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Topological properties of a self-
assembled electrical network via ab 
initio calculation
C. Stephenson, D. Lyon & A. Hübler

Interacting electrical conductors self-assemble to form tree like networks in the presence of applied 
voltages or currents. Experiments have shown that the degree distribution of the steady state networks 
are identical over a wide range of network sizes. In this work we develop a new model of the self-
assembly process starting from the underlying physical interaction between conductors. In agreement 
with experimental results we find that for steady state networks, our model predicts that the fraction 
of endpoints is a constant of 0.252, and the fraction of branch points is 0.237. We find that our model 
predicts that these scaling properties also hold for the network during the approach to the steady state 
as well. In addition, we also reproduce the experimental distribution of nodes with a given Strahler 
number for all steady state networks studied.

Electrical transportation networks can be found in many disparate areas, including electrical arcs such as light-
ning1,2, biological information distribution systems3, the connections between neurons in a brain4, and electrical 
power distribution networks5. These type of networks are often not designed or engineered, they grow naturally 
in accordance to the physical laws that govern their constituents.

Complex flow networks also appear upon careful analysis of other systems. The analysis of complex time 
series such as EEG data reveals that understanding of the network structure of the generating process is helpful in 
detecting epileptic seizures6. Understanding of the complex network structure of the system dynamics also allows 
for characterization of oil-water flows6,7, and gives insight into transitions in nonlinear gas-liquid flows8.

Surprisingly, even though the underlying dynamics varies from system to system, certain scaling properties of 
the resulting networks appear to be universal for a variety of systems9. The scaling properties also play an impor-
tant role in determining the global transportation properties of the network10. In this work, we consider a system 
that consists of many electrical conductors which self-assemble into a tree-like network in response to applied 
electrical voltages or currents11.

Experiments have shown that the degree distribution of the steady state network formed by this system is uni-
versal over a wide range of conditions and network sizes. In particular, it was found that the fraction nodes in the 
network with degree 1 is 25.2% of the total number of nodes, while 23.7% of nodes have degree 3 or higher11,12. It 
is interesting to note that this is similar to the degree distribution obtained from other growth processes, notably 
diffusion limited aggregation12 and 2D random minimal spanning trees13, although it is unknown why this is 
the case. In addition to the degree distribution, it is also known experimentally12 that the fractions of nodes with 
Strahler numbers 1, 2, and 3 is 45.5%, 27.5%, and 16.9% respectively, which is in agreement with Horton’s laws 
for river networks14,15. Several global optimization principles have been suggested as governing principles for the 
self-assembly process, notably a resistance minimizing principle16 and an entropy production maximization prin-
ciple17. The mechanism by which these principles might emerge from the physical dynamics of the self-assembly 
process still remains unclear.

Some attempts have been made to model the self-assembly process, but these typically involve nonphysical 
simplifications in order to avoid the complex many-body interactions18–20. These models are unable to predict the 
scaling properties of the emergent networks, and predict a steady state structure which is qualitatively different 
from the experimentally observed structure19. Here we construct a model of the self-assembly process starting 
from fundamental electrodynamics which includes the many-body interactions by construction. We then develop 
a method that makes the numerical solution of the model possible. We are then able to calculate the topological 
properties of the emergent network starting directly from the physical laws of motion. We then use this method to 
calculate the degree distribution of the network as well as the distribution of nodes with a given Strahler number. 
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This model correctly reproduces the experimentally measured results, and also predicts the topological structure 
of the emerging network during the formation process. Surprisingly, we find that the observed steady state degree 
distribution relations are also obeyed during the approach to steady state.

Results
Physical model.  We consider the case of i =​ 1, 2, …​, N electrically conducting spheres of radius R. Since the 
current has been experimentally measured to be quite low21, the conductor interactions can be modeled using 
electrostatics alone. In the empty regions between conductors, the electric potential →V r t( , ) is determined by the 
Laplace equation

∇ → =V r t( , ) 0 (1)2
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The total charge on conductor i is related to the potential via
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Here the integral is taken over the surface Si of conductor i and n̂i is the surface normal vector of the surface 
element dai. The permittivity of the medium is ε.

The conductor charges are taken to be the boundary conditions for Eq. 1 with the exception of an additional 
conductor i =​ 0, the ground electrode, which held at a fixed position with zero electric potential. When two 
or more conductors are in electrical contact, they form a new conductor with a charge equal to the sum of all 
the conductors in contact. If a conductor is in contact with the ground electrode, it will also have zero electric 
potential.

The solution of Eq. 1 with these boundary conditions allows the calculation of the electric force 
→
F i on the ith 

conductor as another surface integral of the form
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This is enough to write down the dynamics of the system:
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where mi, γi is the mass and drag coefficient of conductor i, respectively. A charge source term Js has been  
added to account for the charge supplied to the system by external means. F(ri −​ rj) is the contact force  
between conductor i and j. In this work we take the contact force between two spherical objects to be 

− ∝ − −( )F r r R R r r( ) 2i j i j
1/2 3/2

 for ri −​ rj <​ 2 R, and F(ri −​ rj) =​ 0 otherwise22.

Network analysis.  We computed the positions of the N conductors in the system as a function of time for 
nine values of N between N =​ 100 and N =​ 324. These numbers were chosen to be comparable to previous exper-
iments11,12. A comparison between the steady state produced by the experimental system and the state produced 
by the numerical solution of the model after t =​ 120 s can be seen in Fig. 1. This time was chosen such that the 
system reached an approximately steady state in all cases.

From the set of conductor positions obtained from the numerical solutions of the equations of motion, Eq. 4, 
an N node graph t( )  was constructed that represents the electrical network at a given time t in which each node 
corresponds to one conductor. For the analysis, two conductors i, j are considered to be electrically connected at 
time t if

→ − → <r t r t R( ) ( ) 3 (5)i j

This is the connection criterion used in the experimental work12. The weight of the connection between nodes 
i, j is wij =​ 1 if the conductors are electrically connected and wi,j =​ 0 otherwise. We then define the degree di of 
each node i to be

∑=
=

d w
(6)

i
j

N

ij
0

It is also possible to define an anti-arborescence  t( ) rooted at the ground electrode. To do this, each conduc-
tor i is assigned a direct successor Di with the interpretation that the flow of charge in the network is from i to Di. 
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The successors are then computed iteratively by defining the successor of all conductors connected to the ground 
electrode to be the ground electrode. In each subsequent iteration, the successor Di of the ith conductor is defined 
to be the nearest conductor that is connected to i and has a successor provided that i does not already have a suc-
cessor. This process is iterated until no new successors can be assigned. Depending on the connectivity of  t( ), it 
is possible that not all of the N conductors will be in t( )  and so we will use M to denote the number of nodes in 
 t( ).

The total number of nodes which are directly or indirectly connected to the ground electrode and have degree 
di =​ j, is called Δ​j(t). This is computed as

∑ δ∆ =
∈

t( )
(7)

j
i t

j d
( )

, i
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where δi,j is the Kronecker delta.
We define a branch node to be a node i that has a degree di ≥​ 3. The total number of nodes B(t) which are 

branch nodes at time t can be calculated as
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2

with the successors Di defined, each node i can then be assigned a Strahler number si. These are determined using 
the standard procedure. First, we assign si =​ 1 for all ∈i t( ) with di =​ 1. Then for each node that doesn’t have a 
Strahler number defined we set si equal to the maximum Strahler number of the nodes which have node i as their 
direct successor. If more than one node with i as its direct successor have the maximum Strahler number, si is 
incremented by si →​ si +​ 1. The number of nodes of with Strahler number j is σj:

∑σ δ=
∈ (9)

j
i t

j s
( )
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Comparison to experimental results.  Experimental results suggest a linear relationship between 
∆ → ∞t( )1  and N. Specifically, the relation ∆ → ∞ = .t N( ) 0 2521  was found in steady state networks11. Figure 2 
shows a plot of Δ​1(t) vs. N computed from the model after t =​ 120 s of run time compared to experimentally 
observed steady state relationship.

In addition, the relation → ∞ = .B t N( ) 0 237  was also observed in steady state networks11. Figure 3 shows a 
plot of B(t) vs. N computed from the model after t =​ 120 s of run time compared to experimentally observed 
steady state relationship.

A similar result was observed to hold for the distribution of nodes of a given Strahler number12. Experimental 
results show that σ1, σ2, σ3 are each linearly related to N. The relations are σ1 =​ 0.455 N, σ2 =​ 0.275 N and 
σ3 =​ 0.169 N. Figure 4 shows a comparison of the computed distribution of Strahler numbers as compared to the 
experimentally observed relations.

Discussion
It can be seen from the model that any stationary state of the system must correspond to a connected graph. This 
is because any conductor that lacks a connection (either directly or through contact with other conductors) to the 

Figure 1.  Left: Experimental steady state for N = 512. Right: Numerically calculated state after t =​ 120 s for 
N =​ 289.



www.nature.com/scientificreports/

4SCIentIfIC REPOrTS | 7:41621 | DOI: 10.1038/srep41621

ground electrode will eventually experience a force directed towards the ground electrode or another conductor 
in contact with the ground electrode due to the accumulation of charge from the source term Js. Only in the event 
that all conductors have a connection to the ground electrode do the forces on the conductors vanish.

Experimentally, it has been noted that the stationary networks rarely have closed loops11,12. This may be due to 
the form of Eq. 3, which shows that the force on any surface element of a conductor is normal to the surface and 
directed outwards. A closed loop can be thought of a single conductor with electric field 

→
=E 0 inside the loop. 

Any such loop may experience a force that acts to expand the loop, and thus separate the conductors that com-
prise it. This force can only be zero in the case that 

→
=E 0 everywhere on the outside surface of the loop as well. 

Therefore, closed loops in the conductor network are at best neutrally stable, and unstable in the presence of any 
external electric field.

The stationary states of the system are thus expected to be connected acyclic graphs, or trees. For any M node 
tree  , we can define the fraction fi(t) of nodes in   that have degree i as

=
∆f
M (10)i

i

The fractions fi are not completely independent. First there is a normalization constraint with maximum 
degree imax

Figure 2.  Top: Number of termini Δ1 as a function of total number of conductors N after t = 120 s. Bottom: 
Number of termini Δ​1 as a function of number of conductors connected to the ground electrode M during the 
formation process out of total N =​ 324. In both plots the slope of the black line is the experimentally measured 
value11 0.252.

Figure 3.  Top: Number of branch points B as a function of total number of conductors N after t = 120 s. 
Bottom: Number of branch nodes B as a function of number of conductors connected to the ground electrode 
M during the formation process out of total N =​ 324. In both plots the slope of the black line the experimentally 
measured value11 0.237.
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Second, there is a constraint related to the number of branches and endpoints. This can be interpreted as a 
statement that every branch in the tree ultimately has an end associated with it, and the number of additional 
branches created by a node of degree i is i −​ 2. This can be expressed in terms of the fractions fi as

∑= + −
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In the limit M 1, the 1/M term may be dropped, and equations 11 and 12 combine to give
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Eq. 13 implies that the average degree of nodes is 〈​i〉​ =​ 2 for large M.
For spherical particles in 2D, the maximum degree any node can have imax =​ 4, as any degree larger than this 

would be a closed loop if connections are defined using 5. Thus there are only two independent numbers that 
specify the degree distribution of the network. The degree distribution can be expressed in terms of the fraction 
of endpoints f1 and the fraction of branch nodes b =​ f3 +​ f4 as follows.
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Using the experimental values of f1 =​ 0.252 and b =​ 0.237 we obtain the full degree distribution
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We note the apparent similarity of this degree distribution with that minimum spanning trees for random sets 
of nodes13 which have f1 =​ 0.253, f2 =​ 0.527, f3 =​ 0.204, and f4 =​ 0.016. This may suggest that the network evolves 
in accordance with some optimization principle, such as the resistance minimizing principle16, or the maximum 
entropy production principle17.

The model is able to reproduce the experimental degree distribution for self assembled electrical networks 
starting from the physical interaction between conductors as well as correctly explain the rarity of closed loop 
structures. In addition, the model predicts that the degree distribution of the network remains constant dur-
ing the approach to the steady state. We are also able to reproduce the experimentally observed distribution of 
Strahler numbers in the network.

Figure 4.  Number of nodes σj with Strahler number j as a function of total number of nodes. Black lines are 
the experimentally observed relations12.
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Methods
Calculation of electric potential.  Solutions to Eq. 1 were generated in parallel with the red-black Gauss 
Seidel method23. The region of interest was a 2D square L =​ 5.12 cm on each side which was discretized into a 
square grid with 512 ×​ 512 sites. Neumann boundary conditions were taken at the edges of the square region, 
and all sites within conductor i =​ 0 were held at zero potential. In addition, a constraint was imposed such that 
the total charge on each conductor with i >​ 0 remained fixed at it’s known value from Eq. 4. This constraint cor-
responds to finding a set of potentials {φi} on the remaining conducting surfaces which were used as Dirichlet 
boundary conditions.

This is accomplished by first defining the function

∫φ ε
φ′ = −

∂ →

∂
Q

V r
n

da({ }) ( { })
(16)i i S

i

i
i

i

In this equation φ→ |V r t( , { })i  is the solution of Eq. 1 subject to the Dirichlet boundary conditions given by the 
set of φi’s. Equation 16 gives the charge on the ith conductor if all the conductors were held at the known fixed 
voltages {φi}. With this, we construct the functions

φ φ= − ′e Q Q({ }) 1
2

( ({ })) (17)i i i i i
2

Along with the total error associated with these initial conditions

∑φ φ=
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By the uniqueness property of solutions to Eq. 1, there is only one solution of the form E({φi}) =​ 0 for Eq. 18. 
Therefore this solution gives the correct conductor potentials {φi} corresponding to the charges {Qi}.

The problem of solving for the conductor voltages is now a root finding problem which can be solved by gra-
dient descent. Gradient descent for this problem would involve making the update

∑φ φ γ= + − ′+

=
( )Q Q c
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n
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j

N

j j ji
( 1) ( )

1

for some positive γi. However, this update requires N sums over N terms, and also requires knowledge of the 
coefficients cij. Instead, we make a local update by considering only one term of the sum

φ φ γ φ= + −+ ′Q Q( ( )) (20)i
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i i i
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Here we have made the redefinition γicii →​ γ since cii is always positive as well24,25. This update does not require 
the sum over N terms, and does not explicitly require knowledge of cii. It only requires that γ be chosen to ensure 
convergence. At each iteration, the conductor potentials are changed by an amount
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In general this can be either positive or negative. The total error E then changes on the (n +​ 1)th iteration by
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always decreasing provided γ is chosen such that
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Thus the update rule in Eq. 20 converges provided γ is chosen to satisfy Eq. 24. In this work a value of 
γ =​ 7.95 nV/C was found to be sufficient for convergence. This method was iterated until a solution with 
E/N <​ 2.3 pC was obtained.

Integration of the equations of motion.  From the solution to Eq. 1 on the discretization grid, a bilinear 
interpolation was used to compute the potential between grid points. This is given by
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for x, ∈y (0,511). Here x is in units of grid spacing (px). This interpolation allows the computation of the electric 
potential in the area between grid points by approximating the behavior in the local region as changing linearly 
in x and y between the known values on the grid points. The surface integral in Eq. 3 was calculated from this 
interpolation using the trapezoid method of integration with Ns =​ 500 evenly spaced points around each 
conductor.
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where xij =​ xi +​ R cos (2πj/Ns), and yij =​ yi +​ R sin (2πj/Ns). Here the total force vector is approximated as the vector 
sum of the electrical force exerted on each of the Ns discrete surface elements. Similarly the conductor charges 
from Eq. 2 are computed from

∑πε
≈ − ⋅ ∇

=

ˆQ R
N

n V x y2 ( , )
(27)i

s i

N

int ij ij
0

s

Here the charge is computed as the scalar sum of the charge on each of the Ns discrete surface elements.
The equations of motion in Eq. 4 were numerically integrated using Euler’s method with a timestep of Δ​

tm =​ 0.01 ms for the mechanical degrees of freedom and Δ​te =​ 0.001 s for the electrical degrees of freedom.
The mass of all conductors was set to mi =​ 16 g. The fluid drag was assumed to be Stokes drag, and so γi =​ 6πμR 

with μ =​ 650 cP for castor oil26. The permittivity of the medium was set to be ε =​ 4.7ε0, where ε0 is the permittivity 
of free space. This is near the dielectric strength of castor oil27. For the contact dynamics we used 

− = − | − |F r r R R r r( ) 10 (2 )i j i j
6 1/2 3/2. Conductors were considered to be in contact if |ri −​ rj| <​=​ 2 R +​ 2 px. 

The charge source was Js =​ 3.8 pC/s.
The conductors were initially laid out in a square grid centered in the region of interest with a separation 

between their centers of 3 R and the radius of all conductors was set to be R =​ 0.8 mm. The ground electrode posi-
tion was fixed at (x0, y0) =​ (496, 257). The position of the ground electrode is shifted one grid site off of the center 
line in the y direction to explicitly break symmetry.
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