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Topological Characteristics of 
the Hong Kong Stock Market: A 
Test-based P-threshold Approach 
to Understanding Network 
Complexity
Ronghua Xu1, Wing-Keung Wong2, Guanrong Chen3 & Shuo Huang4

In this paper, we analyze the relationship among stock networks by focusing on the statistically 
reliable connectivity between financial time series, which accurately reflects the underlying pure stock 
structure. To do so, we firstly filter out the effect of market index on the correlations between paired 
stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock 
network based on the P values. We demonstrate the superiority of its performance in understanding 
network complexity by examining the Hong Kong stock market. By comparing with other filtering 
methods, we find that the P-threshold approach extracts purely and significantly correlated stock 
pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic 
stock networks with fixed-size moving windows, our results show that three global financial crises, 
covered by the long-range time series, can be distinguishingly indicated from the network topological 
and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the 
financial crises and therefore can serve as a good indicator of the financial market development.

Small-world1 and scale-free2 properties are two universal features found in analyzing real-world complex net-
works. With some distinguishing characteristics inheriting from regular networks and random networks, the 
analysis of complex networks as a powerful methodology penetrates into different disciplines, such as computer 
science, sociology and biology3. In the field of financial economics, some financial systems have also been mod-
eled as complex networks, to better manage their complexity composed of a large number of interacting sub-
systems and individuals4. Notice that different assets present turbulent financial time series, making the market 
behaviors even more difficult to be examined. Therefore, an emerging direction of research at the frontiers of both 
economics and physics aims to provide a more fundamental understanding of the financial systems, as well as to 
provide practical insights for policymakers and practitioners from the network science perspective5–8.

In modeling financial systems and constructing networks from financial time series data, some “similarity” 
measures are needed to estimate the “connectedness” of pairs of time series. These measures could be correlation, 
causality, mutual information, time-delay based metrics and so on (see refs 9,10), but the most commonly used and 
effective one is the linear correlation11–13. Mantegna14 initiated a correlation-based stock network model to study the 
global market structure, injecting fresh air into econophysics. Subsequent research work shows that the hierarchical 
structure of New York Stock Exchange cannot be approximated by a random market model15,16, whereas the topolo-
gies of stock networks can be used to validate or falsify various simple but widespread market models17. On the other 
hand, the 2008 financial crisis has highlighted the main limitations of standard financial and economic models, as 
they cannot detect the 2008 crisis even by using posterior data. Stiglitz, winner of Nobel Prize in economics, recently 
points out that the standard economics models can neither forecast the crisis nor contemplate the possibility of deep 
downturns in financial economics18. Therefore, there has been urgent need of research to delve into reliable indica-
tors of financial crisis through modeling and analyzing the complex economic networks19,20.
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In order to construct a financial network and analyze its topology, a crucial step is to filter out some insignif-
icant or even falsely associated stock pairs from the stock market21–23. This can be done by either setting a fixed 
threshold of correlation values or by setting a fixed number of links that represent the most closely connected 
stock pairs in the market data. For example, by removing the so-called relative unimportant edges, Minimal 
Spanning Tree (MST) method could filter out some non-arterial information of the market and focus on the 
most correlated N −  1 links (where N denotes the number of nodes in the network)14. Similar to MST, the Planar 
Maximally Filtered Graph (PMFG) technique is less drastic by keeping more edges of less-correlated stock pairs 
in order to reveal more internal market structures21. Besides, the correlation value threshold (or C-threshold for 
short) filtering is another popular method11,23–25, which could avoid the loss of important edges of high correla-
tion values. Moreover, recent research work suggests that the selection of threshold values should fit the distribu-
tion of correlation coefficients and set the thresholds based on the mean and the standard deviation13.

On the other hand, the cross-correlations estimated from real data are unavoidably affected by the statistical 
uncertainty due to the finite size of the sample or the measurement errors26. Therefore, recent research also delves 
into selecting statistically reliable information from the correlation matrix through some statistical measures, 
such as the techniques based on the concepts of random matrix theory20,25 and the non-parametric surrogate 
data methods10. By applying statistical measures, the accuracy of estimating the overall network connectivity can 
be improved in better reflecting the underlying structure of a system. Through testing and comparing with the 
existing filtering methods, one motivation of this paper is to propose a new test-based approach that can filter 
out insignificant correlations but keep only the significantly correlated stock pairs in order to construct a reliable 
stock network. Moreover, this approach is designed to understand the network complexity by accounting for 
the distribution of the correlation coefficients and setting a unified threshold (other than the correlation value 
threshold) accordingly.

Apart from the static network architectures, research has also been devoting to the dynamic topologies of 
financial networks via a moving (rolling or sliding) window approach13,14,22. With emphasis on the economic 
implications of topological variations, a series of longitudinal stock networks are constructed covering different 
financial situations in the market, including bull runs, bear markets, and “business as usual” normal periods. It is 
shown that the changes of topological structures in the dynamic stock networks could explain the development 
of the economic states, especially during the periods of financial crises21,22. According to these dynamic analyses, 
when the market undergoes depressions, the stock networks tend to become tighter or even synchronized13, 
and the scale-free property is disrupted as compared with the ex-ante and ex-post networks4,23. In particular, a 
recent study reports that the stock networks could become more disassortative when the market goes through 
some dark periods27. However, all these findings are obtained from the stock networks filtered by conventional 
methods, either graph-based or C-threshold filtering methods. It is still unknown if these findings can also be 
validated by our newly proposed method, which is briefly mentioned above. Therefore, the other motivation of 
this paper is to verify the proposed approach and compare it with existing methods in terms of both static and 
dynamic performances.

In this paper, we focus on the statistically reliable connectivity between financial time series, which can 
reflect the underlying stock market structure more accurately. On the other hand, we are interested in a filtering 
approach that can take into account the distribution of correlation values (measuring the connectivity), and can 
also be used easily. As for attaining the purity of the correlated stock pairs, we adopt existing partial correlation 
methods, as many studies do8,24,28, to filter out the effect of market index on the correlations by conditioning on 
the market index. By removing the market effect (if it exists, measured by the market index in this paper) and 
obtaining the partial correlations (or conditional correlations), we show that some stocks are positively and sig-
nificantly correlated mainly because of the market effect. And, when the market effect is removed, most of them 
become insignificant or less significant. As for attaining the econometrical reliability of an edge in the network 
model, we propose new P-threshold approaches, including both unconditional and conditional approaches, for 
removing the insignificant or even falsely associated stock pairs (as the filtering criteria are determined by the P 
values in the hypothesis test, this method is called P-threshold for short). It contributes to better understanding 
the network complexity by retaining the significantly correlated pairs from the stock network. We furthermore 
verify the proposed P-threshold approaches on the Hong Kong stock market by analyzing both the giant static 
network and the evolutionary dynamic networks.

Compared to the C-threshold filtering approach, the conditional P-threshold approach presents advantages 
in filtering out the statistically reliable and purely correlated stock pairs of either higher or lower correlation val-
ues; therefore, the resulting stock network can reflect the well-defined hierarchical structure of the stock market. 
Besides, with respect to the topological dynamics from the evolutionary market, three financial crises, covered 
by the long-range time period of the data, can be distinguishingly identified in terms of the average correlation, 
clustering coefficient, small-world property and degree assortativity. Interestingly, the dynamics of degree assor-
tativity prove to be meaningful in revealing economic changes in the sense of positive co-movement behaviors of 
homogeneous stocks and negative co-movement behaviors of heterogeneous stocks. Therefore, it can serve as a 
good indicator of the financial market development.

Results
To investigate the cross-correlation between any pair of individual stocks and to understand the underlying struc-
ture in the whole market, we use as many stocks as we can get from the available databases. On the other hand, 
we try to get the total length of the time series to be as long as possible for all stock prices being selected. With 
these considerations, we look for the best available datasets and obtain the daily data of 1532 stocks included in 
the Main Board (Excluding Depositary Receipts and Investment Companies) of the Hong Kong stock market, 
from January 2000 to July 2015, with 4060 trading days in total. More details about the dataset can be found in the 
Supplementary Information (SI) section.
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In this paper, we propose the P-threshold filtering approaches, including both the unconditional and the 
conditional P-threshold approaches. For comparison, we also discuss the traditional C-threshold filtering 
approaches, including both the unconditional and the conditional C-threshold approaches. Therefore, in the 
first part of this section, we present the results of the giant static networks constructed by using both uncondi-
tional and conditional P-threshold approaches and compare them with other networks constructed by using the 
unconditional and conditional C-threshold approaches. By comparison, we will show the advantage of removing 
the effect of the market index and using the conditional correlation measure. We will also show the superiority of 
using the P-threshold filtering approach in better understanding network complexity. Therefore, the conditional 
P-threshold filtering approach becomes our main focus in this paper. In the second part of this section, we evalu-
ate the effectiveness and stability of the conditional P-threshold approach by constructing series of evolutionary 
networks and presenting their dynamic mechanisms.

Before we introduce our proposed P-threshold approaches, we first discuss the construction of the network of 
financial systems by using the traditional C-threshold approaches. In a financial system of size N, we let the set of 
stocks define the set of nodes V of the network, in which the number of nodes V  equals N. There could be 
N(N −  1)/2 correlation interactions when all possible stock combinations are considered, forming the correlation 
matrix C with elements cij defined in Equation (2) in the Method section. An edge in the network corresponds to 
an element in C, e.g., the edge eij connecting nodes i and j corresponds to the element cij. In the unconditional 
C-threshold filtering approach, the criterion is set up by a threshold correlation value θ (−1 ≤  θ ≤  1) and an edge 
will be chosen and added into the final network if the value of the absolute correlation is larger than the 
pre-determined correlation threshold; that is, if θ| | >cij .

Some studies, for example8,24,29, recommend using the conditional C-threshold approach in which the condi-
tional correlation matrix •C I, considering all possible N(N −  1)/2 stock combinations, is computed with elements 
•cij I  defined in Equation (6) in the Method section. Similar to the unconditional C-threshold approach, in the 

conditional C-threshold approach, an edge in the network corresponds to an element in the conditional correla-
tion matrix •C I and an edge will be added into the final network if the absolute partial correlation value is larger 
than the pre-determined threshold; that is, if θ| | >•cij I .

As discussed in the Method section, the limitations of using the traditional C-threshold approach is that, a 
relatively large absolute value of the correlation coefficient could be included into the network but actually it is 
not statistically significant, and a relatively small value of the correlation coefficient might be discarded although 
actually it is statistically significant. To relax the limitation of the C-threshold approach, in this paper we intro-
duce the new P-threshold approaches.

We first describe the unconditional P-threshold approach in details. We conduct the t-test to determine 
whether accepting the null hypothesis =H c: 0ij0  or accepting the alternative hypothesis ≠H c: 0ij1 , and obtain 
the corresponding statistics Tij and P values Pij, which constitute the statistic matrices T and P. In the P-threshold 
approach, we specify a certain significance level α and add an undirected edge to connect nodes i and j, if the P 
value is smaller than α, and set the weight of the edge as the correlation value, as is defined in Equations (9) and 

Figure 1. Network visualization of 48 components of Hang Sang Index (HSI) from the Main Board. The 
size of a node is proportional to its degree (the number of correlated stocks), where the red line denotes the 
negative correlation coefficients, the gray line denotes the positive correlation coefficients, and the label on the 
edge stands for the partial correlation coefficient that are significant at the level of 1% (with P values <  0.01).
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Figure 2. (a) Probability density distributions of the two types of correlation values in the giant static network 
of 1,279 stocks spanning from May 18, 2010 to July 23, 2015. Here, “correlation” stands for the raw Pearson 
correlation coefficient (defined in Equation (2)), “partial correlation” stands for the partial correlation 
coefficient conditioning on HSI (defined in Equation (6)). The two vertical dotted lines, the red one and 
the green one, denote the mean values of “correlation” and “partial correlation”, respectively. (b) Probability 
density distributions of the two types of correlation values in the giant static network of 1,279 stocks and the 
distributions of the filtered correlation values by the conditional and unconditional P-threshold approaches 
at three significant levels. Here, “P <  0.01”, “P <  0.05”, “P <  0.1” stand for the significance levels of 1%, 5% and 
10%, respectively. (c) Similar to (b) and using the same legend as (b), the distributions of the filtered correlation 
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(13), respectively (see the Method section). To model the stock network constructed by the unconditional 
P-threshold approach, we recommend using an undirected weighted network =G V WE( , , ), where V, E and W 
denote the sets of nodes, edges, and edge weights, respectively, and the matrix W =  (wij) is defined in Equation (13) 
in the Method section. Thus, different values of significance levels generate networks with different sets of 
weighted edges. Furthermore, we divide the general network G into the positive network (PG, describing the 
positive co-movement behaviors of stock pairs) and the negative network (NG, describing the negative 
co-movement behaviors of stock pairs). Both networks have the same set of nodes but “complementary” sets of 
edges with respect to the general network.

We now describe the conditional P-threshold approach in details. We recommend using the abnormal return 
rate of stocks and the partial correlation •cij I (defined in Equation (6) in the Method section) to evaluate the “pure 
relationship” among the paired stocks after removing the effect of the market index. We then specify a certain 
significance level α and perform the t-test to determine whether accepting the null hypothesis =•H c: 0ij I0  or 
accepting the alternative hypothesis ≠•H c: 0ij I1 , and obtain the corresponding statistics •Tij I and •Pij I  which 
constitute the corresponding matrices •T I  and •P I . In the conditional P-threshold approach, we add an undi-
rected edge to connect nodes i and j, if the P value is smaller than α, and set the weight of the edge as the condi-
tional correlation value, as defined in Equations (12) and (14), respectively (see the Methods section). To model 
the stock network constructed by the conditional P-threshold approach, we recommend using an undirected 
weighted network = • •G V E W( , , )I I , where V, •E I and •W I denote the sets of nodes, edges, and edge weights, 
respectively, and the matrix •W I =  ( •wij I) is defined in Equation (14). Furthermore, we divide the general network 
into the positive network (PG, describing the positive co-movement behaviors of stock pairs) and the negative 
network (NG, describing the negative co-movement behaviors of stock pairs). Both networks have the same set of 
nodes but “complementary” sets of edges with respect to the general network.

Results of the giant static network. The total observation period T in our paper is a long period of 15 
years. Due to requirement of the assumption of zero mean and constant variance in the Capital Asset Pricing 
Model (CAPM) defined in Equation (3) in the Method section, we separate the long-time observed period into 
three equal-length shorter sub-periods, each with length of 5 years (from 2000 to 2005 as Window 1, from 2005 
to 2010 as Window 2, and from 2010 to 2015 as Window 3). By comparing the constructed networks based on 
these three windows, we obtain consistent findings and draw the same conclusion for each window. Thus, we only 
present the results of Window 3 and skip reporting the results on the other two periods (Window 1 and Window 
2, which can be found in the SI section). Due to the complexity of this giant network of 1,279 stocks trading on 
the Main Board of the Hong Kong market, we only extract a small part (containing 48 components of Hang 
Sang Index (HSI) from the Main Board) and exhibit it in Fig. 1 for visualization. As some of HSI components do 
not have sufficient co-trading days (less than two thirds of the corresponding window length mentioned in the 
Methods section), only 48 components remained, and the detailed symbols and names of the 48 components can 
be found in Table S5 in the SI section. We note that, differing from the networks constructed based on MST or 
PMFG, the presented network is much denser and includes a wider range of correlation values.

To obtain purely correlated stock pairs, we need to examine the effect of removing the market index. For this 
purpose, two different correlations are compared: the unconditional correlation without removing the market 
effect (defined in Equation (2) in the Method section and denoted as “correlation” in Fig. 2), and the conditional 
partial correlation conditioning on the market index (defined in Equation (6) in the Method section and denoted 
as “partial correlation” in Fig. 2). We obtain all possible N(N −  1)/2 correlation values for any pair of stocks i and 
j. We plot all these values in Fig. 2(a) to form the distributions of “correlation” (the dotted green line) and the 
“partial correlation” (the dotted red line). In the hypothesis test, the significance of the correlation coefficient is 
measured by both t-statistic and the corresponding P value. Similarly, we obtain all possible N(N −  1)/2 t-statistics 
and P values for all correlated stock pairs and plot these values in Fig. 3 to form the count of the “correlation” 
t-statistics and P values (the dotted green lines in (a) and (b)) and the count of the “partial correlation” t-statistics 
and P values (the dotted red lines in (a) and (b)). We note that the integral of each distribution (the area under 
the entire distribution) is 1 and all possible correlated stock pairs form the complete network with density of 1.

Comparing the density functions of the correlation (the dotted green line) to partial correlation (the dotted 
red line) in Fig. 2(a), we have the following observations: (i) the entire density of the correlation shifts to the 
left to become partial correlation; (ii) there are less number of positive partial correlations but more negative 
partial correlation coefficients (many of them could be insignificant as will be explained below) than that for the 

values by the conditional and unconditional P-threshold approaches at three significant levels are shown in 
the center figure. To present a clearer view, we separate and highlight the “partial correlation” (under three 
significance levels) coefficients and the “correlation” (under three significance levels) coefficients in the range 
of [−0.1, 0.1] in the left and right insets, respectively. The vertical lines in the insets denote the correlation 
thresholds in the C-threshold approach so that the P-threshold approach and the C-threshold approach 
keep the same number of correlation values. (d) Similar to (c) and using the same legend as (c), the only 
difference is that, in the two insets we highlight the differences between the C-threshold approaches and the 
P-threshold approaches by coloring the non-intersecting regions. The regions, painted with the same color as 
the distributions lines, denote the smaller but significant correlation values that are excluded by the C-threshold 
approach but are included by the P-threshold approach. On the other hand, the regions, painted with the gray 
color, denote the regions of relative larger but non-significant correlation values that are included by the C-
threshold approach but are excluded by the P-threshold approach.
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correlations; (iii) the mean of the partial correlation coefficients (the red vertical dotted line) is smaller than that 
of the correlation coefficients (the green vertical dotted line).

Besides, in order to understand the effect of significance levels on filtering statistically reliable edges, we also 
compare the values of the filtered correlations by applying the conditional and the unconditional P-threshold 
approaches at three different significance levels, α =  0.1, 0.05 and 0.01, respectively. We indicate these three crit-
ical values by the three vertical lines in Fig. 3(b) with P values of 0.1, 0.05 and 0.01, respectively. The elements on 
the left sides of the vertical lines represent the filtered correlation values whose P values are smaller than the preset 
significant level α. We obtain all these filtered correlation values and let the number of these filtered correlated 
stock pairs be E  or •E I . Then we plot the distributions of these filtered correlation values in Fig. 2(b), as com-
pared to the distributions of all possible N(N −  1)/2 correlation values without filtering. As the integral of the 
latter distributions is 1, we rescale the former distributions and set the integral of the former distributions to be 
the proportion of E  or •E I  over N(N −  1)/2, or equivalently, we set the integral of the distribution of the filtered 
correlated stock pairs to be the density of the filtered network.

Comparing the correlations and partial correlations filtered at three significance levels (refer to Fig. 2(b) and 
the center figure in Fig. 2(c)), we observe: (iv) there are more significant positive correlation coefficients than 
the partial correlations; v) when the significance level reduces from 10% (or 5%) to 5% (or 1%), the number of 
survived edges becomes smaller. These observations imply that some stock pairs are positively and significantly 
correlated due to the existence of market effect (measured by the market index in this paper) in the correlation. 
When the market effect is removed, most of them become insignificant or less significant.

Comparing with the conditional C-threshold (refer to the left insets in Fig. 2(c) and (d)) and the unconditional 
C-threshold approach (refer to the right insets in Fig. 2(c) and (d)), we further observe: (vi) at each significance 
level (10%, 5%, 1%), the filtered distributions of both correlations and partial correlations by the P-threshold 
approach are not vertical lines (which is the case in the C-threshold approach) but they are downward or upward 
sloping curves with tangent less than 90 degree. This implies: a) at each significance level, there are some relatively 
bigger values of correlation or partial correlation but they are not significant; b) there are some relatively smaller 
values of correlation or partial correlation but they are significant (refer to the colored regions in the two insets in 
Fig. 2(d)). In other words, these observations verify: (I) a relatively bigger correlation coefficient could probably 
be included into the network following the C-threshold approach, either conditional or unconditional, but actu-
ally it is not statistically significant; (II) a relative smaller correlation coefficient could probably be discarded from 
the network, but actually it is statistically significant. And we also observe: (vii) these two situations would happen 
with a higher probability when the significance level becomes smaller.

We would like to point out that our proposed P-threshold approach, either conditional or unconditional, 
retain all statistically reliable correlation coefficients, and remove all correlation coefficients that are not signif-
icant. Thereby, the filtered stock pairs by using our proposed approach will cover a wider range of truly signifi-
cant correlation values. This is very different from the conventional C-threshold approach, either conditional or 
unconditional, which only cares about the stock pairs with high correlation (but could be insignificant) values.

To elaborate further about the unique characteristics of the P-threshold filtering approach and to support the 
intuitive observations with more evidence, we enlarge the ranges of the significance levels and set four differ-
ent criteria with P <  10−7, < 10−5, < 10−3 and < 10−1, respectively, and then compare them with the C-threshold 
approach in terms of both statistical properties and network properties. We exhibit the results of statistical 
properties in Table 1 and the results of network properties in Table 2. In total, there are four different types of 
networks filtered by the four different approaches, the type of P-threshold correlation filtered by the uncondi-
tional P-threshold approach, the P-threshold partial correlation by the conditional P-threshold approach, the 
C-threshold correlation by the unconditional C-threshold approach and the C-threshold partial correlation by 

Figure 3. Probability density distributions of: (a) t-statistics defined in Equation (8) and Equation (11) (y-axis 
is in log scale) and (b) the corresponding P values (in log-log scale). The three vertical lines in (b) stand for the 
three P values or significance levels of 1%, 5% and 10% (from left to right), respectively, The red points denote 
the type of “correlation” and the green points denote the type of “partial correlation”.
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the conditional C-threshold approach. As the conditional P-threshold approach is our main focus in this paper, 
we take the network of the P-threshold partial correlation as the basis (refer to Row Five to Row Eight, highlighted 
by the bold-faced numbers in both Tables 1 and 2) and compare it with values from other approaches. To achieve 
our goal of comparison, the criteria of the correlation thresholds in the C-threshold approach, both conditional 
and unconditional, is to choose such values that the generated networks have the same network density as those 
networks generated by the conditional P-threshold approach (refer to the “Generals” column in Table 1 and the 
“Densities” column in Table 2). In the same spirit, the overlap ratios in the last column of Table 1 stand for the 
percentages of overlapped edges filtered by other approaches as compared with those filtered by the conditional 
P-threshold approach (the ratios in the latter are set to be 1).

In terms of the statistical properties shown in Table 1, when changing from correlations to partial correlations 
in the same filtering approach, either P-threshold or C-threshold, we obtain the general trends of smaller mean 
values (e.g. from 0.227 to 0.185, in the P-threshold approach at the significance level of 10−7), smaller skewness 
values (e.g. from 1.509 to −0.761) and more negative edges (e.g. from 0.0004 to 0.0067). These trends are con-
sistent with the observations i-iii) in Fig. 2. Secondly, when the significance level becomes lower, fewer edges are 
retained and the overlapped edges decrease. For instance, only 4.6% edges in the complete network are left in 
conditional P-threshold approach with criterion of 10−7 and the overlapped ratio is 0.406 using the unconditional 
C-threshold correlation approach, which means only 40.6% of edges filtered by the latter approach are significant 
at the level of 10−7. Some of the other non-overlapped edges may also be significant but not at the same level as set 
by the criteria. These findings confirm the observations iv-vi) in Fig. 2.

The implications of these findings from the perspective of the financial market are that, the positive 
co-movement phenomenon is a dominant feature in the whole market as negatively correlated stock pairs take 
extremely small portions in different types of networks. Whereas, after conditioning on the market index, the 
portions of negative correlated stock pairs, and also the stock pairs with smaller positive correlation values, tend 
to increase, so that the mean value of correlations of the whole stock network becomes smaller. Besides, these 
comparison results clearly show the advantage of the conditional P-threshold approach in filtering out all the 
statistically insignificant values and leave only those reliable and purely correlated stock pairs.

To show the performance of the P-threshold in filtering networks of different complexities, we also compare 
the different approaches in terms of the topological properties of the filtered networks in Table 2. The networks 
are constructed based on the frame of edge types defined in Table 1 and their average correlations are the same 
as the mean values in Table 1. In terms of the focused network properties, when changing from correlations to 
partial correlations in the same approach (either P-threshold or C-threshold), we can identify the general trends 
of smaller cluster coefficient values (e.g. from 0.755 to 0.417, in the P-threshold approach at the significance level 
of 10−7), decreased small-world tendency (e.g. the ratio of the average distance over the clustering coefficient, 
from 2.256 to 6.277) and decreased assortatitivity (e.g. the absolute value of coefficient, from 0.218 to 0.061). 
Secondly, when the significance level becomes smaller, as fewer edges are kept, the number of clusters increases 
and the stock network becomes less connected but more dispersed. Besides, the clustering coefficient decreases 

Edge types

Statistic descriptions Proportion of edges

Criteria
Mean 
values

Standard 
deviations Skewnesses Generals

Positive 
edges

Negative 
edges Overlaps

P-thresholds

Correlation 10−7 0.227 0.071 1.509 0.373 0.9996 0.0004 0.997

Correlation 10−5 0.207 0.074 1.469 0.478 0.9996 0.0004 0.998

Correlation 10−3 0.184 0.077 1.390 0.628 0.9993 0.0007 0.997

Correlation 10−1 0.155 0.083 1.196 0.845 0.9973 0.0027 0.989

Partial correlation 10−7 0.185 0.054 −0.761 0.046 0.9933 0.0067 1

Partial correlation 10−5 0.160 0.049 −0.370 0.094 0.9932 0.0068 1

Partial correlation 10−3 0.130 0.046 −0.085 0.207 0.9905 0.0095 1

Partial correlation 10−1 0.090 0.050 0.154 0.529 0.9702 0.0298 1

C-thresholds

Correlation 0.307 0.371 0.065 1.132 0.046 0.9996 0.0004 0.406

Correlation 0.259 0.325 0.065 1.444 0.094 0.9996 0.0004 0.474

Correlation 0.200 0.271 0.068 1.555 0.207 0.9997 0.0003 0.587

Correlation 0.114 0.199 0.074 1.453 0.529 0.9995 0.0005 0.784

Partial correlation 0.152 0.186 0.054 − 0.815 0.046 0.9934 0.0066 0.913

Partial correlation 0.126 0.161 0.048 − 0.403 0.094 0.9933 0.0067 0.934

Partial correlation 0.095 0.131 0.046 − 0.112 0.207 0.9904 0.0096 0.957

Partial correlation 0.048 0.090 0.050 0.139 0.529 0.9695 0.0305 0.983

Table 1.  Statistical properties of the sixteen types of fileted edges. As the conditional P-threshold approach 
is our main focus in this paper, we take the type of the P-threshold partial correlation as the basis (refer to Row 
Five to Row Eight, highlighted by the bold-faced numbers). The “Criteria” stands for the significance levels in 
P-threshold approach, and stands for the absolute correlation threshold values in C-threshold approach. The 
“Generals” denotes the percentage of the filtered edges as compared to the edges in the whole complete network, 
and the “Positive edges” plus the “Negative edges” equal to 100% of the “Generals”. The last column, “Overlaps”, 
stands for the percentage of overlapped edges as compared to the edges filtered by the conditional P-threshold 
approach, which is the focusing approach of this paper.
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and the average distance increases, so that the small-world property is weakened. In addition, with respect to 
the above properties, we find that the conditional P-threshold approach performs similarly to the conditional 
C-threshold approach as their overlap ratios are very high (more than 90% under all criteria), but better than 
the unconditional P-threshold and unconditional C-threshold approaches. For instance, the ratios (measur-
ing the small-world tendency) in the second last column in Table 2 are bigger than those in the unconditional 
P-threshold and the unconditional C-threshold approaches as compared to those in the conditional P-threshold 
approach.

Noticeably, the networks filtered by the conditional P-threshold approach are really distinguished in terms of 
the assortativity, as is highlighted in the last column of Table 2. Generally, when the networks become denser, the 
assortativity coefficients become smaller. But, compared to the unconditional C-threshold approach, to filter net-
works of the same density, the proposed conditional P-threshold presents less disassortative (one order of magni-
tude lower) structures. This indicates that the proposed conditional P-threshold filtering approach can reflect the 
reliable and well-defined hierarchical market structure with dominant assortativity features. These features can be 
further verified in the dynamic networks by moving the windows along the long time series.

Results of evolutionary dynamic networks. The time period from 2000 to 2015 covers three global 
financial crises, the 2001 dotcom crash (tech stock bubble bursts), the 2008 subprime crisis (global financial cri-
sis) and the 2011 European sovereign debt crisis. In Fig. 4, the crises intervals on the Hong Kong stock market are 
highlighted with shaded regions, during which the market price (HSI) drops from the peaks to the bottoms (that 
is, from March 2000 to March 2003 in the first gray region, from October 2007 to March 2009 in the second gray 
region, and from April 2011 to August 2012 in the third gray region). This sufficiently long time period covers 
several bull runs, bear markets, and periods of “business as usual”. This demonstrates that, our network analysis 
represent markets of all different conditions.

To obtain evolutionary results, we adopt the strategy of moving windows to construct series of evolving net-
works along the observation period. In the subsequent figures, the points in the horizontal axis are the end time 
points of the moving windows. In each snapshot of the moving windows, we employ the proposed conditional 
P-threshold approach to form three networks (the general network G, the positive correlated network PG and the 
negative correlated network NG). For comparison, we also set three different significance levels for each snapshot, 
P value <  0.01, P value <  0.05 and P value <  0.1. For example, “G (P-value < 0.01)” stands for the general network 
with significantly correlated edges at α =  0.01. As most edges have positive weights, the properties of the general 
network and the positive network are very close to each other.

In the following subsections, we will analyze the dynamics of the Hong Kong stock network with respect to 
the average correlation, clustering coefficient, small-world property and degree assortativity. The definitions and 
detailed information of these topological characteristics can be found in the SI section. The general observational 
conclusion is that the dynamics of network parameters can reflect the change of the market price (here, HSI), to 
different extents, especially on the occasions of market crashes. And, the smaller the significance levels become, 
the more sensitive and reliable the network evolution properties will be. Besides, we also observe some interesting 

Network types

Basic properties Focused properties

Nodes Densities Clusters
Ratio of nodes in 

largest clusters c CC L L/CC r

P-thresholds

Correlation ( <  10−7) 1279 37.3% 14 0.990 0.227 0.755 1.704 2.256 − 0.218

Correlation ( <  10−5) 1279 47.8% 3 0.998 0.207 0.787 1.546 1.966 − 0.192

Correlation ( <  10−3) 1279 62.68% 1 1.000 0.184 0.833 1.374 1.650 − 0.152

Correlation ( <  10−1) 1279 84.5% 1 1.000 0.155 0.909 1.155 1.270 − 0.071

Partial correlation ( < 10−7) 1279 4.60% 89 0.931 0.185 0.417 2.616 6.277 −0.061

Partial correlation ( < 10−5) 1279 9.37% 18 0.987 0.160 0.468 2.249 4.801 −0.056

Partial correlation ( < 10−3) 1279 20.7% 2 0.999 0.130 0.548 1.848 3.372 −0.027

Partial correlation ( < 10−1) 1279 52.9% 2 0.999 0.090 0.697 1.470 2.110 −0.016

C-thresholds

Correlation (> 0.307) 1279 4.60% 534 0.559 0.371 0.616 2.092 3.398 − 0.331

Correlation (> 0.259) 1279 9.37% 331 0.733 0.325 0.650 2.147 3.304 − 0.303

Correlation (> 0.200) 1279 20.7% 103 0.917 0.271 0.696 1.957 2.810 − 0.261

Correlation (> 0.114) 1279 52.9% 2 0.999 0.199 0.799 1.482 1.855 − 0.173

Partial correlation (> 0.152) 1279 4.60% 82 0.936 0.186 0.411 2.589 6.303 − 0.077

Partial correlation (> 0.126) 1279 9.37% 15 0.989 0.161 0.463 2.232 4.821 − 0.063

Partial correlation (> 0.095) 1279 20.7% 2 0.999 0.131 0.544 1.841 3.382 − 0.028

Partial correlation (> 0.048) 1279 52.9% 2 0.999 0.090 0.694 1.471 2.119 − 0.020

Table 2.  Topological properties of the sixteen types of stocks networks with respect to the sixteen edge 
types defined in Table 1. As the conditional P-threshold approach is our main focus in this paper, we take the 
type of the P-threshold partial correlation as the basis (refer to Row Five to Row Eight, highlighted by the bold-
faced numbers). The focused properties are defined in Supplementary Equation (15) and Supplementary 
Equations (17–19). c stands for the average correlation, CC is the clustering coefficient, L is the average shortest 
path length, r is the assortativity coefficient.



www.nature.com/scientificreports/

9Scientific RepoRts | 7:41379 | DOI: 10.1038/srep41379

phenomena in revealing the economic changes from the expectations of the investment behaviors. Therefore, 
we find that some investigated network properties together can serve as a good indicator of the financial market 
development.

Average correlations. In Fig. 5, the line of red triangles denotes the raw unconditional correlation without 
removing the market index, whereas the line of green triangles denotes the partial correlation conditioning on 
HSI. Compared to the average raw correlation (the red line), the average partial correlation (the green line) is 
smaller in all windows. Besides, the average correlations show sharp increase at the beginning of the financial 
crisis and sharp decrease after the crisis (refer to the area when the red line intersects with the second gray region 
and the third gray region). This variation is evident and notable, especially during the third crisis. However, the 
variation becomes mild and less mitigated by conditioning on the market index (from correlation to partial cor-
relation). Through this mitigation of the varying trend, it can be seen that the market index has a large effect on 
the sharp variation trend and the average partial correlation performs less acutely in reflecting the market crashes. 
It is still unknown whether there are other factors (such as the effect of other economic variables) that could also 
contribute to the fluctuation of the market structure, or it is the market crash itself that leads to the structural 
fluctuation so that it can be reflected in both correlation and partial correlation.

Figure 4. Historical records of the Hang Seng Index (HSI), where the dataset starts from January 2000 to 
July 2015 (the dark curve in the inset). The crises intervals on the Hong Kong stock market are highlighted 
with shaded bars, where the market price (HSI) fluctuates from the market peaks to the market bottoms in the 
special periods (from March 2000 to March 2003 as the first gray region, from October 2007 to March 2009 as 
the second gray region, and from April 2011 to August 2012 as the third gray region).

Figure 5. The dynamics of the average correlations of the Hong Kong stock market. The grayed regions 
denote the time periods of market crashes.
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To make it more prominent, we enlarge the variation of the average partial correlation by applying the condi-
tional P-threshold approach and obtain the other three indices of average partial correlation at three significant 
levels. In Fig. 5, the other three lines (denoted with P <  0.01, 0.05 or 0.1) stand for the partial correlations that are 
tested to be significant at the levels of 99%, 95% or 90%, respectively. It can be shown that the other three indices 
present the same trends as that of the average partial correlation, but in a clearer and more accurate manner, by 
removing the non-significant correlations. When the significance levels become stricter, the values of average par-
tial correlations become larger yet the evolving trends in all the three significance levels are consistent in reflecting 
the fluctuations of the market price. Therefore, we conclude that, by comparing to the correlation and the partial 
correlation, the dynamics of average correlations at the three significance levels are more sensitive thereby can 
reflect the market crashes more clearly and more accurately.

According to Equation (15) in the SI section, the average correlation is affected by the number of edges, which 
may vary a lot with the moving windows due to the stocks exclusion from and inclusion into the Hong Kong Main 
Board. Therefore, we further delve into the dynamics of the number of edges (the number of correlated stock 
pairs) and the edge density of the filtered stock pairs over all possible correlated stock pairs, as shown in Figs 6 
and 7, separately. In Fig. 6, the number of correlated stock pairs keeps steadily increasing for the first five years 
and the increase rate accelerates at the beginning of the 2008 subprime crisis. Then, the number of correlated 
stock pairs achieves some local peaks during the crisis, but continues to increase until three quarters after the 
2008 crisis. After that, the overall correlation fades and the rising-up suddenly takes place at the beginning of the 
2011 European sovereign debt crisis. Similar trends can be observed in the edge density of the positive networks 
in Fig. 7. But we note that the dynamics of the edge density can also reflect the 2001 dotcom crash as this metric 
excludes the effect of the number of stocks (the number of stocks in the Main Board is small during this crash).

Figure 6. The dynamics of the number of correlated stock pairs in the Hong Kong stock market. The grayed 
regions denote the time periods of market crashes.

Figure 7. The dynamics of the density of the correlated stock pairs in the Hong Kong stock market. The 
grayed regions denote the time periods of market crashes.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7:41379 | DOI: 10.1038/srep41379

Clustering coefficients. As for the clustering coefficient, we analyze both positive and negative networks 
(refer to Fig. 8). Generally, the clustering coefficient values of the positive networks and the negative networks are 
opposite to each other due to the complementarity of these two types of edges. That is, when the proportion of 
positive weighted edges increases, the proportion of negative weighted edges will decrease, and vice versa under 
the assumption of a fixed number of edges in the general network. Due to the opposite trends, both positive and 
negative networks can indicate the fluctuation of the market price in terms of the clustering coefficient, especially 
during the periods of the three financial crashes.

We now further elaborate on the indications of the positive networks. For the 2001 dotcom crash, the clus-
tering coefficient of the positive networks increase at first when the market steps into crash and decreases at the 
end of the crash. Similarly, the clustering coefficient also serves as a good indicator for both the 2008 subprime 
crisis and 2011 European sovereign debt crisis. Especially, for the 2008 subprime crisis, the values of the clustering 
coefficient continue to be in the high state for three quarters after the end of the crisis, implying that this crisis is 
different from the other two crises in some sense reflected by the networking properties.

The small-world property. As for the small-world property, two network characteristics should be consid-
ered: the average (shortest) path length and the average clustering coefficient. The ratio of the path length over the 
clustering coefficient can measure the tendency of the small-world property. This ratio decreases when the value 
of the path length decreases or/and the value of clustering coefficient increases, and both cases can indicate that 
the small-world connectedness tendency of the network becomes more prominent. Figure 9 shows the dynamic 
changes of the ratios in both the general and the positive networks at the three significance levels. Note that, in 
this figure, we ignore the negative networks as there are fewer edges and moreover the small-world property is not 
prominent with respect to the other networks in consideration.

In Fig. 9, the general trends of the ratios (measuring the small-world property) at the three significance levels 
vary a lot. At the significance levels of 0.1 and 0.05, the ratios are generally low throughout the whole sample 
period. But, at the level of 0.01, the ratios become more sensitive with obvious upward trends and larger fluctua-
tions than those at lower levels. Despite the distinct variations, one common pattern among all individual lines is 
that the ratio reaches its local minimums during the crash periods. This pattern manifests that, once some finan-
cial crisis happens, all ratios at different significance levels diminish to similar lower states and then stay in the 
lower states until the end of the crisis. Based on this observation and the last time points of the collected data, we 
can make a prediction that the next incoming crisis will likely happen if all the three kinds of ratios start to shrink 
to similar lower states again after the observed period, namely after February 2015.

Degree assortativity. As can be observed from Fig. 10, during the normal business period, the low assor-
tativity coefficients in the negative networks indicate that they are disassortative networks. It means that, stocks 
prefer connecting with other stocks that significantly differ from themselves, implying that heterogeneous stocks 
behave oppositely, or observing the negative co-movement behavior of heterogeneous stocks. On the other hand, 
during the periods of financial crises, the high assortativity coefficients in the positive networks indicate that 
high-degree stocks (with more correlated partners) tend to correlate with other similar high-degree stocks, imply-
ing that the homogeneous stocks increase or decrease together, or observing the positive co-movement of homo-
geneous stocks. This phenomenon could be related to the homogeneous expectations of investors30 in the stock 
market.

The fluctuations of degree assortativity in Fig. 10 present the repeated patterns in both the 2001 dotcom 
crash and the 2011 European sovereign debt crisis, which are consistent with the observations in terms of the 
small-world property. Specifically, all three types of networks at three different significance levels shrink to have 
closely similar states of the degree assortativity during financial crises. It is also interesting to note that the positive 

Figure 8. The dynamics of the clustering coefficients of the Hong Kong stock networks. The grayed regions 
denote the time periods of market crashes.
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networks shrink to have the higher positive degree assortativity, whereas the negative networks shrink to have the 
lower negative assortativity. That is, in both the 2001 dotcom crash and the 2011 European sovereign debt crisis, 
the homogenous positive co-movement trend is prominent, and the heterogeneous negative co-movement trend 
is weakened. But, in the 2008 subprime crisis, only the weakening of the heterogeneous negative co-movement is 
prominent whereas the positive co-movement of homogeneous stocks does not change much. Besides, when the 
significance level increases, the degree assortativity becomes more sensitive, especially for the negative networks. 
This could be attributed to the facts that there are fewer edges in the negative network when the significance level 
becomes stricter.

In summary, the assortativity coefficients in the networks, especially in the negative networks, filtered by the 
conditional P-threshold approach, can manifest the financial crises in a meaningful financial sense; therefore, it 
can serve as a good indicator of the financial market development.

Discussion
In this paper, we have proposed a t-test based P-threshold approach for filtering out all insignificant correlations 
and keeping only the significantly correlated stock pairs in order to construct a reliable stock network taking the 
distribution of the correlation coefficients into account. We focus on the statistically reliable connectivity between 
any pair of stock returns from financial time series, which reflects the underlying stock market structure accu-
rately. On the other hand, we are interested in a filtering approach that can take into account the distribution of 
correlation values (measuring the connectivity), which can also be used easily. We use the partial correlation of 
any pair of abnormal returns for two stocks to exclude the market effect and then conduct t-test on the partial cor-
relation. To illustrate the performance of our proposed approach on the understanding network complexity, we 

Figure 9. The dynamics of the small-world property of the Hong Kong stock market, measured by the 
ratio of the shortest path length over the clustering coefficient. The grayed regions denote the time periods of 
market crashes.

Figure 10. The dynamics of the degree assortativity in the Hong Kong stock market. The grayed regions 
denote the time periods of market crashes.
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collect real data from the Hong Kong stock market and build a giant static network together with a series of evolv-
ing networks with fixed-size moving windows. By comparing our proposed approaches with the conventional 
C-threshold filtering approaches, we show that our P-threshold (conditional and unconditional) approaches are 
more effective in filtering out insignificant edges and keeping only the significant edges that can reflect the reli-
able “pure” correlation structure of the stocks. The 2001 dotcom crash, the 2008 subprime crisis and the 2011 
European sovereign debt crisis, covered by the dataset, can be prominently indicated by our new approach in 
terms of the evolving network properties. Moreover, we have some interesting findings about the Hong Kong 
stock market, including the strengthened positive co-movement of homogeneous stocks but weakened negative 
co-movement of heterogeneous stocks during financial crises. In addition, we find that the 2008 subprime crisis 
exposes distinguished patterns from the other two crises in terms of basic network characteristics, such as clus-
tering coefficient, small-world property and assortativity.

In this paper, we find that our proposed P-threshold approaches work well for the Hong Kong stock market 
in the period from January 2000 to July 2015. Academics and practitioners may wonder whether our proposed 
approaches could work well in other periods as well as other markets. Thus, future work can include the exami-
nation of our proposed approaches in other periods as well as on other stock markets and even the global finance 
market.

Method
Correlation and partial correlation. Let pi(t) and ri(t) denote the daily closing prices and returns of stock 
i at time t (i =  1, 2, …, N, t =  1, 2, …, T), respectively. The logarithmic return, ri(t), of stock i over the passing 
period Δt is defined as:

= − − ∆r t p t p t t( ) ln [ ( )] ln[ ( )], (1)i i i

In this paper, we set Δt =  1, so ri(t) is precisely the daily return of stock i at t.
The cross-correlation matrix C for all the logarithmic returns ri(t) is computed with elements cij, which is the 

correlation coefficient between a stock pair i and j, defined as
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In many situations, a large correlation value between two stocks calculated by Equation (2) does not necessar-

ily mean that there is a strong “pure” correlation between these two stocks. Sometimes, their “pure” correlation 
could be insignificant or even be zero. The reason for the correlation between two stocks to be strong is because 
the correlation is “contaminated” by the market factor, common macroeconomic factors, and some important 
events, as argued by31,32. In this paper, therefore, we recommend examining the “pure” correlation between any 
pair of stocks by employing a partial correlation between the pair of stocks, so as to remove the market factor 
(represented by the market index).

According to the Capital Asset Pricing Model (CAPM), the excess return or abnormal return of a stock is 
obtained by removing the market return from the actual corresponding return of the stock, which will take out 
the systematic risk component32. In this paper, the systematic risk component comes from the market index, 
which is the Hang Seng Index (HSI), represented by I. Many studies24,28 have adopted this methodology to eval-
uate the actual performance of a stock in the analysis of stock networks. Thereby, we also take this approach to 
study the following market model:

ε= + +r t a b r t t( ) ( ) ( ), (3)i i i I i

where r t( )I  represents the corresponding daily return of the market index I, ai and bi are parameters in the regres-
sion, and the error term ε σ. .~t i i d 0( ) ( , )i i

2 .
The estimated daily return, r̂ t( )i , for the i-th stock for each i is obtained via

= +ˆ ˆ ˆr t a b r t( ) ( ), (4)i i i I

where âi and b̂i are the estimates of the parameters ai and bi, respectively. Therefore, the daily stock-specific 
abnormal return ar t( )i  can be obtained via

= − .ˆar t r t r t( ) ( ) ( ) (5)i i i

Similarly, the return of stock j is obtained via = − ˆar t r t r t( ) ( ) ( )j j j .
Therefore, the partial correlation matrix •C I  for all the abnormal returns ar t( )i  is computed with elements 
•cij I, which is the partial correlation coefficient between each pair of stocks i and j, defined as
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where •  and σ• represent the mean and standard deviation of the time series, respectively, and I stands for Hang 
Seng Index, with = ∑ =ar t ar t( ) ( )i T t

T
i

1
1  and σ = ∑ − 〈 〉= ar t ar t[ ( ) ( ) ]i T t

T
i i
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1
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In the rest of this section, we call Equation (6) as “partial correlation”, or “conditional correlation”, in order to 

differentiate it from the “unconditional Pearson correlation”, or simply “correlation”, as defined in Equation (2).

The C-threshold approach. An edge in the network corresponds to an element in the (conditional) corre-
lation matrix C ( •C I), e.g. the edge eij connecting nodes i and j corresponds to the element cij •c( )ij I . In the 
C-threshold filtering method, the criterion is set up by a threshold correlation value θ(−1 ≤  θ ≤  1). An edge will 
be chosen and added into the final network if its absolute correlation value is larger than the pre-determined 
threshold, e.g. if θ| | >cij  θ| | >•c( )ij I . To use the (conditional) C-threshold filtering method, many studies (e.g. 
refs 8,29) recommend using conditional correlation matrix •C I to replace the cross-correlation matrix C in the 
analysis.

From an econometric perspective, when estimating the correlation coefficient of two financial time series, 
its significance depends on the sample joint distribution and the sample size. Here, we point out two limitations 
of the traditional (conditional) C-threshold approach: (i) a relatively large absolute value of the (conditional) 
correlation coefficient may be included into the network, following the (conditional) C-threshold approach, but 
actually it is not statistically significant; and (ii) a relative small value of the (conditional) correlation coefficient 
may be discarded from the network, by the (conditional) C-threshold approach, but actually it is statistically 
significant.

To relax the limitation of the (conditional) C-threshold approach, in this paper we first recommend using the 
significance level of the correlation coefficient estimate to determine whether the corresponding edge is signifi-
cant. When the correlation coefficient appears to be statistically significant, we include the edge into the network; 
otherwise, we exclude it from the network. As the filtering criteria are determined by the P-values in the hypoth-
esis test, this method is called the P-threshold method. Based on different types of correlation measures, either the 
correlation cij or the partial correlation •cij I , the new proposed method can be either the unconditional 
P-threshold approach or the conditional P-threshold approach.

The unconditional P-threshold approach. We set the following hypothesis to test the null hypothesis H0 
that the correlation cij defined in Equation (2) is equal to zero versus the alternative hypothesis H1 that the corre-
lation cij is not equal to zero:
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where n is the sample size and −n 2 is the degree of freedom.
Given a significance level α, we will reject H0 if the absolute value of the test statistic in Equation (8) exceeds 

the critical value, denoted by α−tn 2, /2, from the t-table evaluated at α/2, namely, if

> .α−T t (9)ij n 2, /2

We will accept H1 if the correlation between the two stocks is significant and, in this situation, we recommend 
the edge to be included in the stock network.

The conditional P-threshold approach. We set the following hypothesis to test the null hypothesis H0 
that the correlation •cij I is equal to zero versus the alternative hypothesis H1 that the correlation •cij I is not equal 
to zero:
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where n is the sample size, k is the number of control variables upon which the correlation is conditioned, and 
n −  2 −  k is the degree of freedom. If H0 is true, then as discussed above we want to condition the factor from the 
market index (here, HSI) thereby set k be equal to 1 in this case.

Given a significance level α, we will reject H0 if the absolute value of the test statistic in Equation (11) exceeds 
the critical value, α− −tn k2 2, / , from the t-table evaluated at α 2/ , namely,
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> .α• − −T t (12)ij I n k, /2 2

We will accept H1 if the partial correlation between the two stocks is significant and, in this situation, we rec-
ommend the edge to be included in the stock network. The details of the network construction, and also the cri-
teria of significance levels, will be further discussed in the next subsection.

Network set-up. In the stock network, a node is defined as an individual stock. Traditionally, an edge con-
necting any two nodes is defined as the correlation coefficient of the two corresponding stock returns. Here, to 
construct a stock network by using the unconditional P-threshold approach, we recommend using the return rate 
of stocks and the correlation to define the edge. This can be modeled as an undirected weighted network 
=G V E W( , , ), where V, E and W denote the sets of nodes, edges, and edge weights, respectively. By using the 

correlation defined in Equation (2) and the significance test in Equation (9), the matrix W =  (wij) with elements 
of the edge weight wij is defined as follows:

=
≠

.






w
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On the other hand, to construct a stock network by using the conditional P-threshold method, we recommend 
using the abnormal return rate of stocks and the partial correlation to define the edge that evaluates the “pure 
relationship” among the stocks after removing the market factor. This can be modeled as an undirected weighted 
network = • •G V E W( , , )I I , where V, •E I and •W I denote the sets of nodes, edges, and edge weights, respectively. 
By using the partial correlation defined in Equation (6) and the significance test in Equation (12), the matrix 
•W I =  •w( )ij I  with elements of the edge weights •wij I is defined as follows:
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When the unconditional P-threshold approach is taken to capture the relation of a pair of stocks more effi-
ciently, we further propose to divide the set of weights into two subsets, the positive set +W (with entry +wij , 

> =+w w wif 0,ij ij ij; otherwise =+w 0ij ), and the negative set −W  (with entry −wij , < =−w w wif 0,ij ij ij; other-
wise =−w 0ij ), according to the signs of the estimates of the correlation coefficients.

Similarly, when the conditional P-threshold approach is taken to capture the “pure” relation of a pair of stocks 
more efficiently, we further propose to divide the set of weights into two subsets: the positive set •

+W I  (with entry 
•
+wij I ,  > =•

+
• •w w wif 0,ij I ij I ij I ;  other wise =+w 0ij ),  and the negative set •

−W I  (with entr y •
−wij I , 

< =• •
−

•w w wif 0,ij I ij I ij I ; otherwise =•
−w 0ij I ), according to the signs of the estimates of the correlation 

coefficients.
The positive subset reflects the positive co-movement behavior whereas the negative subset characterizes the 

reverse behavior. The positive and negative co-movement behaviors inspire us to separate the whole stock net-
work G into two sub-networks, a positively correlated network PG on the positive weight set +W  or •

+W I  and a 
negatively correlated network NG on the negative weight set −W  or •

−W I . Thus, finally we obtain three types of 
networks: G, PG and NG.

The filtered edges will vary with different pre-determined significance levels, and so will the topological char-
acteristics of the networks. To verify the effectiveness of the approach, we further compare the performances of 
the network by setting three different significance levels: α =  0.1, 0.05, and 0.01, respectively. When the P value 
is less than 0.01, 0.05 and 0.1, respectively, we reject the null hypothesis and conclude that the partial correlation 
is not equal to zero.

We set a fixed window size of =T 300window  (about one trading year) with the starting point at January 3, 
2000. Every time, we move the starting point forward by a fixed interval of ∆ =T 60 (about one trading quarter) 
until the whole period of 4,060 trading days is covered. We take a snapshot in each time window and construct 
the corresponding network there. For each rolling dynamic network, we select stocks whose trading days are not 
less than two thirds of the corresponding window length, which could ensure sufficient co-trading days. After 
processing, totally 62 snapshots are obtained and the dynamic network properties are analyzed. Within each 
window, there are three types of networks and each type of network is extracted at three different significance 
levels, thereby we construct and compare totally nine networks for each snapshot.
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