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Minimizing the risk of allo-
sensitization to optimize the 
benefit of allogeneic cardiac-
derived stem/progenitor cells
Hocine R. Hocine1,2, Hicham El Costa3, Noemie Dam1,4, Jerome Giustiniani1, Itziar Palacios4, 
Pascale Loiseau5, Armand Bensussan1, Luis R. Borlado4, Dominique Charron1,2,5, 
Caroline Suberbielle2,5, Nabila Jabrane-Ferrat3,# & Reem Al-Daccak1,2,#

Allogeneic human cardiac-derived stem/progenitor cells (hCPC) are currently under clinical investigation 
for cardiac repair. While cellular immune response against allogeneic hCPC could be part of their 
beneficial-paracrine effects, their humoral immune response remains largely unexplored. Donor-specific 
HLA antibodies (DSA-HLA-I/DSA-HLA-II), primary elements of antibody-mediated allograft injury, 
might present an unidentified risk to allogeneic hCPC therapy. Here we established that the binding 
strength of anti-HLA monoclonal antibodies delineates hCPC proneness to antibody-mediated injury. 
In vitro modeling of clinical setting demonstrated that specific DSA-HLA-I of high/intermediate binding 
strength are harmful for hCPC whereas DSA-HLA-II are benign. Furthermore, the Luminex-based 
solid-phase assays are suitable to predict the DSA-HLA risk to therapeutic hCPC. Our data indicate that 
screening patient sera for the presence of HLA antibodies is important to provide an immune-educated 
choice of allogeneic therapeutic cells, minimize the risk of precipitous elimination and promote the 
allogeneic reparative effects.

Recent progress in stem/progenitor cell-based cardiac regenerative/reparative therapies has provided new insights 
into their mode of action as well as into their immune behavior within autologous and allogeneic settings. It is 
very likely that stem/progenitor cells repair the injured myocardium through constructive paracrine rather than 
trans-differentiation mechanisms1. Nevertheless, both autologous and allogeneic cells need to remain enough 
time to allow paracrine-associated improvements and promote therapeutic benefit. The largest clinical trial 
conducted today, the CONCERT-HF (https://clinicaltrials.gov/ct2/show/NCT02501811), has employed autolo-
gous cells, which in theory are not recognized by the host immune system and therefore have a more prolonged 
engraftment than allogeneic cells. However, autologous strategies have encountered certain limitations, and the 
new era tends to acknowledge allogeneic stem/progenitor cells as being a more realistic and pragmatic cardiac 
repair strategy2–5.

Currently, a large body of in vitro and in vivo research indicates that the allogeneic stem/progenitor cells 
are safe since they activate modulatory rather than deleterious cellular immune reactions5–10. This applies to 
mesenchymal stem cells, cardiosphere-derived cells (CDC), and cardiac-derived stem/progenitor cells (CPC). 
Moreover, our previous findings also highlight the allogenecity of human CPC as part of the dynamic mecha-
nisms that are critical for the maintenance of sustainable cardiac repair8,10. All together, these findings prompted 
the initiation of two clinical trials using allogeneic cardiac stem/progenitor cells: the ALLSTAR (http://clinical-
trials.gov/show/NCT01458405) and the CAREMI (https://clinicaltrials.gov/ct2/show/NCT02439398) in patients 
with acute myocardial infarction (MI). Yet, a key challenge to using these allogeneic cells for successful clinical 
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practice is their rapid elimination compared to autologous cells7,11. This might in turn affect their projected par-
acrine regenerative/reparative actions.

Lessons from allogeneic solid-organ and hematopoietic stem cell (HSC) transplantation indicate that beyond 
the immune cell-mediated graft destruction, the existence and/or de-novo production of donor-specific antibod-
ies against alloantigens (DSA), including the Human Leukocyte Antigens (HLA), are an absolute graft injury 
factor12–15. Allelic differences at polymorphic HLA loci during blood transfusion, pregnancy, or transplan-
tation induce allogeneic sensitization through the generation of alloantibodies against the class I and class II  
HLA (DSA-HLA-I and DSA-HLA-II, respectively)16,17. HLA antibodies are the most frequently encountered 
alloantibodies in healthy individuals18 and act through complement-dependent and -independent mechanisms 
to provoke humoral graft rejection. They bind and activate the complement through the Fc region, which results 
in complement-dependent cytotoxicity (CDC) and incites the acute antibody-mediated rejection19,20. HLA anti-
bodies also activate antibody-dependent cell-mediated cytotoxicity (ADCC) through their Fc region engaging 
receptors on innate immune cells such as natural killer (NK) cells21.

CPCs constitutively express the immunogenic alloantigens, HLA class I (HLA-I). Moreover, a microenvi-
ronment rich in growth factors (such as FGF and HGF) and pro-inflammatory cytokines (such as IFNγ  and 
TNFα ) would induce the expression of HLA-II on CPCs8,22. These immunogenic alloantigens would incite the 
recognition of the infused CPCs by pre-existing DSA-HLA I and II and may also trigger de-novo production of 
these DSA by activated B cells. Hence, DSA-HLA effects are clinically relevant in the context of allogeneic CPC 
therapies. They might contribute to pre-mature and fast elimination of the transplanted allogeneic cells before the 
occurrence of their favorable anti-inflammatory modulatory immune response, the allogeneic-driven-benefit.

Studies in swine and rodent models, demonstrated that the immune system reduces the survival of trans-
planted allogeneic mesenchymal stem cells by eliciting humoral immune response to grafted cells11,23. 
Furthermore, xenotransplantation of human embryonic stem cells (hESC) induces a rapid surge of DSA-HLA-I 
that contribute to immune rejection, whereas HLA-I knockdown remarkably alleviates antibody production and 
prolongs the survival of hESC24. Although the mechanisms involved in humoral allo-rejection of stem cells are 
still unknown, studies in animal model suggested that CDC and ADCC might be responsible for stem cell elimi-
nation in vivo, as in the case of organ or cell transplantations25.

Sensitive solid-phase assays using Luminex-based technology are the standard practice in allogeneic organ 
transplantation to detect the presence and identify the specificities of DSA-HLA26. These assays determine the 
mean fluorescence intensity (MFI) of the antibody interaction with HLA-I and -II antigens. The MFI often 
referred to as “binding strength” is the quantitative and qualitative delineation of DSA-HLA interaction with their 
targets, and controls the clinical outcome of allogeneic transplantation27,28. However, the usage of this standard 
test in CPC therapy is yet to be determined. In fact, the impact of the binding strength as determined by this assay 
on the outcome of cardiac stem/progenitor cells was never demonstrated.

In this study, we used human cardiac-derived stem/progenitor cells (hCPC) to examine the proneness of car-
diac stem/progenitor cells to DSA-HLA induced rejection. hCPC are stem cells with mixed phenotype express-
ing pluripotency as well as early cardiac lineage transcription factors8. We developed a tailored in vitro flow 
cytometry-based assay that allowed us to determine the antigen specificity and the binding strength of circulating 
DSA-HLA and the antibody-mediated injuries to hCPC. We show that the presence of DSA-HLA-I with high/
intermediate binding strength is detrimental for allogeneic hCPC promoting their death. In contrast, DSA-HLA-I 
with low binding strength or DSA-HLA-II are not. Furthermore, we found a significant correlation between 
the occurrence of CDC and ADCC by the developed flow cytometry-based assay and the binding strength of 
DSA-HLA determined by the standard Luminex-based assay. Thus, DSA-HLA-I-sensitization could contribute 
to the loss of hCPC upon their infusion. A systematic immuno-monitoring of DSA-HLA by Luminex-based 
assay would provide an immune educated choice of these off-the-shelf allogeneic hCPC, which might permit a 
prolonged persistence to activate endogenous regeneration and optimize repair impaired heart function.

Results
Delineation of the binding strength of the anti-HLA antibody interaction with hCPC by flow 
cytometry-based assay. In organ transplantation, the clinical relevance and risk of DSA-HLA can be pre-
dicted by their binding strength measured by the MFI of their interactions with HLA class I and class II antigens 
through the Luminex-based assay. Such assay is not yet validated as a tool to measure the binding strength of HLA 
alloantibody interaction with hCPC or to predict their risk for hCPC transplantation. Therefore, we first used two 
high-affinity specific anti-HLA-I (W6/32) and -II (anti-HLA-DR L243) monoclonal antibodies (mAb) to develop 
a flow cytometry-based assay that can assess the capacity of HLA antibodies to interact with hCPC and determine 
the characteristic of this interaction regardless of the HLA haplotype of the therapeutic cells.

hCPC from six different donors were genotyped for their HLA-I (HLA-A, -B, -C) and HLA-II (HLA-DR) 
(Supplementary Table 1) then cultured with declining concentrations (10 to 0.05 μ g/ml) of each mAb. The 
reactivity, as MFI, for each antibody concentration was then determined using phycoerythrin (PE)-conjugated 
anti-IgG secondary antibody and flow cytometry analysis. In theory, the infused hCPC to MI patients few days 
after injury would operate within post-MI inflammatory environment. They would be primed/stimulated by 
a variety of growth factors and pro-inflammatory cytokines, such as IFNγ  and TNFα  that would change their 
immunological profile without affecting their stem/progenitor properties8. Therefore, hCPC primed with the 
pro-inflammatory cytokine IFNγ  (IFNγ -hCPC) were also used in our assay to mimic the hCPC within MI 
inflammatory environment.

The anti-HLA-I W6/32 mAb interacted with hCPC and IFNγ -hCPC in a dose-dependent manner. The highest 
MFI values were observed upon interaction of hCPC and IFNγ -hCPC (MFI 3000 and 8500, respectively) with 
the highest concentration of anti-HLA-I (10 μ g/ml) and decreased thereafter displaying a logarithmic trend-line 
with a R2 value of 0.93 and 0.98, respectively (Fig. 1a). hCPC within inflammatory environment undeniably 
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express higher levels of HLA-I antigens (Supplementary Fig. 1), which was fully reflected by the higher MFIs 
observed upon interaction of anti-HLA-I with IFNγ -hCPC (Fig. 1a). The anti-HLA-II L243 does not bind to 
hCPC at baseline since they lack the expression of HLA II. However, the anti-HLA-II interacts with IFNγ -primed 
HLA-II-expressing hCPC (Supplementary Fig. 1) also with logarithmic trend-line (R2 value of 0.94) but with an 
average maximal MFI value of 600 when used at 10 and 5 μ g/ml (Fig. 1b). Compared to anti-HLA I, the MFIs 
obtained with anti-HLA-II mAb upon its interaction with IFNγ -hCPC are nearly 13 times less. Moreover, at least 
0.3 μ g/ml of L243 was required to observe a binding whereas a much lower concentration of anti-HLA I was 
sufficient (0.05 μ g/ml).

Collectively, the specific recognition of the HLA-I and-II antigens on hCPC and IFNγ -hCPC by mAbs and 
the correlation between HLA-I and -II expression levels and the amount of anti-HLA antibodies validate the flow 
cytometry-based assay as a quantitative measurement that reflects both the density of HLA antigens on hCPC and 
the amount of the existing antibodies.

The binding strength of anti-HLA antibodies commands hCPC susceptibility to CDC. We next 
checked whether the binding strength of the anti-HLA mAbs as determined by the flow cytometry-based assay 
detected MFI could control the proneness of hCPC to antibody-mediated injury. We first checked hCPC sus-
ceptibility to CDC. hCPC and IFNγ -hCPC were cultured with medium alone or with decreasing concentrations  
(10 to 0.05 μ g/ml) of anti-HLA-I W6/32 or anti-HLA-II L243 mAbs in the presence of complement. We then 
used the 7AAD dye to quantify the CDC by flow cytometry assays. The presence of 10 μ g/ml of anti-HLA-I 
W6/32 induced the lysis of nearly 40% of hCPC. This induced CDC declined with decreasing amounts of the 
mAb and reached the baseline of the complement alone (Fig. 2a). The CDC was much higher in IFNγ -hCPC 
and nearly 90% of the cells were killed in the presence of 10 μ g/ml of the W6/32 antibody. Similarly, we observed 
a declining lysis with decreasing amounts of the mAbs although the CDC remained significant at 0.5 μ g/ml 
(Fig. 2a). Compared to the CDC-induced by anti-HLA-I, no lysis was observed in hCPC given their lack of 
HLA-II expression (Supplementary Fig. 1) and only a modest effect (around 10% specific lysis) was induced by 10 
or 5 μ g/ml of the anti-HLA-II L243 in IFNγ -primed HLA-II-expressing hCPC (Supplementary Figs 1 and 2). The 
CDC induced by different concentrations of anti-HLA-I or -II strongly correlated with their determined binding 
strengths with a R2 value of 0.81, 0.96 and 0.94, respectively (Fig. 2b and Supplementary Fig. 2). Anti-HLA-I or 
–HLA-II F(ab’)2 did not induce any significant CDC in hCPC or IFNγ -hCPC (Fig. 2a and Supplementary Fig. 2) 
indicating that the observed cytotoxicity is specifically induced by the ability of the complement to bind the Fc 

Figure 1. Delineation of anti-HLA mAbs interaction with hCPC by cytometry-based assay. hCPC or 
IFNγ -hCPC were cultured with declining concentrations of (a) anti-HLA-I W6/32 or (b) anti-HLA-II L243 
mAb. The reactivity, as mean florescence intensity (MFI), for each antibody concentration was determined 
by flow cytometry. Results are mean MFI values ±  SD obtained with hCPC (n =  6) expressing different HLA 
haplotypes and each tested in three different experiments. Correlation curves between MFIs and antibody 
concentrations for hCPC or IFNγ -hCPC along with respective R2 values are indicated.
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fragment of anti-HLA mAbs. These results demonstrate that anti-HLA mAbs can trigger the CDC, a major mech-
anism involved in acute humoral rejection, in a binding strength-depending manner.

The binding strength of anti-HLA antibodies commands hCPC susceptibility to ADCC. Next, we 
analyzed the ADCC mediated through the engagement of the Fc fragment of IgG1 or IgG3 antibody by the CD16 
receptor expressed by the highly cytotoxic CD56dimCD16+ NK cells. Optimum NK cell ADCC in vitro detec-
tion necessitates their stimulation through the shared IL2/15Rβ γ  receptor, in particular with IL-1529. Therefore, 
freshly-isolated NK cells were activated overnight with IL-15 (50 ng/ml) then co-cultured with allogeneic hCPC 
or IFNγ -hCPC in the presence or absence of different concentrations of the anti-HLA mAbs. The incidence of 
ADCC was then monitored by 1) the upregulation of CD137 and the expression of CD107a as readout for CD16 
engagement and the degranulation of the NK cells, respectively30,31, and 2) the percentage of 7AAD-positive 
hCPC as readout for NK cell lytic activity.

In the absence of anti-HLA-I or –HLA-II antibodies and in accordance with our previous report demon-
strating that inflammatory-environment-inured hCPC are less susceptible to allogeneic NK cell killing10, up to 
35–40% of allogeneic NK cells expressed CD137 and degranulated when co-cultured with hCPC, while only 
20% of those interacting with IFNγ -hCPC (Fig. 3a upper panel, and Supplementary Figs 3 and 4). Increasing 
amounts of anti-HLA I W6/32 enhanced the percentage of CD137- and CD107a-positive NK cells, in the pres-
ence of hCPC, reaching a maximum of 70% and 60% at 10 μ g/ml of mAb, respectively (Fig. 3a upper panel and 
Supplementary Fig. 3). Moreover, significant correlations were observed between the binding strength of various 
amounts of anti-HLA I mAb and the expression of CD137, which also significantly correlated with the degran-
ulation of allogeneic NK cells with a R2 value higher than 0,91 and 0.90, respectively (Fig. 3a lower panel and 
Supplementary Fig. 3). The expression of CD137 and CD107a followed a similar trend when IFNγ -hCPC were 
used as NK cell targets (Fig. 3a lower panel and Supplementary Fig. 3) with correlation R2 value of 0.97.

Figure 2. Anti-HLA antibody-induced CDC is binding strength-dependent. hCPC or IFNγ -hCPC were 
cultured with declining concentrations of anti-HLA-I W6/32 or 10 μ g/ml of W6/32-F(ab’)2 with or without 
complement (C) then, (a) the capacity of anti-HLA I to induce CDC was evaluated by flow cytometry as % 
7AAD-positive hCPC. (b) % CDC induced by each antibody concentration in hCPC (left panel) or IFNγ -hCPC 
(right panel) plotted as function of respective MFIs. Results are presented as mean values ±  SD from three 
different experiments done with each hCPC. Statistical analyses were performed using One-Way Analysis of 
Variance (ANOVA)-Kruskal–Wallis test-dunn’s multiple comparison (GraphPadPrism Software). P <  0.001 and 
P <  0.01 compared to complement.
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Figure 3. Anti-HLA antibody-induced ADCC is binding strength-dependent. IL-15-activated NK cells were 
cultured alone (medium) or with hCPC or IFNγ -hCPC (n =  6) in the presence of declining concentrations of 
anti-HLA-I W6/32 or 10 μ g/ml of W6/32-F(ab’)2. (a) % CD137-positive NK cells determined by flow cytometry 
(upper panel). % CD137-positive NK cells observed for each antibody concentration in hCPC or IFNγ -hCPC 
plotted as function of respective MFIs (lower panel). (b) % NK cell-mediated lysis evaluated as percentage of 
7AAD-positive hCPC or IFNγ -hCPC (upper panel). % CD107a-positive NK cells plotted as function of % NK-
mediated lysis (lower panel). Results are presentenced as mean values ±  SD from three different experiments 
done with each hCPC. Statistical analyses were performed using One-Way Analysis of Variance (ANOVA)-
Kruskal–Wallis test-dunn’s multiple comparison (GraphPadPrism Software). P <  0.01 and P <  0.001 compared 
to NK +  hCPC alone.
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In agreement with CD137 and CD107 expression assay, NK cells killed almost 60% of hCPC or IFNγ -hCPC 
in the presence of 10 to 0.5 μ g/ml of anti-HLA I mAb (Fig. 3b upper panel). NK cell-mediated lysis was highly 
correlated with CD107a expression when hCPC and IFNγ -hCPC were used as target (R2 value of 0.94 and 0.97, 
respectively) (Fig. 3b lower panel). Compared to basal level, the anti-HLA II mAb at 10 and 5 μ g/ml induced 
only a modest ADCC against IFNγ -hCPC. The expression of CD137 and CD107a on NK cells and the 7-ADD 
labeling of target cells were weakly increased (around 10%) compared to baseline (Supplementary Figs 4a,b and 5, 
respectively).

The presence of anti-HLA-I or -II F(ab’)2 (10 μ g/ml) instead of full anti-HLA mAbs did not change the base-
line expression of CD137 (Fig. 3a upper panel and Supplementary Fig. 4a) confirming that the observed cyto-
toxicity is NK cell-mediated ADCC. Of note, the baseline NK cell degranulation and lytic activity was increased 
in the presence of anti-HLA-I-F(ab’)2 (Supplementary Fig. 3 and Fig. 3b upper panel) due to the blockade of the 
interaction between HLA-I molecules and the NK cell inhibitory receptors KIR receptors. Such blocking would 
favor NK cell activation by shifting the balance between the activating and inhibitory signals that govern the NK 
cell cytotoxicity.

Thus, in addition to CDC the anti-HLA-I mAbs can trigger in a binding strength-depending manner the 
ADCC of hCPC.

DSA-HLA-I induce CDC against hCPC. The interaction of HLA mAbs with hCPC suggests that the 
presence of alloantibodies, against the HLA-I or -II alleles expressed on the allogeneic donor hCPC (hereaf-
ter termed DSA-HLA-I and -II, respectively), in candidates for the cell therapy (DSA-sensitized patients) could 
trigger antibody-mediated injury in the therapeutic cell. We evaluated this prospect through an experimental 
model mimicking the clinical setting. We screened sera containing HLA panel reactive antibodies (PRA) from a 
cohort of heart pre-transplant patients for the presence of hCPC HLA haplotype-specific antibodies by the stand-
ard Luminex-based single-antigen flow beads technology used in transplantation. A total of 21 sera containing 
anti-HLA antibodies matching the HLA haplotypes (Supplementary Table 1) of the hCPC cohort (n =  6) and 
with Luminex-detected MFIs ranging from 1000 to 20000 were selected. Six DSA-HLA-I were directed against 
HLA-A2, six against HLA-A29, and three against HLA-A30 (Supplementary Table 2). For the DSA-HLA-II, we 
selected two against HLA-DR4, two against HLA-DR13, and two against HLA-DR1 (Supplementary Table 2).

We next determined the binding strengths of the selected 15 serum samples containing DSA-HLA I against 
hCPC cohort (n =  6) using our flow cytometry-based assay both at baseline and within inflammatory conditions 
(IFNγ -hCPC). hCPC were incubated with the DSA-HLA-I specific for their HLA-A expressed allele or with the 
control antibody-free serum (serum AB). FITC-conjugated anti-human Fc secondary antibody then detected the 
specific binding of DSA-HLA-I-A to hCPC.

Regardless of their Luminex-detected MFI, all sera (n =  6) containing DSA-HLA-I against A2 
(DSA001-DSA006) interacted with HLA-A2-positive hCPC (n =  4), albeit with different binding strengths 
(Fig. 4a upper panel). Sera were then classified as “low”, “intermediate” and “high” according to their respec-
tive cytometry-determined binding strength with hCPC or IFNγ -hCPC. DSA001 and DSA002 sera are “low” 
with a binding strength around 100 or 400; DSA003 and DSA004 are “intermediate” with a binding strength 
around 200 or 600 and DSA005 and DSA006 are “high” with a binding strength around 600 or 1600, respectively 
(Fig. 4a, lower panel). DSA-HLA-I against A29 (DSA007-DSA012) and A30 (DSA013-DSA015) showed simi-
lar trend of interaction with hCPC and IFNγ -hCPC expressing the HLA-A29 or HLA-A30 alleles, respectively 
(Supplementary Fig. 6a). Thus, DSA-HLA-I from the selected sera recognize and interact with hCPC at steady 
state or within inflammatory environment with a differential binding strength.

We then determined the consequences of this differential binding strength on CDC. hCPC or IFNγ -hCPC were 
treated with medium alone or with the complement in the absence or the presence of their respective DSA-HLA-I 
sera (DSA-HLA-A2, -A29, and -A30) or AB control serum, then the percentage of 7ADD-positive hCPC was 
assessed. Substantial CDC of hCPC and IFNγ -hCPC was mainly observed in the presence of sera containing 
DSA-HLA-I of high-binding strength. DSA005 and DSA006 sera containing “high” DSA-HLA-A2 induced CDC 
in 35% and 20% of HLA-A2-positive hCPC and in 80% and 60% of HLA-A2-positive IFNγ -hCPC, respectively 
(Fig. 4b upper panel). Sera containing “low” or “intermediate” DSA-HLA-A2 either did not induce any signifi-
cant CDC (DSA001 and DSA002) or induced irrelevant CDC (nearly 8% compared to baseline cytotoxicity) only 
under inflammatory conditions. Sera containing high DSA-HLA-A29 behaved similarly (Supplementary Fig. 6b). 
However, the high-binding strength DSA-HLA-A30 (DSA015) induced a significant CDC only in IFNγ -hCPC 
probably due to the level of expression of the HLA-A30 allele on hCPC (Supplementary Fig. 6c). Compared to 
the AB control serum, the CDC induced by patients sera containing DSA-HLA-I, strongly correlated with their 
binding strength (R2 values >  0.90) (Fig. 4b lower panel). Sera containing alloantibodies specific for HLA-I alleles 
that are not expressed by the hCPC (non-DSA-HLA-I) did not induce any CDC either at steady state or under 
inflammatory conditions controlling the specificity of observed cytotoxicity (Supplementary Fig. 7).

Collectively, mainly the high strength binding DSA-HLA-I are able to induce significant CDC and might 
therefore represent a critical factor for hCPC therapy in terms of the elimination of the transplanted cells both at 
the steady-state and within an inflammatory environment.

DSA-HLA-I govern NK cell cytotoxicity against hCPC. To assess the possible elimination of hCPC 
by NK cell-mediated ADCC mechanism in patients, we then monitored the capacity of sera with DSA-HLA-I 
to trigger ADCC in steady state and inflammatory environment. hCPC and IFNγ -hCPC, of HLA-A2 haplotype, 
were cultured with allogeneic NK cells in the presence or absence of DSA-HLA-A2 or control AB serum. The 
ADCC was assessed as before by monitoring both the expression of CD137 and CD107a on NK cell and the lysis 
of hCPC or IFNγ -hCPC.
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Figure 4. DSA-HLA-I-A2 induce CDC against hCPC. DSA-HLA-I-A2 sera (n =  6) were incubated with 
HLA-A2-positive hCPC or IFNγ -hCPC (n =  4), and their reactivity was determined as MFI by flow cytometry. 
(a) Upper panel showing representative histograms of DSA001 (blue), DSA002 (purple), DSA003 (light green), 
DSA004 (dark green), DSA005 (red), and DSA006 (orange) interactions against control serum AB (black) and 
medium alone (gray filled). Mean MFI (geomean) values ±  SD from four different experiments of each hCPC 
compared to serum AB and medium controls are shown in the lower panel. (b) HLA-I-A2-positive hCPC or 
IFNγ -hCPC (n =  4) were cultured alone, or in the presence of complement with control serum AB or with DSA-
HLA-I-A2 sera and their capacity to induce CDC was evaluated by flow cytometry as % 7AAD-positive hCPC 
(upper panel). Results are presented as mean values ±  SD from four different experiments of each hCPC. The 
percentages of CDC induced by DSA-HLA I-A2 sera were plotted as function of respective MFIs (lower panel). 
Statistical analyses were performed using Mann–Whitney test for non-paired groups. *P <  0.05, **P <  0.01, 
***P <  0.001 compared to hCPC in the presence of complement alone.
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The presence of DSA-HLA-A2 sera of high binding strength increased the percentage of baseline CD137+ NK 
cells by more than 2 folds compared to control co-cultures (Fig. 5a). The CD137+ over expression on NK cells was 
associated with an increase in NK cell degranulation (Fig. 5b) and cytotoxic activity (Fig. 5c). In contrast to CDC 
experiments, intermediate strength DSA-HLA-A2 (DSA003 and DSA004) sera were able to mediate significant 
ADCC in both hCPC and IFNγ -hCPC increasing by 1.2–2 folds the baseline allogeneic NK cell cytotoxicity 
(Fig. 5c). Similar increase of the allogeneic NK cell cytotoxicity against HLA-I-A29 and -A30-positive hCPC or 
IFNγ -hCPC was also observed in the presence of high and intermediate binding strength DSA-HLA-A29 and 
DSA-HLA-A30 sera, respectively (Supplementary Figs 8 and 9). The low binding strength DSA-HLA-I, regardless 
of their targeted HLA-I specificity, did not incite any significant ADCC against hCPC or IFNγ -hCPC (Fig. 5, and 
Supplementary Figs 8 and 9).

Again, compared to the AB control serum, the ADCC induced by sera containing DSA-HLA I, strongly 
correlated with their binding strength. Significant correlations were observed between the binding strength of 
DSA-HLA I containing sera to hCPC and the expression of CD137, which also significantly correlated with the 
degranulation and cytotoxicity of allogeneic NK cells (R2 values higher than 0.92, 0.95, and 0.90, respectively) 
(Fig. 5, and Supplementary Figs 8 and 9). The expression of CD137 and CD107a as well as the NK cell cytotoxicity 
followed a similar trend when IFNγ -hCPC were used as NK cell targets (Fig. 5, and Supplementary Figs 8 and 9) 
with correlation R2 values higher than 0.88, 0.95, and 0.99, respectively.

Patients with heart diseases might display reduced number of cytotoxic CD16+ CD56dim NK cells and a con-
comitant reduced lytic activity32. To understand whether NK cell effector function was impaired in MI patients, 
we isolated NK cells from PBMC of three MI patients and analyzed their function. Compared to healthy donors, 
patients with MI showed similar percentages of NK cells (Fig. 6a left panel). Moreover, NK cells from MI patients 
and healthy donors showed similar cytotoxicity against the NK cell target cells K562 (Fig. 6a, right panel). MI 
patient’s NK cells are also able to induce ADCC in hCPC and IFNγ -hCPC only in the presence of mAb anti-HLA I  
W6/32 (10 μ g/ml) (Fig. 6b). Similar to healthy donors, NK cells from MI patients are able to mediate ADCC in 
the presence of intermediate and high strength DSA-HLA-A2 (DSA004 and DSA006, respectively) but not in 
the presence of the low strength DSA001. We observed 1.5 to 2-folds increases of baseline NK cell cytotoxicity 
towards allogeneic hCPC and IFNγ -hCPC respectively (Fig. 6c).

Together, our data demonstrate that the capacity of DSA-HLA-I to activate NK cell ADCC against hCPC is 
correlated to their binding strength. The DSA-HLA-I-sensitization alters the NK cell response against allogeneic 
hCPC whereby its transition from modest-favorable to deleterious might accelerate the clearance of the implanted 
cells.

DSA-HLA-II recognize IFNγ-hCPC but do not trigger CDC or ADCC. We did not observe any rel-
evant CDC or ADCC against hCPC with anti-HLA-II mAb, however we analyzed whether DSA-HLA-II can 
trigger either CDC or NK cell ADCC mechanisms. The six DSA-HLA II sera (Supplementary Table 2) specific for 
the HLA-DR haplotypes expressed by the hCPC cohort (n =  6) were evaluated.

None of the DSA-HLA-II sera interacted with hCPC given their lack of HLA-II expression. Under inflam-
matory conditions, different binding strengths were observed for the different sera (Fig. 7a, and Suppleme
ntary Figs 10a and 11a). Similar to DSA-HLA-I, we categorized the DSA-HLA-II as “low”, “intermediate” or 
“high” according to their binding strength to IFNγ -hCPC. DSA-HLA-II-DR4 (DSA017), DSA-HLA-II-DR13 
(DSA018), and DSA-HLA-II-DR1 (DSA016) sera with a binding strength around 150 were considered “low”; 
DSA-HLA-II-DR13 (DSA020), and DSA-HLA-II-DR1 (DSA019) sera with a binding strength around 300 were 
considered “intermediate” and DSA-HLA-II-DR4 (DSA021) serum with the highest binding strengths (600) was 
considered “high”. None of the analyzed DSA-HLA-II or non-DSA-HLA-II was able to trigger relevant CDC 
(Fig. 7b, and Supplementary Figs 10b, 11b, and 7) or ADCC (Fig. 7c–e, and Supplementary Figs 10c–e, 11c–e). 
Similar results were obtained with NK cells from patients with MI (Fig. 7f).

Thus, although the DSA-HLA-II are able to interact with inflammatory-environment-inured hCPC, they are 
unable to elicit any antibody-mediated cytotoxicity in these cells regardless of their specific haplotype or binding 
strength.

Luminex-based anti-HLA antibody screening towards more efficient hCPC-based therapy. In 
clinical allogeneic transplantations, sensitive solid-phase assays using Luminex-based technology are the standard 
practice to detect the presence and identify the specificities of DSA-HLA18. They establish a correlation between 
the in vitro antibody reaction, measured as MFI representing the amount of antibody bound relative to the total 
antigen present on the beads, and the eventual clinical outcome in terms of rejection or engraftment. However, 
this approach was never addressed in the context of the hCPC-based therapy. Therefore, we explored its suitability 
to eventually guide the choice of hCPC therapeutic cells.

Regardless of their HLA-I antigen specificity, we found that the DSA-HLA-I classified as “low” by flow 
cytometry-based assay had an MFI <  4000 by Luminex-based assay, those classified as “intermediate” had 
an MFI higher than 4000 but less than 10000 by Luminex-based assay, and those classified as “high” showed 
an MFI >  10000 by Luminex-based assay. Moreover, the MFI determined by the flow cytometry- and the 
Luminex-based assay followed a polynomial curve with significant R2 values of 0.90 and 0.93 for hCPC at base-
line and IFNγ -hCPC, respectively (Fig. 8a left panel). The DSA-HLA-II cytometry-detected MFIs, when plotted 
as function of DSA-HLA-II Luminex-detected MFIs also followed a polynomial curve with a significant R2 value 
of 0.99 (Fig. 8a right panel). Although of much lower values, the DSA-HLA-I MFI determined by flow cytom-
etry mirrored those determined by Luminex-based assay. A significant correlation was also obtained between 
DSA-HLA I Luminex-based MFIs and the occurrence of CDC or ADCC in hCPC (Fig. 8b). Collectively, these 
significant correlations would prompt the suitability of Luminex-based DSA-HLA screening both in pre- and 
post-infusion of hCPC to predict the likelihood of their immune-mediated loss.
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Figure 5. DSA-HLA I-A2 of high and intermediate binding strength induce ADCC in hCPC. IL-15-
activated NK cells were cultured alone or with HLA-A2 positive hCPC or IFNγ -hCPC (n =  4) in the presence of 
control serum AB or DSA-HLA-I-A2 sera (DSA001-006). (a) % CD137-positive NK cells, (b) % CD107-positive 
NK cells, and (C) % NK cell-mediated lysis evaluated as % 7AAD-positive hCPC. Results represent mean 
values ±  SD from four different experiments of each hCPC. The percentages of CD137-positive NK cells with 
hCPC or IFNγ -hCPC were plotted as function of respective MFIs of DSA-HLA-I-A2 sera (upper right panel) 
or as function of % CD107-positive NK cells (middle right panel), the % CD107-positive NK cells were plotted 
as function of % NK-mediated lysis (low right panel) for both hCPC and IFNγ -hCPC. Statistical analyses 
were performed using Mann–Whitney test for non-paired groups. **P <  0.01 and ***P <  0.001 compared to 
NK +  hCPC.
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Figure 6. NK cells from patients with MI behave similar to NK cells from healthy donors. IL-15-activated 
NK cells from healthy donors (n =  3) or from patients with MI (n =  3) were cultured alone or with HLA-A2-
positive hCPC or -IFNγ -hCPC (n =  2) in the presence of control serum AB or DSA-HLA-I-A2 sera (DSA001, 
DSA004, DSA006). (a) Percentages of NK cells present in total PBMC (left panel) and % NK cell-mediated 
lysis in NK-target k562 cells evaluated as % 7AAD-positive k562 (right panel). (b) % NK cell-mediated 
lysis evaluated as % 7AAD-positive hCPC (right panel) or IFNγ -hCPC (left panel) in the presence of mAb 
and (c) in the presence of DSA-HLA I. Results represent mean values ±  SD from 3 different experiments. 
Statistical analyses were performed using Mann–Whitney test for non-paired groups. NS: non-significant 
**P <  0.01compared to NK +  hCPC.
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Figure 7. DSA-HLA-II do not induce antibody-mediated cytotoxicity. DSA-HLA-II-DR4 sera (n =  2) 
were incubated with HLA-DR4-positive hCPC or IFNγ -hCPC (n =  2) then their reactivity was determined 
as MFI by flow cytometry. (a) Left panel showing representative histograms of DSA017 (blue) and DSA021 
(red) interactions against control serum AB (black) and medium alone (filled gray). Mean MFI (geomean) 
values ±  SD from three different experiments of each hCPC compared to serum AB and medium controls (right 
panel). (b) HLA-DR4-positive hCPC or IFNγ -hCPC (n =  2) were cultured alone, with control serum AB, or 
with DSA-HLA-II-DR4 sera (DSA017, 021), in the presence or absence of complement, then their capacity 
to induce CDC was evaluated as % 7AAD-positive hCPC. Results are presented as mean values ±  SD from 
four different experiments of each hCPC. (c–e) IL-15-activated NK cells were cultured alone or with HLA-
DR4-positive hCPC or IFNγ -hCPC (n =  2) in the presence of control serum AB or DSA-HLA-II-DR4 sera. 
(c) % CD137-positive NK cells, (d) % CD107-positive NK cells and (e) % NK-mediated lysis evaluated as % 
7AAD-positive hCPC. Results represent mean values ±  SD from three different experiments of each hCPC. 
(f) % Healthy- or patient-NK-mediated lysis evaluated as % 7AAD-positive hCPC. Results represent mean 
values ±  SD from three different experiments. Statistical analyses were performed using Mann–Whitney test for 
non-paired groups and were non-significant.
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Figure 8. Translational dimension of DSA-HLA sensitization in the context of hCPC therapy. (a) Left 
panel DSA-HLA-I (n =  15) and right panel DSA-HLA-II (n =  6) sera flow cytometry-detected MFIs values were 
plotted as function of their Luminex-detected MFIs. (b) Left panel % CDC and right panel % ADCC against 
hCPC or IFNγ -hCPC plotted as function of their Luminex-detected MFIs. Correlations curves along with their 
respective R2 values are indicated. (c) Schematic representation of DSA-HLA-sensitization risk for hCPC-based 
therapy. DSA-HLA-I of Luminex-detected high mean florescence intensity (MFI) present an absolute risk of 
humoral rejection inducing both CDC and ADCC through complement activation and the formation of the 
membrane attack complex (MAC) or by bridging NK cells CD16 receptor with HLA-I molecules at the surface 
of hCPC, respectively. DSA-HLA-I with Luminex-detected MFIs ranging from 5000 to 10000 present a relative 
risk of humoral rejection bridging NK cells CD16 receptor with HLA-I molecules at the surface of hCPC will 
induce only ADCC. DSA-HLA-I having Luminex-detected MFIs <  5000 and DSA-HLA-II with MFI up to 
16000 are safe.
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Discussion
Lessons from organ and HSC transplantation indicate that optimizing the prediction and control of deleterious 
cellular and humoral immune risk factors is decisive for the clinical outcome of allogeneic therapies. In addition 
to off-the-shelf availability, allogeneic hCPC-based therapy has become a prominent strategy for cardiac repair 
because of their favorable allogeneic cellular immune consequences that have been linked, in part or as whole, to 
their beneficial effects7,8,10. Herein, by using an hCPC-tailored flow cytometry-based assay, we demonstrate that 
allogeneic hCPC are prone to DSA-HLA-I-induced injury but seem rather invulnerable to DSA-HLA-II. The 
occurrence of CDC and ADCC is governed by the cytometry-detected binding strength of the HLA antibodies 
within the experimental settings. Thus, screening patients for HLA antibody would estimate the risk of DSA-HLA 
sensitization and immune educate the choice of allogeneic hCPC towards beneficial balanced allogenecity.

In allogeneic transplantations, depending on antigen density on the target and capacities of the antibody 
Fc-domain, cells and tissues have different susceptibility for damage by antibodies18. Both the density of HLA 
antigens on hCPC and the amount/capacity of patient hCPC-specific anti-HLA antibodies also orchestrate the 
occurrence of antibody-dependent cell death mechanisms. At baseline, hCPC express considerable levels of 
HLA-I but lack HLA-II antigens. When stimulated by IFN-γ , that mimic post-MI inflammatory environment, 
hCPC express HLA-II antigens albeit at a much lower density than HLA-I antigens. The signal/concentration 
curves obtained for HLA-I and HLA-II mAbs were different at baseline and within inflammatory environment 
suggesting that the signal intensity depends on the density of antigens present at the cell surface of hCPC. The fact 
that both the positivity and saturation thresholds of cytometry-based MFI for anti-HLA-I mAb were much higher 
than those for anti-HLA-II mAb within inflammatory environment, further support the density of antigens as a 
key determinant of signal intensity.

Plotting the percentage of CDC triggered by different concentrations of monoclonal HLA antibodies as a 
function of fluorescence values (MFI) followed a non-linear polynomial curve with significant R2 values. The 
mouse IgG2a Fc-domain of these HLA mAbs is analogue to the human IgG1 that can effectively activate the 
complement33–35. Therefore, the CDC/MFI curve models a functional relationship between these values and 
establishes a significant correlation between cytometry-based in vitro antibody reactions measured by MFI and 
possible fate of hCPC infusion in terms of rejection or engraftment.

In addition to the CDC pathway, the NK cell-mediated ADCC is another risk factor for chronic cardiac graft 
rejection21,36,37. NK cell cytotoxic function occurs through natural cytotoxicity or ADCC38. We have previously 
reported that the inflammatory environment significantly decreases the susceptibility of allogeneic hCPC to NK 
cell natural cytotoxicity and promotes anti-inflammatory cytokines secretion through mechanisms involving 
HLA-I antigens and NK cell inhibitory receptors (KIR)10,38. Here, we show that the binding of HLA-I mAb, but 
not HLA-II mAb, to hCPC triggers significant NK cell ADCC trough the ligation of the mAb Fc fragment to its 
Fcγ RIIIa NK cell receptor (CD16). Furthermore, low concentration of HLA-I mAb was sufficient to activate NK 
cells and induce significant killing of IFNγ -hCPC. Accordingly, it is very unlikely that the post-MI inflammatory 
environment would protect allogeneic hCPC from NK cell-mediated ADCC in the presence of HLA I antibodies.

The presence of anti-HLA-I F(ab’)2 in co-cultures of both hCPC and IFNγ -hCPC resulted in higher NK cell 
natural cytotoxicity compared to control baseline (co-culture NK/hCPC). This might be due to decreased inter-
action of NK cells inhibitory KIRs with their HLA-I ligands39. Only high concentrations of anti-HLA-II anti-
body were able to modestly increase NK-mediated killing of IFNγ -hCPC. Since CD16 have similar affinities to 
Fc-domains of both HLA-I and HLA-II mAbs33–35, the modest HLA-II mAb-induced ADCC is probably due to 
low antigen density on IFNγ -hCPC.

Other innate immune cells including macrophages express different sub-classes of Fcγ  receptors and might 
mediate ADCC and graft rejection40,41. For instance, in allogeneic hepatocytes and islet cell transplantation mod-
els, the presence of alloantibodies resulted in macrophage-mediated ADCC and graft rejection42,43. In addition, 
the presence of alloantibodies enhances monocytes trafficking and macrophages accumulation in solid organ 
allografts and might lead to their damage44,45. In experimental MI, injection of allogeneic cardiosphere-derived 
cells (CDCs) in experimental MI models confers cardio-protection and limits injury and inflammation through 
rapid reduction of pro-inflammatory effector macrophages and induction of protective phenotype46. Whether the 
presence of alloantibodies would influence such rapid macrophage-mediated protection/tissue repair remains 
as yet an open question. Studies examining the effects of allogeneic cardiac-derived stem/progenitor cells on 
monocytes/macrophages in the presence or absence of alloantibodies are therefore, warranted to clarify this risk.

The reactivity of allosera from a cohort of heart pre-transplant patients containing anti-HLA-I or –HLA-II  
alloantibodies that match our hCPC haplotypes suggests a detrimental role of the DSA-HLA-I positivity,  
which might however vary in function of HLA-I allele. In fact, allosera containing DSA-HLA-A30 with 
cytometry-detected MFI of 440 induced significant CDC against hCPC only in inflammatory environment. In 
contrast, allosera containing DSA-HLA-A2 or -A29 with slightly higher MFIs induced significant CDC in both 
inflammatory and steady state conditions. In healthy individuals, the expression levels of HLA-I and -II are allele 
dependent. This differential expression of HLA antigens is of great relevance in clinical setting47–50. Thus, beside 
DSA-HLA-I binding strength, their risk to hCPC should probably be viewed in the context of the HLA alleles of 
therapeutic cells.

Within the clinical setting, the screening for the DSA-HLA and the cross-match testing using flow 
cytometry-based assay would be difficult to perform. In fact, the high technical strains inherent to stem cell 
manipulations would incite the use of the standard bead-based multiplex Luminex assays. Prediction would then 
be by comparing the potential patient’s HLA-specific antibodies with the HLA type (allelic lineage) of therapeutic 
hCPC. We found that significant correlations between the flow cytometry-detected and Luminex-detected MFIs. 
Luminex-detected MFIs also significantly correlated with occurrence of CDC and ADCC in hCPC providing 
thus, a translational dimension to our flow cytometry-based screening and cross-match data.



www.nature.com/scientificreports/

1 4Scientific RepoRtS | 7:41125 | DOI: 10.1038/srep41125

The fact that allosera containing DSA-HLA-II (DSA-HLA-DR) with high Luminex-detected binding strength 
induced neither CDC nor ADCC in inflammatory-environment-inured hCPC is most likely due to the low 
expression of HLA-DR antigens. This does not exclude the possibility that DSA-HLA-DR with much higher 
MFI or with other specificities (other alleles) than those studied in this report might react with hCPC at higher 
intensity and provoke antibody-mediated deleterious effects. This might be supported by our results showing 
that interaction of DSA-HLA II with inflammatory-inured hCPC follows a polynomial curve with significant  
R2 values of 0.99.

Beside HLA-DR isoform, inflammatory-environment-inured hCPC would probably express low levels of the 
other HLA-II isotypes namely HLA-DQ and HLA-DP (Supplementary Fig. 1). Antibodies against these two 
isotypes are also frequent among HLA II-sensitized patients, and their clinical relevance in terms of chronic rejec-
tion and engraftment allografts has been demonstrated in retrospective studies51,52. Since allogeneic hCPC express 
low levels of HLA-DQ and HLA-DP antigens under inflammatory conditions, it very unlikely that DSA-HLA-DQ 
or DSA-HLA-DP alone would be harmful. Yet, we cannot fully roll out a synergistic effect between DSA-HLA-DR 
and DSA-HLA-DQ and/or DSA-HLA-DP.

Alongside CDC and ADCC classical antibody-induced mechanisms, the relevance of antibody-induced HLA 
signaling in transplantation has been demonstrated13,53. While HLA molecules are principally viewed as antigen 
presenting structures they are also bona fide signal transduction receptors54. Therefore, HLA-mediated signaling 
after ligation of HLA antigens on hCPC with specific alloantibodies is conceivable and might also contribute to 
the regulation of their fate. Here again, the level of alloantibodies would probably govern the outcome of HLA sig-
naling. Saturating concentrations of HLA-I antibodies and complement induces death of endothelial cells while 
low doses promote their survival and confer resistance to CDC55. In addition, HLA signaling may synergize with 
Fc-dependent effector functions, including activation and binding to Fcγ  receptors on monocytes/macrophages, 
and promote an enhanced state of inflammation in the allografts56. In this report, the exposure of hCPC to low 
doses of HLA-I mAb, low-MFI DSA-HLA-I, to anti-HLA-DR mAb or DSA-HLA-II does not induce any signifi-
cant classical antibody-mediated injury. Whether through HLA signaling such exposure might promote injury/
inflammation or rather survival conferring resistance to hCPC is as yet unexplored and warrant investigations.

Allogenicity is a striking example of a system that can produce both beneficial as well as detrimental effects, 
raising important conceptual, experimental and clinical issues. In regenerative/reparative medicine, stem/pro-
genitor cells should persist long enough either to differentiate or to activate endogenous regeneration/repair. We 
have demonstrated that allogeneic hCPC have benefic cellular consequences. These cells incite immunomodula-
tory anti-inflammatory response and contribute to injured myocardium repaire8,10. This study demonstrates the 
potential humoral risk of hCPC allogenicity (Fig. 8c), which might trigger their pre-mature elimination upon 
infusion and limit their beneficial effects. Thus, the allogenicity of hCPC is a “Yin-Yang” opposing forces forming 
a dynamic system. Therefore, minimizing the risk while optimizing the benefit is an important notion for an 
ultimate efficient allogeneic hCPC-based therapy. The question is what is the acceptable mismatching and how 
much risk could be allowed in regard of these fast-track therapies. This would be even more important to avoid 
the immunization that would be detrimental if recipient of allogeneic hCPC therapy become later eligible for 
heart transplantation or if repeated administration of allogeneic cells is needed. By analogy to allogeneic organ 
and tissue transplantations, the “type-and-screen” strategy to HLA-match and reduce HLA-mismatch would be 
an ideal approach for allogeneic hCPC therapy.

In summary, a systematic immuno-monitoring of DSA-HLA by Luminex-based assay would provide an 
immune-educated choice of off-the-shelf allogeneic hCPC that might extend their persistence to activate the 
endogenous regeneration and/or repair of the impaired heart function. Our study advocates immune-educated 
choice of allogeneic therapeutic cardiac-derived stem/progenitor as a new approach towards a better clinical 
success.

Methods
An expanded Materials and Methods section is available in the on- line-only.

Study design. Human cardiac biopsies were obtained from patients undergoing open-chest surgery after 
signed informed consent in accordance with the Declaration of Helsinki. The ethical committees of “Hospital 
12 de Octubre”, “Fundación Jiménez Díaz”, (Madrid) and “Complejo Hospitalario de Navarra” (Pamplona) - 
Spain have approved the project. Cryopreserved cardiac stem/progenitor cells (hCPC) were obtained from the 
right atria appendage after immunodepletion of CD45-positive cells and immunoselection of CD117 (c-kit) at 
Cortherapix (currently, Tigenix) as descried8. The hCPC (n =  6) from different donors were genotyped for HLA 
using standard techniques (Supplementary Table 1). hCPC-tailored flow cytometry-based assays were established 
to assess the capacity of HLA antibodies to interact with hCPC and determined the characteristic of this interac-
tion. Cryopreserved allosera from heart transplantation patients (pre-transplantation) containing panel reactive 
antibodies (PRA) – allosera containing HLA antibodies, were provided by the Laboratory of Immunology and 
Histocompatibility, Saint Louis Hospital, Paris, France. Allosera were obtained in accordance with the local insti-
tutional regulations and the approval of the local ethic committee, the “Comité consultatif pour la protection 
des personnes dans les recherches biomédicales”, and used as a model to mimic the clinical setting. All patients 
provided informed consent allowing for data submission to Laboratory of Immunology and Histocompatibility 
database at the Saint Louis Hospital and use of data for research in accordance with the Declaration of Helsinki. 
Luminex-based single-antigen flow bead technology was used to screen serum samples for the presence of 
anti-HLA antibodies matching the HLA haplotypes of the hCPC cohort (n =  6). A total of 21 sera containing 
hCPC-specific DSA-HLA (DSA-HLA-I against HLA-A and DSA-HLA-II against HLA-DR) and displaying 
Luminex-based binding strength greater than 500 (Supplementary Table 2) were selected and used to assess the 
susceptibility of hCPC to CDC and ADCC. Experiments were performed at 3% O2 with passages 3 and 7 hCPC 
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and IFNγ -hCPC, mimicking those primed/stimulated by inflammatory environment, at 80–90% confluence and 
reproduced in at least three independent experiments with each hCPC as stated in the figure legends. IFNγ -hCPC 
were washed before co-culture with NK cells to avoid any stimulation of the immune cells by residual IFN-γ . 
Studies of correlation were performed to demonstrate the humoral risk of allogeneic hCPC and the translational 
relevance of our findings for hCPC-based therapy.

The study was approved by the local research ethical comity, the “Comité consultatif pour la protection des 
personnes dans les recherches biomédicales”. All experiments were performed in accordance with the local insti-
tutional guidelines and regulations and the approval of the local ethic committee, and with informed consent 
from all subjects.

Natural Killer (NK) cells purification. Peripheral blood mononuclear cells (PBMC) were prepared from 
blood samples of healthy donors (n =  10) as well as from patients with MI (n =  3) and genotyped for HLA using 
standard techniques. A signed informed consent following human ethics committee “Comité consultatif pour 
la protection des personnes dans les recherches biomédicales” - Saint Louis Hospital, Paris, France) has been 
obtained from all the donors, and all methods and experimental protocols were approved by the by the insti-
tution and were conducted in accordance with guidelines and regulation. All experiments implicating NK cells 
were conducted in allogeneic settings with cells activated overnight with recombinant human IL15 (50 ng/mL) 
(Immunotools, Friesoythe, Germany).

Immune phenotyping. The expression level of HLA-I and -II on hCPC and IFNγ -hCPC was determined 
by flow cytometry using specific anti-HLA mAbs and PE-conjugated goat anti-mouse IgG secondary antibody 
(Online Table 3).

Complement-Dependent-Cytotoxicity – hCPC-tailored cross-match. hCPC or IFNγ -treated hCPC 
were incubated with anti-HLA-I or anti-HLA-II mAbs at different concentrations or with allosera. Pure comple-
ment was then added and 7AAD staining assessed the % of lysed hCPC.

Antibody-dependent cell-mediated cytotoxicity. Freshly-isolated IL-15-activated NK cells were 
co-cultured with hCPC or IFNγ -hCPC in the presence or the absence of different concentrations of anti-HLA 
mAbs or allosera. NK degranulation was determined by anti-CD107a mAb staining whereas engagement of 
CD16 was determined by anti-CD137 staining. Cells were acquired on Canto II flow cytometer and NK cells 
were gated as CD3−CD56+ cells and analyzed by BD FACS Diva software. To determine NK cell-mediated 
hCPC lysis, carboxyfluorescein succinimidyl ester (CFSE)-labeled hCPC or IFNγ -hCPC were co-cultured with 
IL-15-activated NK cells in the presence or absence of various concentrations of mAbs and % of CFSE-labeled 
7-AAD-positive-hCPC or -IFNγ -hCPC was determined.

Statistical analysis. Statistical analyses were performed using Mann–Whitney test for non-paired 
groups, paired Student’s t-test for paired groups and One-Way Analysis of Variance (ANOVA)-Kruskal–Wallis 
test-dunn’s multiple comparison for multiple comparison (GraphPadPrism Software). Data are expressed as mean 
value ±  SD, P-values <  0.05 were considered significant. *P <  0.05, **P <  0.01, ***P <  0.001.
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