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Clone and functional analysis of 
Seryl-tRNA synthetase and Tyrosyl-
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Aminoacyl-tRNA synthetases are the key enzymes for protein synthesis. Glycine, alanine, serine and 
tyrosine are the major amino acids composing fibroin of silkworm. Among them, the genes of alanyl-
tRNA synthetase (AlaRS) and glycyl-tRNA synthetase (GlyRS) have been cloned. In this study, the 
seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) genes from silkworm were cloned. 
Their full length are 1709 bp and 1868 bp and contain open reading frame (ORF) of 1485 bp and 1575 bp, 
respectively. RT-PCR examination showed that the transcription levels of SerRS, TyrRS, AlaRS and 
GlyRS are significantly higher in silk gland than in other tissues. In addition, their transcription levels 
are much higher in middle and posterior silk gland than in anterior silk gland. Moreover, treatment 
of silkworms with phoxim, an inhibitor of silk protein synthesis, but not TiO2 NP, an enhancer of silk 
protein synthesis, significantly reduced the transcription levels of aaRS and content of free amino 
acids in posterior silk gland, therefore affecting silk protein synthesis, which may be the mechanism 
of phoxim-silking disorders. Furthermore, low concentration of TiO2 NPs showed no effect on the 
transcription of aaRS and content of free amino acids, suggesting that TiO2 NPs promotes silk protein 
synthesis possibly by increasing the activity of fibroin synthase in silkworm.

Silkworm (Bombyx mori) is one of the most important economic insects. The silk protein secreted by its silk gland 
is an important raw material for silk production. The contents of fibroin and sericin in silk protein are 70~75% 
and 25~30%, respectively1. Fibroin contains 20 kinds of amino acid residues, among which, glycine, alanine, ser-
ine and tyrosine residues account for 45.9%, 30.3%, 12.1% and 5.3%, respectively, while the other 16 amino acid 
residues account for only 6.5%2.

Aminoacyl-tRNA synthetases (aaRS), also known as aminoacyl-tRNA ligases, or amino acid activating 
enzymes, are enzymes that attach appropriate amino acid onto its tRNA in protein translation process3. aaRS 
specific for each of the 20 amino acids have been identified, and classified into two structurally distinct and 
apparently unrelated classes, each encompassing 10 specificities4,5. Wherein, SerRS belongs to the Class II aaRS 
and TyrRS belongs to the Class I aaRS6,7. Thus, aaRS for glycine, alanine, serine and tyrosine play important roles 
in fibroin synthesis. Nada S et al.8 and Chang P K et al.9 have cloned and analyzed GlyRS and AlaRS, respectively, 
but SerRS and TyrRS have not been studied and reported yet.

In recent years, large-scale abuse of phoxim pesticide has significantly affected mulberry, leading to pes-
ticide poisoning of silkworm, and significantly restricting the development of sericulture10,11. For example, 
synthetic phoxim has been shown to impede fibroin synthesis, resulting in a decline of silk production of silk-
worm12,13. TiO2 NPs, as a new additive, can not only improve silk production of silkworm14,15, but also alleviate 
phoxim-caused metabolic disorders of silk gland13,16. In this study, SerRS and TyrRS were cloned and the effects 
of TiO2 NPs and phoxim treatments on the expression levels of SerRS, TyrRS, AlaRS and GlyRS were analyzed.
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Results
Clone of full-length cDNA of SerRS and TyrRS. The full-length SerRS and TyrRS genes were cloned 
using cDNA from silk gland as template by RT-PCR and RACE technology. First, a 1655 bp SerRS fragment and 
a 1374 bp TyrRS fragment were amplified by RT-PCR. Then the 269 bp and 371 bp 5′  UTR as well as 229 bp and 
242 bp 3′  UTR of SerRS and TyrRS were amplified using 5′  RACE and 3′  RACE techniques, respectively (Fig. 1). 
After splicing, the full-length sequences of 1709 bp SerRS (Fig. 2A) and 1868 bp TyrRS of silkworms (Fig. 2B) 
were obtained (NCBI No. KU955848, KU955849).

Evolutionary analysis of SerRS and TyrRS. Amino acid sequence of SerRS showed species specificity. 
Its 10th amino acid residue is alanine in Lepidoptera, serine in Diptera, and valine in mammals (Fig. 3A); its 34th 
amino acid residue is aspartate in all species but Diptera, which is glutamine residue; its 400th amino acid residue 
is leucine in insects, but threonine in vertebrates; its 213rd and 282nd amino acid residues vary randomly among 
three amino acid residues; and the sequences at its 258–267 positions are highly conserved in all vertebrates. In 
TyrRS, the sequences of amino acid residues at 75–123 and 167–230 positions are highly conserved and show no 
significant differences among species besides random substitution of among several amino acid residues (Fig. 3B). 
By contrast, the sequences of amino acid residues between 388 and 413 positions are not conserved in insects, but 
relatively conserved in vertebrates. Moreover, the amino acid sequences in the c-terminal half of TyrRS are not 
highly homologous.

SerRS and TyrRS sequences of silkworm were compared with those of 7 other insect species on the NCBI 
database using MEGA6.0 software to analyze their evolutionary relationship. Phylogenetic analysis showed that 
the cloned genes had high homology to lepidopteran insects (Fig. 4), wherein silkworm SerRS and TyrRS had the 
closest relationship with Papilio polytes, sharing 87% and 82% homology, respectively.

Expression of SerRS, TyrRS, AlaRS and GlyRS in silkworm tissues. RT-PCR analysis was used to 
detect the transcription levels of SerRS, TyrRS, AlaRS and GlyRS in 7 tissues of silkworm. The results showed that 
mRNA level of these aaRS was the highest in the silk gland (Fig. 5A). To further study their expression profiles in 
the silk gland, their expression in anterior, middle and posterior silk gland was examined. RT-PCR showed that 
SerRS, TyrRS, AlaRS and GlyRS were highly expressed in the middle and posterior silk gland (Fig. 5B).

Figure 1. Identification of TyrRS and SerRS PCR products and and recombinant plasmids using 
restriction enzyme digestion. M: 250 bp DNA marker; 1–2: Positive controls of SerRS and TyrRS PCR 
products; 3–4: restriction enzyme digestion of SerRS and TyrRS PCR products; 5–6: 5′  UTR positive controls of 
SerRS and TyrRS; 7–8: restriction enzyme digestion of SerRS and TyrRS 5′  UTR; 9–10: 3′  UTR positive controls 
of SerRS and TyrRS; 11–12: restriction enzyme digestion of SerRS and TyrRS 3′  UTR.

Figure 2. Functional analysis of Structure domains of SerRS (A) and TyrRS (B).
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Effects of TiO2 NPs and phoxim treatments on expression of aaRS and content of amino acid in silk 
gland. The component of silk protein in silk gland showed that content of serine, tyrosine, alanine and glycine  
was 7.39%, 5.80%, 19.24% and 19.54%, respectively, and other amino acids was 47.93% in total. RT-PCR analysis 
showed that the transcription levels of SerRS, TyrRS, AlaRS and GlyRS in the silk gland were not significantly 
affected by TiO2 NPs treatment, but significantly down-regulated by phoxim treatment (Fig. 6B). Free amino 
acid content in silk gland was not significantly affected by phoxim treatment and TiO2 NPs treatment (Fig. 6C),  
showing 1.013-fold in the TiO2 NPs group and 0.740-fold in the phoxim group.

Discussion
All aaRS can be divided into Class I and Class II. The former includes MetRS, ValRS, IleRS, LeuRS, CysRS, GluRS, 
GlnRS, LysRS, ArgRS, TrpRS and TyrRS, and the latter includes AlaRS, HisRS, ProRS, ThrRS, SerRS, GlyRS, 
PheRS, AspRS, AsnRS and LysRS17. Previous research showed that TyrRS contains two functional domains, 
namely the N-terminal catalytic core and C-terminal EMAP II18. This study showed that silkworm TyrRS is 
composed of the catalytic core domain and tRNA-binding EMAP II domain (Fig. 2B). Among them, the catalytic 

Figure 3. Sequence comparison of SerRS (A) and TyrRS (B) from multi-species. The blackened residues 
indicate characteristic amino acids were potential species recognition sites.
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core domain contains HIGH and KMSKS motifs, the two motifs of Class I aaRS19. In the Lepidoptera, HIGH 
motif and KMSKS motif composes the active site of the catalytic core domain. SerRS contains a special spiral arm 
structure at the N-terminus and plays an important role in catalyzing aminoacylation20. In addition, its motif 1 
locates at the dimer interface, while the motif 2 and motif 3 locate in the active site of the catalytic core domain21. 
Sequencing analysis showed that the catalytic core domain of silkworm SerRS belongs to Class II aaRS and con-
tains three characteristic motifs (Fig. 2A). The 10th amino acid residue in the N-terminal conserved region of 
SerRS is alanine in Lepidoptera, serine in Diptera, valine in mammals and threonine in Cypriniform and glu-
tamine in Anura, suggesting it could be a potential species recognition site (Fig. 3A). In addition, the 154th amino 
acid residue is a stable and preserved insertion of aspartate in species with revolutionary position higher insects, 
inferring that the site is likely preserved in the evolution process by natural selection. The sequences of amino 
acid residues at 388–413 of TyrRS are not conserved in insects, but relatively conserved in vertebrates, suggesting 
that they are gradually stabilized and retained in the process of evolution (Fig. 3B). Moreover, the amino acid 
sequences in the c-terminal half of TyrRS are not highly homologous, promoting that this is due to the need of 
recognizing different tRNA in different species.

About 56% of the crystalline portion of silk fibroin was Ala-Gly-Ser-Gly-Ala-Gly repeat, while the remain-
ing 44% of the non-crystalline portion is Tyr-rich region22. Thus, Ala, Gly, Ser and Tyr residues are important 
component of silk fibroin, and their corresponding aaRS play important roles in fibroin synthesis. The function 
of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anti-
codon23. The role of aminoacyl-tRNA synthetases in translation is to define the genetic code by accurately pairing 
cognate tRNAs with their corresponding amino acids24. The present study found by RT-PCR that silk gland had 
the highest transcription levels of AlaRS, GlyRS, TyrRS and SerRS (Fig. 5A). Analysis of the components of silk 
protein in silk gland showed that the content of serine, tyrosine, alanine and glycine was 7.39%, 5.80%, 19.24% 
and 19.54%, respectively (Fig. 6A). As the vital organ for fibroin synthesis, silk gland is divided into the ante-
rior, middle and posterior parts. Among them, the latter two parts are the major part of silk protein synthesis25. 
Consistently with previous studies, RT-PCR analysis of the present study showed that these two parts also had the 

Figure 4. Phylogenetic tree analysis of SerRS and TyrRS. (A) Phylogenetic tree of SerRS, (B) Phylogenetic 
tree of TyrRS.

Figure 5. Specific expression of SerRS, TyrRS, AlaRS and GlyRS in silkworm tissues. (A) Expression of 
SerRS, TyrRS, AlaRS and GlyRS in different tissues of silkworms. 1: silk gland; 2: midgut; 3: fat body; 4: Markov 
pipe; 5: Head; 6: gonads; 7: hemolymph. (B) Expression of SerRS, TyrRS, AlaRS and GlyRS in different parts of 
silk gland. 1: anterior silk gland, 2: middle silk glands; 3: posterior silk gland.
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highest transcription levels of AlaRS, GlyRS, TyrRS and SerRS (Fig. 5B), further confirming that higher expres-
sion of the four aaRSs as the main raw material providers for fibroin synthesis is required for large amounts of 
silk fibroin synthesis.

Silk gland is an important organ in silkworm for silk fibroin synthesis, but phoxim poisoning can cause met-
abolic abnormalities of silk gland, affecting fibroin synthesis and significantly reduced silk production26,27. The 
research showed that phoxim treatment significantly reduced the transcription levels of AlaRS, GlyRS, TyrRS 
and SerRS (Fig. 6B), suggesting that phoxim can decrease AlaRS, GlyRS, TyrRS and SerRS synthesis in silk gland, 
leading to fibroin synthesis disorders and reduced fibroin synthesis. Studies have shown that supplementing TiO2 
NPs in silkworm feed can promote synthesis of Fib-H, Fib-L, P25, Ser-2 and Ser-3 in silkworm and eventually 
increase silk production in silkworm15,16,28. Meanwhile, supplementing TiO2 NPs can increase the content of free 
amino acids in haemolymph29. In this study, TiO2 NPs did not significantly affect the contents of free amino acids 
(Fig. 6C), and transcription levels of AlaRS, GlyRS, TyrRS and SerRS, which providing amino acid for fibrion 
synthesis. It suggests that TiO2 NPs promoted silk protein synthesis not by enhancing aaRS transcription, but by 
increasing the activity of fibroin synthase. Moreover, phoxim lead to reduction of not only aaRS transcriptional 
level, but also free amino acids level.

In summary, in the present study, we cloned and sequenced the full-length of silkworm TyrRS and SerRS, 
verified the results by domain and phylogenetic analyses (Fig. 4). The 10th amino acid residue in the N-terminal 
conserved region of SerRS may be a potential species recognition site. In addition, we found that middle and pos-
terior silk gland had the highest expression levels of AlaRS, GlyRS, TyrRS and SerRS, meeting the needs of fibroin 
protein synthesis. Moreover, we found that phoxim reduces silk fibroin synthesis by inhibiting transcription of 
aaRS and content of free animo, while TiO2 NPs promotes silk protein synthesis possibly by increasing the activity 
of fibroin synthase, but not by affecting the transcription levels of AlaRS, GlyRS, TyrRS and SerRS.

Materials and Methods
Materials. Silkworm variety Jingsong ×  Haoyue was preserved in our laboratory. TiO2 NPs with analytical  
purity of 99.99% were from Sangon Biotech (Shanghai) Co., Ltd (China). Phoxim [O, O-diethyl O- (alpha- 
cyanobenzylideneamino) phosphorothioate with purity of 98.1% was from Sigma-Aldrich.

Insects and feeding. Silkworms were reared in the laboratory under 12 h light/12 h dark conditions to the 
fifth instar larvae. TiO2 NPs were formulated to 5 g/L stock solution and diluted to 5 mg/L working solution16,30. 
Phoxim was prepared as 100 g/L aceton solution, and diluted with double-distilled water to 4 mg/L working solu-
tion31. All treated mulberry leaves were dried naturally at room temperature and used to feed silkworm.

The fifth instar silkworms were divided into control, TiO2 NPs and phoxim groups with 100 in each group. 
Silkworms in the former two groups were fed with water, and 5 mg/L TiO2 NPs-treated mulberry leaves three 
times per day, respectively. Silkworms in the latter group were continuously fed with phoxim-treated mulberry 
leaves at the third day for 24 h. All silkworms were sacrificed, and their hemolymph, silk gland, head, fat body, 
midgut, Malpighian tubules and gonadal tissues were collected and stored at − 80 °C.

Gene cloning. The primers for cloning BmSer and BmTyr genes were designed based on the sequences of 
XM_004922403.1 and XM_004929703.1, respectively, and are listed in Table 1. The obtained sequences were 
blasted against NCBI database and confirmed to be correct. Then 3′  RACE and 5′  RACE primers were designed 
and used in RACE amplification. The first strand cDNA obtained using 3′  RACE was synthesized using 3′  anchor 
oligo ACGCTACACGACTCACTAATGGGC(T)12N32, and then amplified using nested PCR with gene specific 
primer and 3′  RACE M primer. 5′  RACE was performed using 5′ -Full RACE Kit with TAP kit from Takara 
(Dalian) following the instructions provided by the manufacturer. All PCR products were cloned into pMD-18T 

Figure 6. Effect of TiO2 NPs treatment and phoxim treatment in silk gland. (A) The component of silk 
protein in silk gland. (B) Transcription levels of SerRS, TyrRS, AlaRS and GlyRS in silk gland. 1: control; 2: 
TiO2 NPs; 3: phoxim. (C) Fold change of free amino in silk gland. Treatments with different letters indicate 
significantly different values (*P <  0.05, **P <  0.01), Values represent means ±  SD, n =  3.
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vector (2 692 bp) and the obtained recombinant plasmids were analyzed by restriction enzyme digestion and 
sequencing performed by Suzhou Synbio-Tech Company.

Sequence analysis. Sequencing results were confirmed against NCBI database and their protein domains 
were analyzed. All sequences were edited and analyzed using DNAMAN 8.0 software and the phylogenetic 
analysis was performed using MEGA 6.0 software. The sequences were aligned against those of other species 
(Drosophila melanogaster, Danio rerio, Homo sapiens, Anopheles darling, Mus musculus, Xenopus laevis, Papilio 
polytes).

Total RNA extraction and RT-PCR. RNA was extracted from hemolymph, silk gland, head, fat bodies, 
midgut, Malpighian tubules and gonad of silkworms using the RNAiso kit (Takara, Dalian) and reverse tran-
scribed into cDNA using the M-MLV RTase cDNA synthesis kit (TakaRa, Dalian).

PCR Primers for Actin-3 were designed as previously reported15. RT-PCR primers specific for SerRS, TyrRS, 
AlaRS and GlyRS were designed based on the data from NM_001043987.1 and NM_001046828.1 of NCBI data-
base (Table 1). The expression levels of SerRS, TyrRS, AlaRS and GlyRS in various tissues of control, phoxim 
treated and TiO2 NPs treated silkworms were investigated by PCR using cDNA as a template and Actin-3 as the 
internal control.

Measurement of total amino acid content. The levels of free amino acids in the silk gland were detected 
using the total amino acid content kit from KeMing (Suzhou) biotechnology Co Ltd. The component of silk pro-
tein in silk gland was detected by ecological textile dyestuffs and chemicals Testing Center (Zhejiang).
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