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Computational predictors fail to 
identify amino acid substitution 
effects at rheostat positions
M. Miller1,2,3,*, Y. Bromberg1,4,5,* & L. Swint-Kruse6,*

Many computational approaches exist for predicting the effects of amino acid substitutions. Here, we 
considered whether the protein sequence position class – rheostat or toggle – affects these predictions. 
The classes are defined as follows: experimentally evaluated effects of amino acid substitutions at 
toggle positions are binary, while rheostat positions show progressive changes. For substitutions in 
the LacI protein, all evaluated methods failed two key expectations: toggle neutrals were incorrectly 
predicted as more non-neutral than rheostat non-neutrals, while toggle and rheostat neutrals were 
incorrectly predicted to be different. However, toggle non-neutrals were distinct from rheostat 
neutrals. Since many toggle positions are conserved, and most rheostats are not, predictors appear to 
annotate position conservation better than mutational effect. This finding can explain the well-known 
observation that predictors assign disproportionate weight to conservation, as well as the field’s 
inability to improve predictor performance. Thus, building reliable predictors requires distinguishing 
between rheostat and toggle positions.

Recent years have seen an explosion in the number of genomes and exomes sequenced for research and medical 
purposes, e.g. for diagnosing and prognosing predisposition to or progression of disease1–3. Unfortunately, our 
ability to interpret sequence data lags far behind. Take exomes, for example: Any given individual can have over 
10,000 amino-acid differences in their protein coding regions, as compared to the reference genome4. These dif-
ferences are often caused by nsSNPs (non-synonymous single nucleotide polymorphisms); in this manuscript, 
we refer to amino acid substitutions as variants. Given the large number of variants, it is not feasible to experi-
mentally determine the outcomes/effects for all changes, i.e. how they alter molecular function, protein structure, 
evolutionary fitness, or lead to pathogenesis. Thus, dozens of computational algorithms have been developed to 
predict outcomes. However, current algorithms have significant room for improvement5.

Interestingly, underneath the assortment of computational/mathematical techniques and numerous data 
inputs, all variant-effect predictors rely, to various extents, on two broad concepts: (i) basic biological principles 
and (ii) pattern recognition techniques, optimized using results from wet-lab experiments. We examined the 
assumptions underlying these concepts, hoping to identify avenues to improve predictions.

The basic biological principles include biochemical amino acid similarities and evolutionary informa-
tion about the protein of interest. The latter is usually in the form of a multiple sequence alignment (MSA) of 
homologs and is used to determine which specific sequence positions show evolutionary constraints (i.e. con-
served vs. non-conserved). This information serves as a proxy to predict which amino acid substitutions are 
“allowed” (inferred by their presence in functionally-active homologs) and which are “bad” (selected against 
during evolution and, thus, absent from the multiple sequence alignment). Some variant-effect predictors use 
globally-applicable scoring matrices, e.g. BLOSUM6, that represent the likelihoods of amino acid substitutions 
in curated MSAs. The substitutions allowed by these matrices often match the biochemical classifications of side 
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chains found in textbooks, which, in turn, are often used to design experimental mutation studies. By convention, 
only substitutions of “similar” amino acids are expected to allow normal or near-normal protein activity, while 
other substitutions are expected to alter or abolish function.

Variant-effect predictors that incorporate pattern recognition approaches are often training-driven. That is, 
they use large sets of experimentally verified functional effects of amino acid substitutions to build predictive 
models. These methods often (wrongly) assume that the variants used for training broadly represent the entire 
world of variation. Another extrapolation is implicit in any computational method that incorporates MSAs: if a 
particular variant-effect is known for one homolog, similar outcomes are expected for the same variant in other 
family members.

Both the conventional substitution rules and training datasets are biased by a gap between unbounded evolu-
tionary reality and limited laboratory work; i.e. laboratory variants are subject to experimental limitations and to 
the interests of the scientists. Indeed, available experimentally-annotated sets of variants are heavily biased to the 
study of conserved amino acid positions7.

However, many protein positions are not conserved in MSAs; i.e. they do change during evolution. 
Non-conserved positions are often ignored as not important, but this need not be true: homologs often evolve 
functional variance via amino acid changes at non-conserved positions8 and disease-causing substitutions can 
occur at non-conserved positions9,10.

We hypothesized that key non-conserved positions follow different substitution rules than conserved posi-
tions. If so, prediction algorithms that rely on the conventional substitution rules or on laboratory-derived train-
ing sets might not correctly predict the variant outcomes at non-conserved positions. Indeed, we recently showed 
that some functionally-important, non-conserved positions do not follow any of the evolutionary or biochemical 
assumptions made for conserved positions11: In that work, we identified 12 positions in the LacI/GalR family 
of proteins that varied widely among family members8. Next, using the natural E. coli lactose repressor protein 
(LacI) and modified (synthetic) versions of seven LacI/GalR homologs (including GalR, PurR, and RbsR), we 
substituted the native amino acid in each of these positions with 5–13 other amino acids and measured functional 
outcomes11. If these positions were functionally important, the conventional rules would predict that only a few 
similar substitutions would allow normal function and that most others would abolish function (e.g. Fig. 1, left 
panel). However, at most of the chosen non-conserved positions, variants exhibited a wide range of functional 
effects (Fig. 1, right panel). Furthermore, these effects did not correlate with evolutionary frequency, side chain 
similarities, or functional effects of the same substitutions in homologous proteins11.

We named these positions rheostats after their most prominent characteristic: When multiple amino acids 
were substituted at one rheostat position, functions of the mutant proteins could be rank-ordered to show a pro-
gressive effect (Fig. 1, right panel). This contrasts with the toggle (on-off) behavior that is frequently observed at 
conserved positions and is predicted by the conventional rules (Fig. 1, left panel). We have also noted rheostatic 
behavior in published variant datasets for other proteins (e.g. refs 12, 13), which indicates that rheostat positions 
are likely widespread in the protein universe. Importantly, the progressive functional impact of variants at rhe-
ostat positions is all but disregarded by the current variant-effect predictors, which were either developed using 
variants at toggle positions and/or the thresholded (binary) version of functional outcomes. We also hypothesized 

Figure 1. Experimental differentiation of toggle and rheostat positions. The left panel shows an example 
of a toggle position (tyrosine in position 47): Relative to wild-type (value normalized to 1), most substitutions 
at LacI position 47 abolish transcription repression of the reporter-gene. The right panel shows an example of 
a rheostat position (valine in position 52): Variants at this position in LacI exhibit a wide range of repression 
levels relative to wild-type (value normalized to 1). Data for position 52 (right panel) are adapted from11; the 
dark gray bar shows the ratio of no-repression (full expression of the reporter gene) to repression by wild-type 
LacI. Data for position 47 (left panel) were adapted from14. Briefly, the earlier study categorized these semi-
quantitative data relative to the activity of un-repressed reporter gene (i.e., in the absence of repressor protein). 
For this figure, we translated the semi-quantitative ranges to the quantitative scale using the “none” value on the 
right panel.
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that the poor correlation observed between functional outcomes of substitutions and biophysical/evolutionary 
amino acid properties could contribute to erroneous predictions.

Here we compare predictions from 16 widely-used computational methods for experimentally-evaluated sub-
stitutions at rheostat and toggle positions in LacI. Each variant at each position was assigned as either non-neutral or 
neutral based on experimental outcomes (Methods). When experimental outcomes were compared to predictions  
at rheostat positions, many non-neutral variants were incorrectly predicted to be neutral. At toggle positions,  
neutral variants were also poorly predicted, as previously observed by Gray et al.7. We gained insight into this 
problem by comparing the overall prediction ranges for rheostat and toggle positions, instead of using the default 
binary neutral/non-neutral thresholds: Our results suggest that current computational predictions could be 
enhanced by first determining whether the affected position functions as a rheostat or as a toggle.

Finally, our results show that evaluations of predictor performance are misled by bias in the available exper-
imental data: As noted above, there is a dearth of experimental results for variants at rheostat positions; in addi-
tion, at toggle positions, the number of experimentally validated non-neutral variants is high and the number of 
validated neutral variants is very low. The latter is further complicated by an arguably obfuscated definition of 
“neutrality” that often differs among methods. Together, these biases have had the practical effect that all toggle 
variants appear to be non-neutral and all rheostat variants are assumed to be neutral. This leads to an artificially 
low number of variants incorrectly predicted as non-neutral, whereas the number of incorrect, neutral predic-
tions cannot be properly estimated due to the low number of experimentally-validated neutral toggles. We pro-
pose that eliminating data bias, e.g. by using experimental results that annotate rheostat position variants, and 
optimizing prediction algorithms to account for position type will lead to more accurate evaluations of variant 
impact.

Figure 2. Locations of toggle and rheostat position sets on the structure of the LacI homodimer bound to 
DNA (PDB 1EFA34; visualized with PyMOL)71. On one monomer, positions are colored by the sets described 
in the text. Note that smaller sets are included in the larger sets. For example, toggle_12 positions are also part of 
toggle_50. Chain B (identical to Chain A) is shown in the background at 50% transparency. DNA is shown as a 
double helix at the top of the figure.
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Results
To test the performance of variant-effect predictors at rheostat and toggle positions, we extracted positions that 
exhibit these behaviors from two experimental datasets for LacI (Methods; Fig. 2)11,14. Rheostatic positions were 
identified by variants whose outcomes showed a progressive distribution; notably the outcomes of individual var-
iants did not correlate with evolutionary frequency, side chain similarities, or outcomes in homologous proteins11.  
Rheostats were identified in both experimental datasets; for this work, predictions were compared to the quanti-
tative measurements of Meinhardt et al.11. Toggle behavior was identified by binary variant outcomes, i.e. amino 
acid substitutions caused either a severe impact or no/weak effects; predictions were compared to data from the 
semi-quantitative study by the Miller lab14.

We designated three sets of rheostat and toggle variants (Methods, Supplemental Tables 1 and 2): (i) The 
stringent set comprised the nine rheostat positions that were identified by both experimental studies, and a com-
parable number of nearby toggle positions. (ii) The complete set comprised all 12 rheostat positions from the 
quantitative experiments and a comparable number of toggle positions. (iii) The extended set comprised all 12 
rheostat positions and 50 toggles from the semi-quantitative study. For both rheostat and toggle positions, indi-
vidual variants were classified as either neutral or non-neutral according to their experimentally-determined 
fold-change relative to wild-type repression.

For all variants in these sets, we predicted outcomes using 16 selected prediction algorithms 
(Fig. 3; Supplementary Tables 3 and 4). Most prediction trends were similar for all three sets (Fig. 4; 
Supplementary Figs 1, 2 and 3); differences are highlighted in the text below and likely stem from the small num-
bers of neutral variants at toggle positions (the stringent set contained only four neutral variants and the extended 
set contained 28). Experimentally-determined outcomes were compared to computational predictions in two 
ways: First, we compared the overall distributions for prediction scores from each of the four classes (rheostat 
non-neutral, rheostat neutral, toggle non-neutral, and toggle neutral). Second, for algorithms that generate con-
tinuous prediction scores, we directly compared predictions and experiments for individual variants.

Differences between rheostat and toggle positions confound variant-effect predictions.  
Variant predictors report their results in one of two ways: as a binary decision (neutral/non-neutral) or as a scored 
value representing the likelihood of non-neutrality, often thresholded to make a binary decision. Ideally, each 
algorithm would clearly separate the distributions of neutral and non-neutral variants, regardless of their toggle 
or rheostat position location (Fig. 4a). That is, methods should differentiate toggle neutrals from both toggle 
and rheostat non-neutrals; moreover, rheostat neutrals should be classified similarly to toggle neutrals. Finally, 
the progressive effect of rheostat non-neutrals should be different from the binary effect of toggle non-neutrals 
(Fig. 4a).

However, for the stringent comparison set, no algorithm significantly distinguished toggle neutrals from tog-
gle non-neutrals (Fig. 4b and Supplementary Fig. 1, (B) vs. (D): dark red vs. dark blue), as determined by the 
Kolmogorov-Smirnov test (KS-test) for continuous predictors and the Fisher exact T-test for binary predictors. 
The extended set was better differentiated at toggle positions by 8 of 16 methods (Supplementary Fig. 3). At 

Figure 3. Variant-effect predictors vary in features and development data used. The 16 publicly available 
variant-effect prediction algorithms can be broadly grouped by use of (i) basic biological principles and 
evolutionary information, (ii) pattern recognition techniques and machine learning, and (iii) meta/ensemble 
predictors.
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rheostat positions in the stringent set, neutrals and non-neutrals were significantly differentiated by only three of 
the methods (SNAP215, PROVEAN16, and PolyPhen-217; Fig. 4b and Supplementary Fig. 1, (A) vs. (C), light red 
vs. light blue).

Note, however, that non-neutral variant PolyPhen-2 scores are nearly uniformly distributed over the entire 
score range. The complete and extended sets were differentiated by four methods (the three above and MutPred2, 
the unpublished successor of MutPred18; Supplementary Figs 2 and 3).

In contrast, toggle non-neutrals were well-differentiated from rheostat neutrals (Fig. 4b and Supplementary  
Fig. 1, (B) vs. (C), dark red vs. light blue) in all three comparison sets by all methods except PANTHER19. Note 
that PANTHER only returned predictions for 30% of all variants; no predictions were made for neutrals in the 
stringent or complete sets, and only 8 of 26 neutrals had predictions in the extended set. This makes PANTHER an 
outlier to most trends observed for all other methods. Some of the algorithms also correctly and significantly dif-
ferentiated rheostat non-neutrals from toggle neutrals (Fig. 4b and Supplementary Fig. 1, (A) vs. (D), light red vs. 
dark blue). However, all of the continuous prediction methods erroneously assigned higher scores to toggle neu-
trals than to rheostat non-neutrals – the opposite of the correct prediction. Furthermore, for the larger extended 
set, the distinction between rheostat non-neutrals and toggle neutrals was eliminated (Supplementary Fig. 3); this 
finding, again, likely indicates the influence of the low number of toggle neutrals in the stringent set.

Finally, every method scored toggle neutrals (Fig. 4b and Supplementary Fig. 1, dark blue), on average, above 
the neutrality threshold and higher than rheostat neutrals (light blue), which on average scored below the neu-
trality threshold. This difference was significant for 12 of 16 methods. This trend was maintained for the larger 
comparison sets, suggesting that this issue is inherent to the prediction methods.

Weak correlation between predictions and experimental outcomes at rheostat positions. The 
main goal of variant-effect prediction is to classify functional outcomes into binary neutral/non-neutral catego-
ries. Nevertheless, several predictors calculate continuous prediction scores, allowing us to correlate predictions 
with experimental effects for individual variants.

For rheostat positions, this would be a more valuable prediction, since the thresholds for biological effects can 
change with environment (e.g., in response to changes in other proteins or in cellular conditions)20,21. Thus, we 
examined whether the progressive nature of variant outcomes at rheostat positions was captured by the continu-
ous score prediction methods for the rheostat_9 and rheostat_12 sets.

For the rheostat_9 set, only 50% of the continuous prediction methods showed any correlation (Fig. 5; 
Supplementary Fig. 4). Moreover, only four of the sixteen methods (SNAP2, PROVEAN, MutPred2, and 
PolyPhen-2) showed statistically-significant differentiation of rheostat neutrals from non-neutrals in the rhe-
ostat_9 or rheostat_12 sets. Of these, SNAP2 exhibited the highest correlation (Pearson’s r =  0.58, rheostat_9; 
Fig. 5). Using the rheostat_12 set did not alter the observed trends (Supplementary Table 5).

Predictions for variants at neutral positions have unclear outcomes. The LacI/GalR experimental 
study carried out experiments at the same positions in multiple homologs11. When outcomes were compared, 
each rheostat position showed a rheostatic profile in ~80% of the homologs studied. Thus, rheostat behavior 

Figure 4. Distributions of variant scores from continuous prediction methods differ between rheostat 
and toggle positions (stringent set). Panel (a) shows the distributions expected from an ideal variant-effect 
predictor, while panel (b) shows the distributions determined for neutral and non-neutral variants at both 
rheostat and toggle positions in the stringent set. These four predictors were selected on the basis of top 
performance in differentiating rheostat non-neutrals from rheostat neutrals. Results for all other predictors 
are in Supplementary Fig. 1. The violin plot is an augmented box plot where the width at any given Y-axis 
value indicates the probability density of the data (median, white circles; interquartile range, box outline). The 
p-values in the legend are from a Kolmogorov-Smirnov (KS) test, indicating whether a method can significantly 
distinguish between the two distributions pointed to by the respective arrows. Results from the complete and 
extended sets are in Supplementary Figs 2 and 3.
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appears to be the baseline for these positions within the protein family, even though individual homologs may 
evolve the position to different roles. Positions 60 and 62 were among those that appear able to evolve new roles: 
These positions acted as rheostats in most of the homologs, but in LacI were neither toggle nor rheostat in either 
dimer or the tetramer datasets11,14. Instead, these were neutral positions – no variant had a significant effect on 
repression (in the absence of inducer). Note the distinction between a neutral position and a neutral substitution. 
Rheostat positions comprise both neutral and non-neutral substitutions, as long as the number of non-neutral 
variants greatly exceeds the number of neutral variants. Neutral positions comprise only neutral substitutions.

Here, most variants at neutral positions 60 and 62 were indeed predicted to be neutral (Fig. 5, set rheostat {60, 62}).  
However, the apparent success may be spurious for two reasons: First, our other current results show that all var-
iants at rheostat positions generally score lower than those at toggle positions, and the results for positions 60/62 
could just be a manifestation of that. Second, one of the correctly predicted neutral variants at position 62 was not 
inducible in experiments. In this work, we generally did not consider the variant effect on LacI induction, because 
for most variants, significant changes were not experimentally observed (Supplementary Table 2). However, 
altered response to inducer is classified as dramatic biological impact (the “+ s” phenotype in the tetramer data-
set)14. If this information were taken into consideration, the predictors would be considered to have failed for this 
non-inducible variant.

To resolve the performance of variant-effect predictors at neutral positions, we ideally need two additional 
experimental datasets: One comprising variants at positions 60/62 in other natural LacI/GalR homologs (the first 
study used synthetic homologs, as described in Methods below); and one comprising variants at other neutral 
positions in a variety of proteins.

Discussion
We previously showed experimentally that amino acid substitutions at rheostat positions have different functional 
outcomes than those expected for toggle positions11. Here, we show that these differences impair the performance 
of variant-effect prediction algorithms. Overall, the predictors differentiated toggle positions from rheostat posi-
tions better than neutral variants from non-neutral variants. This may be due to the fact that, in LacI, rheostat 
positions are not conserved, whereas most toggle positions are. Many studies have noted that conservation is a 
key factor in identifying neutral and non-neutral variants22. Moreover, the rheostats host the majority of neutral 
variants. If these characteristics are common to other proteins, then our results demonstrate one possible reason 

Figure 5. Correlation between experimentally measured fold-changes and predicted variant-effect scores. 
Panels (a) SNAP2; (b) PROVEAN; (c) MutPred2; (d) PolyPhen-2 show the relationship of the computationally 
and experimentally derived scores. For each variant at all rheostat positions, fold-change in repression relative 
to wild-type LacI is shown on log scale (Y axis), whereas predicted scores are normalized to the linear range 
[0, 1] (X axis). The blue area depicts the scores expected for neutral variants (fold-change between 0.5 and 2.0); 
the green area depicts scores expected for non-neutral variants. The Pearson product-moment correlation 
coefficient (Pearson’s r) is given for the rheostat_9 set. Results from other predictors are in Supplementary Fig. 4.
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for the disproportionate importance of conservation for existing tools and for the consistent lack of significant 
improvement of method performance.

Furthermore, we previously found that predictors disagreed in their annotation for roughly a fifth of the  
variants15,23. Here, we show that this number cannot be accounted for by mis-predictions at toggle positions: Most 
methods correctly predict toggle non-neutrals, and toggle neutrals are few in number, comprising a small per-
centage of the total predictions. Thus, mis-predicted rheostat variants are, arguably, a key factor that differentiates 
prediction methods.

Next, we considered the fact that threshold choice directly affects binary variant-effect predictions. Current 
variant-effect predictors use various input parameters to calculate a likelihood that a given, single amino acid 
substitution has an effect on protein function, disease relevance, structure, etc. Many methods use likelihood 
thresholds to further categorize substitutions as either neutral (tolerant, wild-type, benign) or non-neutral (dam-
aging, pathogenic, deleterious). However, the methods for choosing thresholds vary widely. Some categorization 
thresholds are established by assessing score distributions across the training sets, and some are determined 
heuristically.

We further note that thresholding based on experimental training sets can be biased, since different “wet-lab” 
approaches use different thresholds to classify variant effects and each assay has a technical limit. For example, 
here we called an experimentally measured two-fold change in repression neutral, and everything above that 
threshold non-neutral because biological differences were detected at this level for variants in the quantitative 
dataset24. However, in the semi-quantitative tetramer dataset, everything within ~26-fold of wild-type repres-
sion was classified as neutral (“+ ”)14, and variants that repress better than wild-type (also non-neutral in our 
definition) were also considered to be experimentally neutral. Note that the trends of experiment to prediction 
comparisons were not changed with altered thresholds (Supplementary Fig. 5).

Adding to the overall confusion in the field is the fact that the “effect” definitions are often unclear; i.e. manu-
scripts detailing predictor implementations and/or performance comparisons often mix different effect terms and 
types of experimental data used for training/development. Thus, at best, most predictors ultimately differentiate 
between variants of severe effect (e.g. those that abolish function or obviously lead to disease) from those that 
are unlabeled (e.g. variants found in healthy populations, 1000 Genomes25 or EXAC)26 or poorly labeled27,28 (e.g. 
UniProt29 polymorphisms or variants between orthologous sequences).

Here, we showed that thresholding hides the fact that predictors behave differently for rheostat and toggle 
positions, i.e. they generate different score distributions for the two classes. The nearly identical overall perfor-
mance of all methods – regardless of the effect to be predicted (disease, functional significance, structure, etc.) – 
reveals that current prediction methods are, in essence, trained to differentiate toggle non-neutrals from rheostat 
neutrals, rather than for the general differentiation of neutral variants from non-neutral ones. This could explain 
why all predictors appear to have reached an upper threshold in performance.

However, within the rheostat and toggle sets, several methods were able to differentiate neutrals from 
non-neutrals (Fig. 4b, Supplementary Figs 1b, 2b and 3b). Thus, our results suggest that, if we could reliably label 
sequence positions as toggle or rheostat, predictions could be improved by using different neutral/non-neutral 
thresholds for each position class. In particular, this would circumvent the problems that all methods failed to 
recognize rheostat non-neutrals as having more effect than toggle neutrals and that toggle neutrals scored higher 
than rheostat neutrals – a difference that is not biologically feasible, as all neutrals are by definition equivalent.

Finally, we note that binary classifications are insufficient to capture variant effects at rheostat positions. 
Our results show that thresholding prediction scores into binary classes obscures the progressive effects seen 
for variants at rheostat positions. Nevertheless, the progressive changes are often biologically significant. For 
the LacI/GalR homologs, progressive functional outcomes translated into progressive and significant changes 
on bacterial growth rates24. Nor can small changes, classified as neutral, be always disregarded: (i) Less than 
two-fold differences in the function of the tetracycline resistance protein were biologically-adaptive to bacteria in 
clinically-relevant conditions30. (ii) Neutral substitutions in DNA methyl-transferase were deleterious to a host 
organism under some conditions31. (iii) The wide range of normal human phenotypes appears to arise through 
combinations of weakly non-neutral protein variants27. These observations make a compelling argument for 
building variant-effect predictors that determine a range of outcomes.

For some current algorithms, the magnitude of the prediction scores correlated with the size of the effects. 
We illustrated this behavior earlier for our method, SNAP15,23,27 and, additionally here, for SNAP2. Further, 
PROVEAN and PolyPhen-2 showed significant, though weak, correlations for non-neutral variants at rheostat 
positions. Note that none of the methods was explicitly trained to recognize the severity of effects. Instead, they 
were trained to differentiate binary effects: neutral from non-neutral. Thus, their prediction scores are indications 
of a statistical likelihood that a variant of a particular effect will occupy a particular scoring space. Indeed, high 
impact substitutions at toggle positions, which make up a disproportionately large fraction of the available train-
ing sets7, were predicted with higher statistical likelihood; i.e. toggle non-neutrals score distributions were more 
dense and significantly higher than rheostat non-neutral scores. In contrast, a statistical likelihood of a variant 
occupying a neutral scoring space has no equivalent meaning in biology – neutral (no effect) variants cannot be 
less or more neutral.

We conclude with the acknowledgement that change in protein functionality is not consistently predictive 
of disease. Regardless of the accuracy of any particular prediction, annotating outcomes is just the first step 
in a series of inquiries that must be made when trying to map pathogenicity. Each protein must ultimately be 
considered in the context of its biological role. For example, an interacting protein can change to offset a path-
ogenic variant to restore normal function32. Moreover, functionally deficient proteins may cause disease in 
some contexts yet protect in others. For example, the variant in hemoglobin that leads to sickle cell anemia in 
homozygotic humans is protective from malaria for heterozygotes33. Thus, variant pathogenicity predictor scores 
are but one step in modeling the specific mechanisms of disease. Nevertheless, to provide a reliable foundation 
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for quantitative models that predict changes in larger biological systems, we must build consistently-reliable 
variant-effect predictors.

Methods
Experimental characteristics of rheostat positions. In our earlier work11, we used a dimeric version 
of the E. coli LacI repressor and synthetic versions of seven other LacI/GalR homologs as hosts for amino acid 
substitutions at twelve non-conserved positions. All of these positions were located within the linker region that 
joins the N-terminal DNA binding domain and the allosteric regulatory domain (Fig. 2; PDB 1EFA34; positions 
46–62). These positions were experimentally shown to be rheostats: At each position, the progressive functional 
effects of multiple amino acids substitutions were quantified by determining ability to repress transcription of a 
reporter gene in vivo. These studies were extensively validated: For all variants, we confirmed that the protein was 
expressed at comparable levels, folded, and capable of binding DNA11,35. We also benchmarked the in vivo repres-
sion data against in vitro biophysical measurements of protein-DNA interactions; in most cases, the repression 
changes resulted from altered Kd for DNA binding36–38. Finally, we determined the impact of altered repression on 
bacterial growth rates to show that the changes were biologically significant24.

For the current work, we only used experimental results for E. coli LacI (UniProt accession number: P03023). 
While the synthetic LacI/GalR homologs were critical for disproving the assumptions discussed in the introduc-
tion about amino acid interchangeability11, these proteins were not naturally evolved and we excluded them to 
avoid the possibility that they are not properly evaluated by available computational techniques. We also consid-
ered whether amino acid substitutions in dimeric LacI had equivalent outcomes in wild-type, tetrameric LacI. 
The latter is a dimer of dimers, with each dimer serving as a functional unit capable of binding the DNA operator 
and inducer molecules39. Dimeric LacI was created by truncating the C-terminal tetramerization domain40. Aside 
from its lessened ability to simultaneously bind and “loop” two DNA operators41, dimeric LacI is extremely sim-
ilar to tetrameric LacI40,42. Dimeric LacI was chosen in the 2013 study11 so that substitution outcomes could be 
directly compared with the synthetic homologs, all of which lack a tetramerization domain. For nine of the twelve 
LacI rheostat positions, the quantitative substitution outcomes experimentally measured for dimeric variants11 
were in strong agreement with the semi-quantitative in vivo measurements previously made for the tetrameric 
LacI14 (Fig. 1, right panel) and with in vitro measurements of LacI/DNA variant binding affinities38.

Disagreements between the dimeric and tetrameric datasets were only observed for positions 48, 50, and 54. 
These three positions showed toggle behavior in the tetrameric study, i.e. most substitutions abolished function14, 
and rheostat outcomes in the dimeric study11. This difference is opposite any artifacts expected from truncating 
the dimerization domain: The tetramerization domain enhances LacI stability relative to the dimer43 and tetramer 
looping enhances repression44; either outcome would enhance DNA binding and repression, concealing dimin-
ished function of the variants. Thus, we propose the differences between the datasets are due to very low (or 
zero) LacI protein expression in the tetramer study, which relied upon suppression of amber codons in mutated 
bacterial strains to create the protein variants45. The latter can be an inefficient process that obscures the true out-
come of the protein variation. Since the tetramer data are widely used to benchmark computational predictions, 
developers should be aware that this is a potential experimental bias of this dataset.

For this work, analyses were carried out in parallel using two sets of rheostat positions: all twelve identified in 
our 2013 study11, and the nine that showed agreement between the dimer and tetramer forms of LacI. To deter-
mine the categories of neutral/non-neutral, we used the two-fold technical limit of the quantitative repression 
assay. Thus, variants exhibiting fold-changes in the range of [0.5, 2] relative to wild-type were assigned to the 
category of rheostat neutrals. All other variants were designated as rheostat non-neutrals. The fold change used 
for determining rheostatic behavior was calculated relative to the wild-type repression of 0.124 Miller units. The 
rheostat_12 set comprised a total of 103 variants across 12 positions, of which 18 (17%) were neutral and 85 were 
non-neutral. The rheostat_9 set comprised 78 variants across 9 positions, of which 18 (23%) were neutral and 60 
were non-neutral.

For this study, we considered only the functional impact on repression in the absence of allosteric inducer, 
since most variants did not show significant changes in allosteric response. For each variant, we re-cast repression 
in the absence of inducer as fold-change with respect to repression by dimeric wild-type LacI, using equation (1) 
(Supplementary Table 1):

. =Fold change AxB AxB
A

( ) ( )
(1)

measured

measured

where (AxB) stands for a substitution of amino acid A by amino acid B at position x and having the amino acid 
A corresponds to the wild-type protein. Experimental errors associated with the wild-type and variant func-
tional data (standard deviations from the average of ~8 technical and biological replicates) were propagated using 
equation (2):
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where σ is the standard deviation. This equation is derived for correlated variables. For uncorrelated variables, 
covariance terms present in the original formula equal zero. Solving that formula for the non-squared ratio of two 
variables results in equation (2).
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Selection and characteristics of toggle positions. Our 2013 study focused on non-conserved posi-
tions, and none of the tested LacI positions showed toggle behavior. Thus, to obtain a set of toggle positions for 
this study, we used the semi-quantitative variant data for tetrameric LacI generated by the Miller lab14. In that 
work, positions 2–329 were substituted with 12–13 amino acids each (Supplementary Table 2) and functional 
outcomes were broadly grouped into several phenotypes, including those with severe effects (non-neutral) and 
those with no effects (neutral; Supplementary Table 6). In this work, we defined toggle positions as those with 
at least 8 severe variants and at most 2 neutral variants. This definition identified 53 toggle positions distributed 
over the LacI protein. As noted above, rheostat positions 48, 50 and 54 fell in this set of toggles positions. As noted 
above, we hypothesized that these results are due to extremely low protein concentrations, perhaps related to 
inefficient suppression of the amber codon, and we thus excluded these positions to yield the final toggle_50 set 
(618 variants, 26 neutral and 592 non-neutral).

To create a toggle set of comparable size to the rheostat set, we selected a subset of toggle positions based on 
the availability of neutral variants and structural proximity to rheostat positions: First, we selected all positions 
within the DNA-binding domain with at least one neutral variant (10, 13, 30, 49). Second, toggle positions 47, 
49, 53, 56, and 57 were chosen because they interdigitate with rheostat positions in the linker region (46–62). Of 
the remaining 13 toggles within the DNA-binding domain, we selected positions 16, 18, 21, and 22. The resulting 
toggle_12 set comprised 145 variants across 12 positions, of which 4 (2.8%) were neutral. We also designated the 
toggle_9 set (toggle_12 minus variants at positions 16, 21 and 22), which comprised 109 variants (4 toggle neutrals 
and 105 non-neutrals) across 9 positions.

In Results, we labeled the rheostat_9 vs. toggle_9 comparison as the stringent set (see Fig.  4, 
Supplementary  Fig.  1). For a more comprehensive analysis, we also computed results for complete 
(Supplementary Fig. 2) and extended (Supplementary Fig. 3) sets; which included the rheostat_12 set and, respec-
tively, the toggle_12 or the full toggle_50 set (Supplementary Table 2). By using the three comparison sets, we 
hoped to minimize the impact of mis-assigned toggle positions due to poor protein expression.

Variant-effect prediction algorithms. To predict variant effects at rheostat and toggle positions, we used 
16 publicly available computational methods (Fig. 3, Supplementary Table 7). These were selected to cover a 
wide variety of computational techniques and training sets. Note that not all publications explicitly mention 
what is meant by the word “effect.” Some predict disease variants, others focus on evolutionary conservation or 
evolutionary fitness, and still others evaluate functional or structural impacts. To be able to use all tools, here we 
broadly use the term outcome without further identifying differences between methods. For all methods that 
require a 3D structure, we used 1EFA (PDB ID: 1EFA)34, consisting of dimeric LacI bound to DNA operator and 
an “anti-inducer” allosteric ligand. All reported graphs/statistics were generated using R46.

1. SIFT22 uses PSI-BLAST47 (position-specific iterated Basic Local Alignment Search Tool; BLAST) to query 
a sequence database (e.g. NCBInr)48 and generates a position-specific scoring matrix (PSSM) based on 
the retrieved sequences. Note that we used SIFT with a manually curated MSA (Supplementary File 1)49 
rendering the initial PSI-BLAST query obsolete. Combined with known generic likelihoods of amino acid 
substitutions (BLOSUM62 substitution matrix), this approach allows estimating probabilities of effect for 
any position-specific amino acid substitution.

2. PROVEAN16 uses BLAST50 to collect homologous and distantly related sequences from NCBInr, which 
are then clustered by sequence identity. To measure the effect of a variation, the algorithm calculates the 
average divergence score between the cluster sequences and the query sequence using the BLOSUM62 
substitution matrix.

3. PANTHER19 uses BLAST to identify the best match to the input query in the PANTHER database51. This 
matched protein is linked to a pre-computed phylogenetic tree of the specific protein family. To evaluate 
the effect of the substitution, the mutated residue is traced back through increasingly older ancestral pro-
teins in this tree.

4. MutationAssessor52 uses BLAST to query the UniProt and identify related protein sub-families, which are 
used to extract characteristic conservation patterns. The latter are used to calculate the effect of mutating a 
specific residue in a protein family and, separately, in each of its sub-families.

5. FoldX (PositionScan)53 uses protein 3D structures and an empirical force field to evaluate the effects (free 
energy changes) due to variation.

6. Align-GVGD54 is an extension of the Grantham Difference55, combining a conservation score based on a 
given MSA (Grantham Variation) with a measure of the biochemical difference between the mutant and 
the wild-type amino acids (Grantham Deviation).

7. MAPP56 constructs a phylogenetic tree based on substitution frequency per site within an MSA of ort-
hologs or closely related paralogs. Topology and branch lengths of the tree are used to calculate weights for 
each sequence respectively. These weights are used to generate an alignment summary that is interpreted 
using a matrix of physiochemical properties resulting in an estimate of the physiochemical constraints on 
each position of the MSA. Deviations from these constraints are calculated for each position of the query 
sequence and transformed into an effect prediction score.

8. PolyPhen-157 classifies variants via empirically derived rules using various sequence-based characteristics 
of the substitution site (e.g. UniProt annotations), along with structure and homology descriptors.

9. PolyPhen-217 trains a Naïve Bayes classifier on HumDiv (set of single amino acid substitutions from 
UniProt known to cause human Mendelian diseases and non-damaging variants found in closely relat-
ed mammalian homologs) and HumVar58 (set of disease- and neutral polymorphism-annotated single 
amino acid substitutions of human proteins from Swiss-Prot)29 variants. PolyPhen-2 uses structure-based 
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(e.g. accessible surface area and conformational mobility of the wild-type amino acid residue) and se-
quence-based features (e.g. MSA-based conservation and depth, CpG context and residue volume).

10.  SNAP215 uses an artificial neural network, trained on experimentally-obtained variant functional effect 
data, with a variety of precomputed biochemical and evolutionary amino acid substitution rules, as well 
as conservation and predicted sequence-derived protein features, e.g. secondary structure and solvent 
accessibility.

11.  PhD-SNP58 applies a decision tree to predict effects either using a profile based support vector machine (SVM; 
sequence profile calculated by BLAST against UniRef90) or by a single sequence based SVM. Training data are 
extracted from Swiss-Prot (disease vs. polymorphism variants) and enriched with OMIM59 annotations.

12 iMutant358,60 offers different SVMs to predict (i) stability changes, using SVMs trained on the ProTherm 
database61, from sequence only or from structural information, and (ii) disease associated variants from 
sequence only using the PhD-SNP prediction pipeline.

13.  nsSNPAnalyzer62 uses a random forest classifier, trained on a curated dataset of variants (ModSNP)63 using 
(i) variant structural environment, (ii) position conservation within the MSA, and (iii) similarity between 
variant and original amino acid. If no structural information is provided, the ASTRAL database64 is queried 
for a homolog structure.

14.  PredictSNP65 is a meta-predictor incorporating eight methods (MAPP, nsSNPAnalyzer, PANTHER, 
PhD-SNP, PolyPhen-1/- 2, SIFT, SNAP2) into a consensus classifier based on a majority vote weighted by 
the method-specific confidence scores. PredictSNP is trained on a benchmark dataset compiled from five 
different sources (training datasets of four variant-effect prediction tools not selected for the PredictSNP 
pipeline: SNPs&GO, MutPred18, PON-P and HumVar; the fifth source is a subset of UniProt variants). 
Testing datasets are derived from the Protein Mutant Database66 (PMD) and from experimental studies.

15.  Meta-SNP67 is a random forest-based binary classifier meta-predictor, combining the predictions of four 
methods (SNAP2, SIFT, PANTHER, PhD-SNP) and four features extracted from the PhD-SNP protein 
sequence profile; the training dataset is derived from Swiss-Prot (disease vs. polymorphism variants).

16.  MutPred2 (unpublished; the successor of MutPred)18 consists of an ensemble of bagged neural networks, 
trained on amino acid substitutions from HGMD68, Swiss-Prot, dbSNP69, and ortholog alignments. In 
addition to sequence, conservation, and physicochemical features in and around the variant position, 
MutPred2 uses predictions of change due to amino acid variation in over 50 local structural and functional 
properties (e.g. post-translational modification sites, macromolecular binding, among others).

For all variants in the LacI rheostat and toggle sets, predictions were generated using the 16 algorithms listed 
above. When no publicly available web-service was present, prediction methods were installed and run locally. 
Input parameters were set to default values. To obtain comparable predictions between the different algorithms, 
all predictor scores were transformed and normalized: Some tools provide a probability or some other score for 
the likelihood of variant non-neutrality. For these, we converted pre-defined, method-specific binary thresholds 
to a value of 0.5 and normalized the neutral and non-neutral score ranges separately to [0, 0.5] and (0.5, 1], 
respectively. For methods that predict the classes of functional outcomes, scores were assigned manually. Details 
of scoring and thresholds used for normalization are as follows:

1. SNAP2 scores are [− 100, 100], threshold at 0, neutrals below threshold.
2. SIFT scores are [0, 1], threshold at 0.05, neutrals above threshold. Scores were reversed (equation (3) prior 

to normalization.

= −Score Score1 (3)reversed raw

3. MutationAssessor score range was not defined by the authors, but available data52 suggests a [− 4, 5] range, 
which we use in normalization; default threshold is 1.9, neutrals below threshold. Note, however, in this 
work we used a threshold of 0.8, as described in ref. 16, to more accurately differentiate neutrals.

4. PROVEAN score range was not defined by the authors, but predicted scores for our variants occurred in 
the [− 14.875, 1.908] range, which we use in normalization; threshold at − 2.5, neutrals above threshold.

5. MAPP scores are [0, 1], threshold at 0.5, neutrals above threshold. Scores were reversed using equation (3).
6. iMutant3 score range was not defined by the authors, but predicted scores for our variants occurred in the 

[− 3.5, 0.63] range, which we use in normalization; threshold at − 0.5, neutrals above threshold. Note that 
we used this threshold to transform predictions into a binary form.

7. FoldX (PositionScan) score range is not defined by the authors, but predictions for free energy changes be-
low 0.05 kcal/mol (neutrals) are not reported. The maximum predicted score for our variants was 3.76102. 
Here we assigned a score of 0 to missing predictions, resulting in [0, 3.76102] range, and set the threshold 
at 0.5 (as in iMutant, above), neutrals below the threshold. Note that we used this threshold (as in iMutant, 
above), to transform predictions into a binary form.

8. PolyPhen-1 classifications of [benign, possibly damaging, probably damaging], were converted to [0, 0.5, 1]
9. Align-GVGD classifications are [C0, C15, C25, C35, C45, C55, C65], assigned to corresponding risk esti-

mates, ranging [1.16, 3.12]70. The authors did not define the threshold, but C0 was suggested to be the only 
neutral class. Thus, threshold was set at the corresponding risk estimate of 1.16, neutrals below threshold. 
Note that we used this threshold to transform predictions into a binary form.

10.  PolyPhen-2 scores are [0, 1], threshold at 0.92, neutrals below threshold.

11-14.   MutPred2, PANTHER, PhD-SNP, and Meta-SNP obtain probability scores, which range [0, 1] with 
a threshold at 0.5, neutrals below threshold. Note that scores for PANTHER and PhD-SNP reported 
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here were each obtained from meta-predictors (PredictSNP and Meta-SNP, respectively).
15,16.    nsSNPAnalyzer and PredictSNP are binary classifiers [neutral, non-neutral], which were converted to 

[0, 1].

To analyze the performance of prediction tools in differentiating rheostat and toggle position non-neutrals 
and neutrals, we applied the Kolmogorov-Smirnov (KS) test (two-sided) for continuous predictors and Fisher 
exact T-test (two-sided) for binary predictors. To compare the correlation between experimentally-measured 
fold-changes for rheostat variants and predicted variant-effect scores, we computed the Pearson product-moment 
correlation coefficient (Pearson’s r). For this analysis, we made two assumptions: (i) In addition to the variants 
with diminished repression, five variants showed enhanced repression relative to wild-type (fold-change values 
less than 0.5) and thus were treated as non-neutral. We used the reciprocal of the fold-change to correlate them 
to prediction scores. (ii) Neutral variants are, by definition, all equivalent to wild-type. However, the continuous 
predictors usually assign a range of scores that fall below their neutrality threshold (here normalized to 0.5). Thus, 
we assigned all neutrally predicted variants a score of 0.5.
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