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Discovering missing reactions of 
metabolic networks by using gene 
co-expression data
Zhaleh Hosseini & Sayed-Amir Marashi

Flux coupling analysis is a computational method which is able to explain co-expression of metabolic 
genes by analyzing the topological structure of a metabolic network. It has been suggested that if 
genes in two seemingly fully-coupled reactions are not highly co-expressed, then these two reactions 
are not fully coupled in reality, and hence, there is a gap or missing reaction in the network. Here, we 
present GAUGE as a novel approach for gap filling of metabolic networks, which is a two-step algorithm 
based on a mixed integer linear programming formulation. In GAUGE, the discrepancies between 
experimental co-expression data and predicted flux coupling relations is minimized by adding a 
minimum number of reactions to the network. We show that GAUGE is able to predict missing reactions 
of E. coli metabolism that are not detectable by other popular gap filling approaches. We propose 
that our algorithm may be used as a complementary strategy for the gap filling problem of metabolic 
networks. Since GAUGE relies only on gene expression data, it can be potentially useful for exploring 
missing reactions in the metabolism of non-model organisms, which are often poorly characterized, 
cannot grow in the laboratory, and lack genetic tools for generating knockouts.

Genome-scale metabolic networks
Metabolic network models are among the best-studied biological networks1,2. The prevailing availability of 
high-throughput ‘omics’ datasets, such as genomics, transcriptomics and metabolomics data, has greatly facili-
tated (semi-) automated metabolic network reconstruction3–6. Furthermore, recent advances in the development 
of constraint-based methods have made these models suitable tools for computational analysis of biological sys-
tems7,8. However, completeness of metabolic network models has remained a major challenge9, as a model with 
missing information may not have sufficient accuracy to be used in biotechnological and biomedical studies2. 
Even the most comprehensive metabolic network models contain gaps, due to our imperfect knowledge about 
metabolic processes10,11.

Gap analysis: gap finding and gap filling
So far, several gap analysis algorithms have been developed to be applied in metabolic network reconstruction. 
Table 1 shows a summary of these methods. Typically, gap analysis methods consist of two main steps. The first 
step is to find ‘imperfections’ of the network. A group of these methods, like GapFind/GapFill and FastGapFill, 
detect topological flaws of the network such as blocked reactions and dead-end metabolites. Other gap finding 
methods try to find the inconsistencies between model predictions and experimental data such as growth pro-
files on different media, fluxome data, or gene essentiality data. The second step is to add a set of reactions to the 
network to resolve the observed flaws and inconsistencies. The objective of most of the gap analysis methods is to 
minimize the number of reactions which should be added to the model so that model modifications be as min-
imal as possible. This set of reactions can be determined by optimization programming (Linear Programming, 
Mixed Integer Linear Programming or Quadratic Programming) or by heuristic approaches (see Table 1).

As it is shown in Table 1, different kinds of experimental data have been used for gap filling of metabolic 
networks so far. For instance, SMILEY uses the growth profile of an organism on different carbon or nitrogen 
sources in order to find inconsistencies between model predictions and experimental results12. While this data 
can be readily available for many bacteria (by means of Biolog™​ microplates, for example) there is not sufficient 
data of growth profiles for eukaryotic organisms, which restricts the use of this method for gap filling. Another 
well-known method, GrowMatch, makes use of gene essentiality data for analysis of gaps13. Although correct 
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predictions of essential genes is very important for a metabolic network model to be considered reliable, identi-
fying essential genes experimentally, is a very hard and time-consuming task, and additionally, requires specific 
genetic tools for generating knockouts. Therefore, this type of data may not be available for many organisms. This 
is also true about 13C labeling data or metabolomics data which are required for OMNI14 and minimal extension15 
methods, respectively. The four last methods in Table 1 usually take a draft metabolic network that cannot pro-
duce biomass, and try to add minimum number of reactions to the model, such that biomass producing reaction 
can carry flux16–19. In the present study we aim to use gene expression data for finding the gaps. Today, transcrip-
tomes are relatively easy to obtain, which makes them attractive sources of information for being used in gap 
analysis of metabolic networks.

Flux coupling and gene co-expression
Flux coupling analysis (FCA) is a computational method to determine, for each pair of reactions i and j in a 
metabolic network, how their fluxes (vi and vj) depend on each other20. Two reactions i and j are “fully coupled” 
if they always have proportional flux values, vi =​ cvj, where c is a constant indicating the ratio of vi and vj. If zero 
flux through one reaction, vi =​ 0, always implies zero flux through the other reaction, vj =​ 0 (but not vice versa), 
j is said to be “directionally coupled” to i. If two reactions are not flux-coupled, they are defined to be “uncou-
pled”20. It has been previously shown that those genes that encode fully coupled reactions show higher levels of 
co-expression compared to other genes21. Later, it was suggested that flux coupling relations may change con-
siderably when the network becomes more complete, i.e. reactions are added to the network22. More precisely, 
it was shown that with a more complete network, the coupling relations will become more consistent with the 
experimental data of gene co-expressions22.

GAUGE: A novel Gap Analysis method by Using Gene Expression data
In this work, we present a novel gap analysis method, GAUGE, which uses FCA of metabolic networks together 
with the publicly available gene expression data, in order to propose a strategy for gap finding and gap filling. It 
has been previously suggested that existence of a pair of fully coupled reactions with (nearly) uncorrelated gene 
expression suggests a gap in the network22. In other words, we hypothesize that such reactions must be direction-
ally coupled or uncoupled in the complete network.

As a test case, we try to analyze the gaps in the genome-scale metabolic model of E. coli. The goal of our 
method is to improve a metabolic network such that there is maximum consistency between experimental gene 
expression data and theoretical flux coupling relationships. For this purpose, we first find gaps by identifying pairs 
of fully coupled reactions with “low” gene co-expression. Then, in a two-step algorithm based on mixed integer 
linear programming (MILP) formulation, we try to minimize the inconsistencies by adding a minimum number 
of reactions from a dataset of all known reactions to the network.

Methods
Suppose that we have an incomplete metabolic network model with known gene-protein-reaction relationships. 
The goal of GAUGE is to suggest extra reactions whose addition to the network makes gene co-expression rela-
tions become more consistent with flux coupling relations. Here we present a brief description of this method and 
the data we used.

Metabolic network model.  The metabolic network model of E. coli, iJR904, which was reconstructed in 
200323 was used as the model. This model includes 904 genes and 1075 reactions, and therefore, includes a con-
siderable number of gaps compared to our current knowledge of E. coli metabolism.

Method name
Type of data used for 
checking model inconsistency

Optimization 
Algorithm Strategy

GapFind/GapFill29 dead-end metabolites MILP Minimizing added reactions 

FastGapFill40 blocked reactions LP/MILP Minimizing added reactions

SMILEY12 growth phenotype data MILP Minimizing added reactions 

OMNI14 fluxome data MILP Minimizing difference between measured and predicted 
fluxes +​ maximizing biomass production flux

GrowMatch13 gene essentiality data MILP Minimizing added reactions

minimalExtension15 ability of converting nutrients 
to target metabolites Greedy Minimizing added reactions

FBA-Gap16 growth capability MILP Minimizing added reactions

FastGapFilling17 growth capability Heuristic 
approach using LP Maximizing biomass flux +​ Minimizing added reactions

Likelihood-based gap 
filling18 growth capability MILP Weighted minimization of added reactions

BLAST-weighted gap filling19 growth capability LP/QP Weighted minimization of sum of the fluxes of reactions

Table 1.   Characteristics of gap analysis methods. Two first methods use topological flaws for checking 
model inconsistencies. The other methods look for inconsistencies between experimental results and model 
predictions.
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Gene co-expression dataset.  Dataset of gene co-expressions of E. coli were obtained from a previous 
study21. This dataset is obtained by combining E. coli gene expression data which had been available from Stanford 
database24 and ASAP database25. These expression data are from E. coli K12 growing under different conditions, 
such as different nutrient sources, mutations or environmental perturbations. Then, for each pair of genes in the 
dataset the Pearson correlation coefficient of gene expressions was computed.

Universal dataset of reactions.  The universal dataset of reactions was obtained from KEGG26. The initial 
version of the dataset comprised of 10882 reactions. From this set, we excluded those reactions which have the 
same metabolite as both a substrate and a product. In addition, identical reactions which have the same metabo-
lites with different names were also manually excluded from the dataset. The final version of this dataset of reac-
tions, which will be referred to as the “universal” dataset, includes 9587 reactions. If addition of reactions from 
KEGG could not resolve some of the inconsistencies, we use another universal dataset which is the set of exchange 
reactions for all of the metabolites in the model.

Calculating gene coupling relations.  In the first step, gene pairs like (g1, g2) are found such that deletion 
of g1 inactivates all the reactions associated with g2, and vice versa. We require to find such gene pairs since our 
experimental data is for the co-expression of genes, not reactions. For this purpose, the following procedure is 
performed for every pair of metabolic genes in the model. First, g1 is removed from the model. Then, those reac-
tions that cannot carry nonzero flux after the removal of this gene are identified. If all of the reactions that are 
associated with g2 are inactivated, then g2 is said to be coupled to g1. If g1 is coupled to g2 and vice versa, then we 
say that g1 and g2 are fully coupled. This procedure ensures that two genes entirely depend on the function of each 
other, and that they do not exhibit multiple functions which would justify independent gene expression. Figure 1 
is a simple network which shows the difference between coupling of genes and reactions. As it is indicated, R4 and 
R5 are fully coupled reactions. However, according to the above procedure their corresponding genes, G1 and G2, 
are not fully coupled. This is because G1 is also associated to R7 and its function is independent of function of G2. 
Furthermore, R7 and R10 are also fully coupled reactions. However, since there is an “or” relationship between R10 
genes, G1 in not dependent to any of them. We computed gene coupling relations for all of the gene pairs in the 
model.

FCA for finding inconsistencies.  As a preprocessing step, the biomass producing reaction is removed from 
the model in order to avoid a large set of fluxes to be detected as fully coupled20,27. Consequently, for each biomass 
component that could not be exported from the model, an export reaction was added. Therefore, all biomass 
components were allowed to be exported independently.

In the next step, flux coupling relations are calculated for every pair of reactions using F2C228. Then, from the 
list of coupled gene pairs (previous section), those pairs that are linked to at least one pair of fully coupled reac-
tions are selected. Now, for each of these gene pairs, if the gene expression values are uncorrelated based on the 
wet-lab experimental data, i.e., the Pearson correlation coefficient of the gene expression values are found to be 
below a certain threshold, the corresponding fully coupled reaction pairs are labeled as inconsistent. Such cases 
are considered as potential candidates for gap filling.

MILP formulation.  A two-step MILP formulation is used for resolving the discrepancies observed above. 
The inputs of the algorithm are: (i) the reaction pairs identified as discrepancy candidates; and (ii) the universal 
dataset of metabolic reactions. The goal is to add the smallest possible number of reactions from the universal 
dataset to the network, such that the highest possible number of inconsistencies are resolved.

We assume two consecutive steps for fixing model gaps. First, we assess whether addition of new reactions 
from the KEGG dataset or changing the reversibility type of irreversible reactions can change the coupling type of 
the candidate reaction pairs. If some of the discrepancies cannot be resolved by this way, we then check whether 
the addition of exchange reactions can fix the model gaps.

MILP formulation of the first step.  In the first step, the algorithm takes S, U and Ue matrices, and L, H, 
R, D, De and IRR sets as inputs which are defined as follows. S, U and Ue contain the stoichiometric coefficients 

Figure 1.  Difference between gene coupling and flux coupling. R4 and R5 are fully coupled reaction pairs. 
However, their associated genes, G1 and G2, are not fully coupled since G1 can also code for R7. As another 
example, R7 and R10 are fully coupled reactions. However, gene associated to R7 (G1) is not coupled to any of the 
genes associated to R10 (G3 and G4). This is because there is an “or” relationship between G3 and G4.
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for the reactions in the original model, the “universal” dataset of KEGG reactions and the universal dataset of 
exchange reactions, respectively. L is the set of fully coupled reaction pairs whose corresponding genes are uncor-
related, i.e., their Pearson correlation coefficient values are below a certain threshold. Similarly, H, is the set of 
fully coupled reaction pairs whose corresponding genes are highly correlated, i.e., their Pearson correlation coef-
ficient values are above a certain threshold. In this study 0.2 and 0.8 are chosen as thresholds for reactions in L and 
H, respectively. R, D and De are set of the reactions of the original model, the universal dataset of KEGG reactions 
and the universal dataset of exchange reactions, respectively. Finally, IRR is the set of irreversible reactions in the 
original model.

By imposing the following constraints, the output of the algorithm would be the maximum number of the 
inconsistencies that can be resolved between gene co-expression and flux coupling relations. Note that first we 
use the U matrix to select reactions for addition to the model from KEGG dataset. If some of the inconsistencies 
could not be resolved this way, we run the MILP again with Ue and De as inputs, to select the candidate reactions 
from the dataset of exchange reactions.

⋅ + ⋅ =S v U y 0 (1)

Constraint (1) imposes a stoichiometric mass balance on all of the metabolites, where v and y are vectors that 
contain the fluxes through reactions of the original model and the universal dataset, respectively.

To count the number of resolved inconsistencies, we need another constraint:

λ ε− < = ∀ ∈u w d i Lif then 0 (2)i i i i

In constraint (2), every i represents a pair of fully coupled reactions with fluxes ui and wi, whose corresponding 
genes are uncorrelated, and λi =​ ui/wi is a constant. Vector d is a binary vector such that di =​ 1 if the two reactions 
of the reaction pair i are not fully coupled anymore after the network completion, and di =​ 0 otherwise. Here ɛ is 
used to avoid numerical errors of the MILP solver. In this work, we assume that ɛ = 10–6.

Note that Constraint (2) is not presented in the form of a linear constraint. However, it can be shown that 
application of the following four linear constraints is equivalent to Constraint (2):

λ ε− + ≤ − + +u w M e f( ) (3)i i i i i

≤ −d M f(1 ) (4)i i

λ ε− ≤ − + − +u w M e g(1 ) (5)i i i i i

≤ −d M g(1 ) (6)i i

where e, f and g are binary vectors and M is a sufficiently large value.
It is also necessary to ensure that all of the reaction pairs in H remain fully coupled after addition of reactions 

from the dataset. Constraint (7) is used for this purpose:

µ− = ∀ ∈p q j H0 (7)j j j

In Constraint (7), every j represents a fully coupled reaction pair with fluxes pj and qj. Similar to Constraint 
(2), μj =​ pj/qj is a constant.

Whenever the capacity constraints are known, it is important to include them in the MILP:

≤ ≤ ∀ ∈v v v k R (8)k k kmin, max,

≤ ≤ ∀ ∈y y y l D (9)l l lmin, max,

Equations (8) and (9) constrain the fluxes of the reactions in the original model and the dataset between the 
specified lower bounds and upper bounds. Since we are looking for the possibility of changing the reversibility 
of some reactions, all of the reactions in the original model are considered reversible and have negative lower 
bounds.

By applying the above mentioned constraints, it is possible to find solutions in which inconsistent reaction 
pairs of L are not fully coupled anymore. To obtain the best solution, the following objective function is used:

∑dmaximize (10)i

Using this objective function one can determine the maximum number of inconsistencies that are resolved 
using the MILP.

MILP formulation of the second step.  When the above-mentioned MILP is solved, the maximum num-
ber of inconsistencies which can be resolved, say Z*, will be determined. Now, in the second step of GAUGE, the 
goal is to minimize the number of reactions that should be added to the network or made reversible to resolve the 
inconsistencies. The inputs and constraints of the MILP of the second step is the same as the first step, with four 
additional constraints (11 to 14):
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≤ ≤ ∀ ∈b y y b y l D (11)l l l l lmin, max,

In Constraint (11) binary variables bl are used for counting the number of added reactions from the universal 
dataset. Here, bl =​ 1 if the corresponding reactions in the dataset carries nonzero flux. In other words, by impos-
ing this constraint, bl =​ 1 if yl >​ 0.

We also consider the possibility of making some reactions reversible, for resolving model inconsistencies. To 
count the number of reactions which are made reversible, the following constraints are added:

ε≤ − − ∀ ∈v M h m IRR(1 ) (12)m m

≥ − ∀ ∈v Mh m IRR (13)m m

Constraints 12 and 13 ensure that if an originally irreversible reaction takes a negative flux after network com-
pletion, the value of binary variable, hm, is set to 1. Again M is a large value and ɛ =​ 10−6.

Now, to ensure that maximum possible number of inconsistencies are resolved in the second step, we apply 
the following constraint:

∑ = ⁎d Z (14)i

Constraint (14) fixes the sum of elements in d to its maximum value obtained by solving the first MILP.
Finally, to ensure that minimum number of reactions are added to the network or made reversible to resolve 

the inconsistencies, we use the following objective function for the second MILP:

∑ +b hminimize (15)l m

Altogether, by solving this MILP, we will find the minimum number of modifications which should be made 
to the network to maximally resolve the network inconsistencies.

Alternative solutions.  For calculating alternative solutions, additional constraints were iteratively added to 
the second MILP and the problem is solved again. This procedure is repeated until all of the optimal solutions are 
found. The additional constraints are as follows:

∑ ∑ ∑ ∑+ + − + − ≥ ∀ = ...
= = = =

b h b h q Q(1 ) (1 ) 1 1, 2, ,
(16)l b

l
m h

m
l b

l
m h

m
0 0 1 1l

q
m

q
l
q

m
q

where Q is the number of solutions that are already identified. This constraint ensures that every solution vector 
differs with the previously found solutions by at least one element.

We should emphasize that if some of the network inconsistencies are not resolved by adding reactions from 
KEGG or making some reactions reversible, addition of exchange reactions are considered. For this purpose, the 
following changes are made to the above-mentioned MILPs: Instead of U and D, Ue and De are used as inputs; 
Constraints 12 and 13 are not considered anymore; and all of the irreversible reactions of the original model will 
take the lower bounds of zero.

Code availability.  The code is implemented for COBRA toolbox and is available here https://github.com/
zhalehhosseini/GAUGE

GapFind/Gapfill, Smiley and GrowMatch methods.  GapFind/Gapfill29, Smiley12 and GrowMatch13 
were used for gap filling and comparison with GAUGE. Single gene knockout data for GrowMatch and growth 
profiles for Smiley were obtained from EcoCyc database30. For GapFind, the COBRA Toolbox implementation 
was used31. For Smiley, GrowMatch and GapFill we used in-house implementations of these algorithms.

Results and Discussion
Application of GAUGE: E. coli as a case study.  Here, we describe the use of GAUGE to resolve the 
inconsistencies between experimental gene co-expression data and in silico flux coupling relationships of the 
iJR904 metabolic network of E. coli23. Characterizing a pair of metabolic genes as “correlated” or “uncorrelated” 
pair requires a cutoff for computed values of co-expressions. In this study we define L as the set of reaction pairs 
with absolute correlation coefficients of less than 0.2 and H as a set of reaction pairs with absolute correlation 
coefficients of greater than 0.8. The goal of GAUGE is to change the coupling type of the reaction pairs in L while 
keeping the coupling type of the reaction pairs in H unchanged. For the iJR904 metabolic model, L and H include 
134 and 41 reaction pairs, respectively. The existence of each inconsistent reaction pair in L implies that there are 
some missing reaction(s) in the network. Addition of such reactions to the model will change the coupling type of 
the reaction pair in L from full coupling to other types of flux (un) coupling relations. We used GAUGE to resolve 
the inconsistencies by adding reactions from KEGG and changing the reversibility type of reactions or by adding 
exchange reactions to the model.

Computing globally optimal solutions for resolving the inconsistencies.  Resolving the inconsist-
encies can be done by two different approaches: all inconsistencies can be resolved at once or they can be resolved 
once at a time. Clearly, these two approaches may result in different set of predicted gap-filling reactions. Figure 2 
is a simple example that shows this difference. In this figure, suppose that (1 and 2) and (3 and 4) are inconsistent 

https://github.com/zhalehhosseini/GAUGE
https://github.com/zhalehhosseini/GAUGE
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reaction pairs. Trying to resolve these inconsistencies one by one, results in the addition of reactions 5 and 6 for 
pair (1 and 2) and reactions 10 and 11 for pair (3 and 4). However, if these cases are resolved together, reactions 
7, 8 and 9 are the minimal set of reactions that are needed for addition to the network. In order to have a globally 
minimal solution, we input the inconsistent reaction pairs all at once to the first step of the algorithm to calculate 
the maximum number of these cases that could be resolved. GAUGE identified consistency-returning suggestions 
for 132/134 pairs of L. Out of the 132 inconsistency cases, 54 cases were resolved by adding reactions from KEGG, 
2 cases were resolved by forcing irreversible reactions to have flux in the backward direction, and the others by 
allowing the exchange of metabolites between extracellular space and cytoplasm. At minimum, addition of 31 
KEGG reactions and 18 exchange reactions and changing the reversibility type of 1 reaction are needed to resolve 
the inconsistencies of these 132 cases. The detailed information about these results and the procedure of comput-
ing alternative solutions are described in the Supplementary file.

Here we discuss a few examples of resolved inconsistencies by GAUGE predictions that evidence from data-
bases or literature exist for their presence in E. coli.

Methylglyoxal metabolism.  Figure 3a shows a part of Methylglyoxal metabolism. Reactions GLYOX and 
MGSA are two reactions in this pathway which are fully coupled in iJR904 with Pearson correlation coefficients of 
less than 0.2. GAUGE predicts 5 separate reactions to resolve the inconsistency in this case. Interestingly, for two 
of these reactions (R02260 and R09796) evidence can be found for their presence in E. coli32–34. In addition, one 
other reaction, R00203, is catalyzed by an enzyme which is known to be encoded in the E. coli K12 genome. More 
precisely, R00203 is catalyzed by lactaldehyde dehydrogenase (E.C. number 1.2.1.22). This enzyme is encoded 
in E. coli genome and catalyzes the conversion of l-lactaldehyde to l-lactate. It is also shown that this enzyme 
catalyzes the conversion of methylglyoxal to pyruvate (reaction R00203) in E. coli35. However, the Km for this con-
version is higher compared to the conversion of l-lactaldehyde to l-lactate. It should be noted that R00203 and 
R00205 in the Figure, differ in the cofactor used by their catalyzing enzymes.

Folate metabolism.  Figure 3b shows part of the Folate metabolism pathway. In this Figure, ADCS and 
DHPS2 are inconsistent reaction pairs. GAUGE predicts R03066 to be added to the model. This reaction is cata-
lyzed by dihydropteroate synthase (E.C. number 2.5.1.15) which is encoded by a gene present in E. coli genome 
(b3177). Additionally, based on the KEGG database this reaction is present in folate metabolism pathway of E. 
coli K12.

Tartrate metabolism.  TARTD and TARTRt7, as another inconsistent pair found by GAUGE, are shown 
in Fig. 3c. GAUGE predicts the addition of R01751, which is catalyzed by tartrate decarboxylase (E.C. number 
4.1.1.73). d-malate oxidase is an enzyme with the same E.C. number which is encoded by b1800 gene in E. coli 
model, and interestingly, this enzyme is also annotated as “putative tartrate dehydrogenase” in E. coli.

Purine and pyrimidine biosynthesis.  DHORTS and ORPT are inconsistent reaction pairs in Fig. 3d. 
GAUGE could not identify any reactions in KEGG to resolve the inconsistency of this case. In addition, no change 
in reversibility types can resolve it. However, GAUGE predicts the addition of exchange reactions for orotate or 
s-dihydroorotate. The gene for transporting orotate to the cell is also known to be present in E. coli36.

Comparison of GAUGE results with other gap filling methods.  We have run GapFind/GapFill29, 
Smiley12 and GrowMatch13 algorithms on the same metabolic network, to compare their results with GAUGE. We 
should emphasize here that there are no standard benchmark for comparing gap analysis methods. Each method 
uses different kind of inputs and searches for different types of gaps. In addition, false negativity, true negativity, 
or even false positivity cannot be defined for the results of gap analysis methods, since a comprehensive and 
perfect knowledge about the metabolism of organisms does not exist. Therefore, we can only try to compare the 
results of different gap analysis methods by searching for evidence for the reactions predicted by each method and 
calculating the frequency of supported predictions for each method.

Figure 2.  Difference between resolving inconsistent cases one by one or all at once. If inconsistent fully 
coupled reactions (1 and 2) and (3 and 4) are resolved once at a time, reactions 5, 6, 10 and 11 are chosen for 
addition to the model. However, if they needed to be resolved together, reactions 7, 8 and 9 are the minimal set 
of reactions for addition to the network.
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GrowMatch solves two MILPs to add and remove reactions for resolving the NGG (in silico no growth vs.  
in vivo growth) and GNG (in silico growth vs. in vivo no growth) cases respectively. Since GAUGE only predicts 
reactions for being added to the model, only the MILP for resolving NGG cases was run to obtain comparable 
results. Altogether, 37 NGG cases were identified. Every NGG case was used separately and all of the alternative 
optimal solutions were calculated for each case. From these cases, 18 cases could be resolved using one of the 
three possible strategies, namely, addition of reactions from KEGG, changing irreversible reactions to reversible 
ones, and addition of exchange reactions. The total of 69 reactions were predicted for being added to the model 
or changing their reversibility type.

Smiley is a method that resolves the inconsistency between observed in vivo growth phenotypes and predicted 
in silico growth patterns. This algorithm uses information of growth profiles on different carbon and nitrogen 
sources as inputs and solves an MILP formulation to add minimum number of reactions to the model to resolve 
false negative model predictions. Reactions were selected from KEGG dataset or dataset of exchange reactions. 
Using Smiley, 34 false negatives were identified and 17 out of these 34 cases could be resolved. By calculating all 
alternative solutions, the algorithm predicted a total number of 55 reactions for gap filling.

GapFind/GapFill finds no-production metabolites in the model and add minimal set of reactions to restore 
the connectivity of these metabolites to the rest of the network. Using GapFind, 64 inconsistent metabolites were 
found in iJR904. From these cases, 63 cases could be resolved using one of the three possible strategies, namely, 
addition of reactions from KEGG, changing irreversible reactions to reversible ones, and addition of exchange 
reactions. This method predicts 84 reactions for addition to the model or changing the reversibility type.

Since all these algorithms resolve the inconsistency cases one by one, to obtain comparable results, we input 
each inconsistent reaction pair separately to GAUGE and identified all of the possible alternative optimal solu-
tions for each case. GAUGE predicts 89 reactions as the candidates for being added to the model or being made 
reversible.

In the next step, the correctness of the predictions of each algorithm was validated by:

(1)	 looking for the presence of a link between these reactions and a gene in E. coli genome annotations in KEGG 
database. In other words, if, according to the KEGG database, a gene from E. coli genome can code for the 
catalyzing enzyme of the predicted reaction, we suppose that this reaction can occur in this organism.

(2)	 performing BLASTP against the E. coli K12 genome. More precisely, the best hits in the E. coli genome which 
have the BLASTP E value of less than 10−20 are considered as potential coding genes for the predicted enzyme 
activities in E. coli.

We also searched the literature to find evidence regarding the presence of enzyme activities in E. coli which are 
predicted by GAUGE. The detailed information about the predicted reactions by each method is presented in the 
Supplementary Tables S2, S3, S4 and S5.

Figure 4 shows the percentage of correct predictions of each algorithm. As shown, GapFind/GapFill and 
Smiley have the most successful predictions. This observation is presumably due to the logic behind these algo-
rithms. Smiley tries to correct the false negative predictions of the model grown on different media. When the 

Figure 3.  Four examples of correct predictions of GAUGE. (a) MGSA and GLYOX are inconsistent 
reaction pairs in iJR904. Reactions shown in dashed-lines, (R09796, R02260, R10715, R00205 and R00203) 
are GAUGE predictions. R09796, R02260 and R00203 are positively validated. (b) ADCS and DHPS2 are 
inconsistent reaction pairs. R03066 is GAUGE prediction which its catalyzing enzyme is encoded in E. coli 
genome. (c) TARTRt7 and TARTD are inconsistent reaction pairs. GAUGE predicts addition of R01751 which 
its corresponding enzyme is encoded in E. coli genome. [e] and [c] are used for extracellular and cytosolic 
metabolites, respectively. (d) DHORTS and ORPT are inconsistent reaction pairs. GAUGE predicts the addition 
of exchange reactions of Orotate or s-Dihydroorotate. The exchange reaction for Orotate is also proved to exist 
in E. coli.
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cell can grow in vivo on a media, it must have the capability to convert the available nutrients to biomass precur-
sors. Therefore, the failure of in silico prediction definitely implies missing reactions which leads to the precise 
predictions by Smiley. The same is true for GapFind/GapFill. It is not reasonable to have a metabolite in the cell 
with no production route and GapFind searches for these metabolites. Therefore, there is a high probability that 
its predictions are correct. The reason for less correctness of GrowMatch predictions may be that the presence of 
NGG cases are not necessarily because of missing reactions. For example, the reason may be that another isozyme 
which is missing from the model catalyzes the same reaction. In case of GAUGE, the algorithm was tested based 
on gene co-expression data obtained by Pearson correlation. Using more accurate and complete gene expression 
datasets, choosing different thresholds for the co-expression of genes, and the application of better correlation 
measures37 can potentially improve the predictions of GAUGE.

“Orthogonality” of gap analysis methods.  Figure 5 shows the Venn diagram of the number of 
gap-filling reactions predicted by each method. As shown, among the reactions predicted by GAUGE only three 
reactions are in common with the results of Smiley, GrowMatch or GapFind/GapFill. If only positively validated 
reactions are considered, there will be no common reactions between predictions of GAUGE with other methods 
(See Supplementary Figure S2). These results show that GAUGE can predict different sets of reactions for being 
added to the model during gap filling. This finding was expected, as the logic behind our method is principally 
different from other gap filling approaches. In other words, GAUGE can be used as a complementary strategy to 
the existing strategies for filling the gaps of metabolic networks.

We also investigated in which biological pathways, the predicted gap-filling reactions are involved. Only 
the reactions which were positively validated, are considered. The pathways for each method are shown in 
Supplementary Figure S3. As it is shown, there are some biological pathways that are only captured by one sin-
gle method. For example, lipopolysaccharide metabolism, riboflavin metabolism, nitrogen metabolism, valine, 

Figure 4.  Comparison of the results predicted by GAUGE, Smiley, GrowMatch and GapFind/GapFill. The 
first category from the left is for reactions which are present in E. coli k12. The second category represents the 
reactions which evidence are found for them from BLASTP.

Figure 5.  Venn diagram of reactions predicted by each method. 
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luecine and isoleucine degradation, lysine biosynthesis, d-alanine metabolism, and synthesis and degradation of 
ketone bodies are pathways that are only identified by GAUGE. In other words, Smiley, GrowMatch and GapFind/
GapFill are found to be unable to explore the missing reactions of these pathways. Identification of biological 
pathways that are unique to only one method shows that each gap analysis method examines specific parts of the 
metabolism that are not considered by other methods. This may be the result of the fact that each method looks 
for model errors from a particular point of view, and application of popular methods like Smiley, GrowMatch or 
GapFind/GapFill does not eliminate the necessity of application of GAUGE.

As a final note, it should be mentioned that although GAUGE is based on MILPs, in practice it works accept-
ably fast. For example, for iJR904 network, when inconsistencies are resolved one by one, the mean computa-
tion time of GAUGE is ~13 seconds on a PC. The computation time of resolving inconsistencies all at once is 
~30 minutes.

Robustness analysis of GAUGE.  In order to investigate how sensitive GAUGE is to the lack of GPRs, we 
randomly removed some of the GPRs from the model and performed GAUGE on them. Two groups of 100 ran-
dom networks were generated in which 10 and 40 percent of the reaction GPRs were removed respectively. Then 
for each network, gene coupling relations were calculated and inconsistent reaction pairs were identified. All of 
the alternative solutions were computed for resolving each inconsistency. The results are shown in Fig. 6. When 
we remove 40 percent of the reaction GPRs from the E. coli network, the accuracy of predictions decreases from 
36 percent to about 30 percent. Therefore, GAUGE predictions is not significantly affected by the varying degrees 
of coverage of the GPRs. This 6 percent reduction in accuracy is probably due to the fact that by deletion of some 
GPRs some of the genes will become fully coupled to each other. GAUGE will mistakenly predict some reactions 
to be added to the model for resolving inconsistency of these cases.

Another method for robustness analysis of GAUGE, is to randomly remove reactions from the model and 
analyze what percentage of them could be returned back using GAUGE. In the Supplementary file, we explain 
that this analysis is not suitable for evaluating GAUGE, since there is not a high probability that removed reac-
tions are associated to a fully coupled gene with low co-expression.

Conclusion
In the present work we have developed a gap analysis method, GAUGE, to resolve the cases where in silico flux 
coupling relationships is not in agreement with experimental gene co-expression patterns. GAUGE resolves the 
inconsistencies by adding reactions from KEGG database, changing the reversibility type of reactions or allowing 
exchange of metabolites between cytoplasm and extracellular space. We tested GAUGE on iJR904 metabolic 
network model of E. coli as a model that we know contains a large number of gaps. We were able to find out 
missing reactions that may not be recognizable by other gap filling methods. Therefore, GAUGE can be used 
as an alternative and complementary strategy for gap filling of metabolic networks. Usually, those methods that 
use topological flaws of the network such as dead-end metabolites are preferred for gap filling, since these meth-
ods can be applied without the need for an experimental dataset. For instance, obtaining gene essentiality data 
for every gene in an organism is not a simple task and such data is not available for many organisms. A benefit 
of GAUGE is that it uses a type of experimental data which is readily available for many organisms. Another 
beneficial feature of GAUGE is that there is the possibility to find globally optimal solutions, instead of finding 
solutions to solve the inconsistencies case by case. This is the approach that is also considered in very recent study 
of Hartleb et al.38. In this study, the authors present GlobalFit, a bi-leveloptimization method, which identifies 
minimal set of model changes to achieve a model that can correctly predict all of the experimental data of growth 
and non-growth cases.

Here, we have validated our results by searching in the literature and databases and also by performing 
BLASTP to find genomic evidence of genes. It should be noted that there is a new version of E. coli metabolic 
network model, iJO1366, which is reconstructed in 201139. We have also looked for the predicted reactions in this 
version of the model. Interestingly, some of these reactions are included in iJO1366. These reactions are presented 

Figure 6.  Comparison of the results predicted by GAUGE when 0, 10 and 40 percent of the reactions are 
removed from the network. The first category from the left is for reactions which are present in E. coli k12. The 
second category represents the reactions which evidence are found for them from BLASTP.
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in Supplementary Tables S2, S3, S4 and S5. We should note that in the universal dataset of reactions used in this 
study, all of the reactions are included without considering their directionalities. It is definitely a valuable analysis 
to compute the Gibbs free energy change for each reaction and see in which direction it will carry flux. However, 
this is not a necessary step in validation of our gap filling results, since addition of reactions in each of the two 
directions will resolve the identified gaps. More clearly, as it is shown in Fig. 2, addition of reactions 5 to 11 (in 
forward or reverse directions) will change the coupling type of reactions 1 and 2 and reactions 3 and 4 from fully 
coupled to directionally coupled. If one needs to add the predicted reactions of GAUGE to a metabolic network, 
the Gibbs free energy changes should necessarily be computed to know in which direction the reactions should 
be added.

One should note that there are not a large number of inconsistent reaction pairs in the model. As shown 
in Supplementary Figure S3, the majority of genes are involved in a low number of full coupling relations, 
while a large number of genes are not fully coupled to any other genes (not shown in the graph). In addition, 
Supplementary Figure S4 shows that those genes which are associated with larger number of reactions are gener-
ally involved in lower number of full coupling relations. Therefore, fully coupled gene pairs which are associated 
to fully coupled reaction pairs are not frequent in metabolic networks. However, the results presented here show 
that even in these situations, GAUGE can successfully predict the novel reactions for being added to the model. 
Another point is that, other inconsistencies may exist between experimental gene co-expressions and theoretical 
flux coupling relations. One such inconsistency is when a highly co-expressed gene pair is not associated to fully 
coupled reactions. However, in this case one cannot draw any conclusion about the incorrectness of the model. 
The high co-expression may exist, for example, for functionally related genes, while these genes should not neces-
sarily be fully coupled. Another point is that if some specific biochemical pathways are activated in the cell, some 
genes may not be highly co-expressed anymore. The environmental conditions which activate these pathways 
may not be captured in the experimental gene expression data. Therefore, having highly co-expressed gene pairs 
with no fully coupled reactions do not mean that the model should be modified, e.g., reactions should be deleted 
from the model. Using more comprehensive gene expression data may decrease the number of such inconsisten-
cies. Furthermore, as our results suggest, only certain gaps are found, and can be filled, based on gene expression 
data. Moreover, regulation of protein expression may occur at the post-transcriptional level, which again means 
that gene expression data might not be sufficient for a comprehensive gap finding. Despite these shortcomings, we 
show that GAUGE can be used in practice to find and fill the metabolic gaps, and its performance is comparable 
to the other well-known widely used gap filling tools. Therefore, it is relevant to use transcriptional level gene 
expression data for gap filling.

GAUGE is presented here as a potential strategy for gap analysis of metabolic networks that predict differ-
ent sets of reactions for addition to the model. Several parameters can be adjusted for improving the predictive 
power of GAUGE. Setting different thresholds for low and high correlation coefficients are one such parameter. 
Additionally, instead of computing Pearson correlation coefficients of gene expressions, the Boolean version of 
expression values may be considered, i.e., expression values higher and lower than a certain cut-off are considered 
as expressed or not expressed, respectively. Then, the genes which are always expressed together can be identified 
and labeled as fully coupled gene pairs. Another possibility is to use other measures of correlation like mutual 
information, instead of Pearson correlation coefficients. The gene expression data can also have an important 
effect on the results predicted by GAUGE. As mentioned above, completeness of dataset can affect the correlation 
of gene expressions, which in turn may affect the inconsistencies found between experimental observations and 
model predictions. For obtaining an optimized version of GAUGE with more reliable results all of the above 
mentioned points should be taken into account.

One may also think of using protein abundance data, e.g., from proteomic databases, instead of gene 
co-expression data. However, we should note that protein abundance data may contain more noise, including 
more false negatives, compared to gene expression data, which in turn may result in more unreliable predictions. 
On the other hand, in the study of Notebaart et al.21 it is shown that there is a good correlation between gene 
co-expressions and flux coupling relations.

We should also note that, one way to improve the GAUGE predictions is to use BLAST-weighted dataset of 
reactions like strategies used recently18,19. This way, the presence of unrelated or orphan reactions may be reduced 
in possible solutions of GAUGE.
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