +T Z . Our data runs from January 2009 to May 2012, and hence 
∈ …T (1 173).

Generically, any area analyzed may contain different disease signals at (or over) the same (period of) time, e.g. 
10 positive clinical test results for Influenza and 10 for RSV. In this case the signals from the v =  1, 2 are termed 
‘overlapping’. We calculate the per season overlap SOv1,v2 of two disease signals v1 and v2 using the following 
methodology:

www.satscan.org
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=
∑ − −
|∑ + ∆ − − |

∈

∆ ∈ (5)
DS DS A DS A T DS A DS A T DS A

DS A T t DS A DS A T DS A
, ( ) ( ( , ) ( ))( ( , ) ( ))

max ( ( ( , ) ( ))( ( , ) ( )) )v v
T v v v v

t T v v v v
1 2

season 1 1 2 2

season 1 1 2 2

Here DS A( )v1  is the average over the season of DSv1(A, T), and where the maximization is done over a 
time-shift ∆ ∈ …0 13t  weeks, spanning all events over each entire season. This is also called the ratio of the cross 
correlation coefficients of the unnormalized vectors DSv1(A, T) and DSv2(A, T): ρ

ρ max

(0)

( )
DSv DSv

DSv DSv

1, 2

1, 2

, which is a quantity 

depending on the area in question (see Eq. 2, main text). The maximization over the time-shift Δ t is done in 
absolute value, i.e. we are maximizing the absolute value of the time-shifted cross correlation. In the context of the 
current paper v1 and v2 represent Influenza and RSV respectively.

The resulting degree of signal overlap per a given period varies between − 1 and 1, where 1 indicates DSv1 and 
DSv2 completely overlap (same frequency) and zero time shift, and a − 1 score indicates anticorrelation and zero 
time shift. The overlap is calculated per period, in the results presented here, per ‘winter season’, defined here as 
August year X to May year X +  1, that is three seasons in total: 2009–10, 2010–11, and 2011–12. Notice that our 
definition of the ratio in Eq. [5] is different from the usual cross correlation: a score of 1 implies two possibilities: 
1. that the data is perfectly correlated at zero time shift or 2. that the data is perfectly correlated and periodic with 
some period Δ t.

By dividing the whole region into k = … kLTZs 1  of area …A Ak1 , we can compute the signal in Eq. [5] for 
each LTZ. This provides a more local way to analyze the correlations between diseases. The total signal is then the 
weighted sum of the signal of the individual LTZs with weight factors Wi equal to the percentage population size 
Ni of the i’ th LTZ:

=
∑ =

W N
N (6)

i
i

i
K

i1

We define the resulting overall signal overlap as a weighted sum over all LTZs that comprise the area analyzed.
Given some (number n of) LTZs … ∈ …i i k, 1n1 , of areas …A Ai in1

, we define a resulting total signal overlap 
in area ∪ ∪…A Ai in1

 as a weighted sum over the LTZs considered:

∪ ∪ ∑… =
=

( )SO A A W DS DS A, ( )
(7)

v v i i
j

n

i v v i,
1

1 2n j j1 2 1

The signal overlap in each LTZ, and consequently the overall ratio in the whole region are bound between 
negative one - anticorrelation) and one (complete overlap).

Disease signal ratios. We define the relative disease ratio DR of the incidence of two viruses using the following  
formula:

=
−
+

A T DS A T DS A T
DS A T DS A T

DR ( , ) ( , ) ( , )
( , ) ( , ) (8)DS DS

v v

v v
,

1 2

1 2
v v1 2

The relative signal ratios are bound between a value of one (all cases are Influenza) and negative one (all cases 
are RSV) and are specific per time-period, here calculated per one week time periods; when the incidence of 
Influenza is equal to that of RSV the ratio is equal to zero.

The per-season absolute |DR| values (presented in Fig. 3c) were calculated as the average of the absolute val-
ues of the per-week |DR| values; when the per-week incidences of Influenza and RSV are identical, the average 
value is minimal, i.e. zero, and when Influenza and RSV do not coincide on any week the average |DR| is 1. When 
calculating the per week relative disease ratio over multiple LTZs, the overall ratio is the weighted average of the 
ratios in the LTZs.
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