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Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme for CO, fixation and primary
metabolism in photosynthetic organisms including cyanobacteria. The kinetics and allosteric regulation
of PEPCs have been studied in many organisms, but the biochemical properties of PEPC in the

. unicellular, non-nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803 have not been clarified. In

. this study, biochemical analysis revealed that the optimum pH and temperature of Synechocystis 6803

. PEPC proteins were 7.3 and 30 °C, respectively. Synechocystis 6803 PEPC was found to be tolerant to

. allosteric inhibition by several metabolic effectors such as malate, aspartate, and fumarate compared

. with other cyanobacterial PEPCs. Comparative sequence and biochemical analysis showed that

: substitution of the glutamate residue at position 954 with lysine altered the enzyme so that it was
inhibited by malate, aspartate, and fumarate. PEPC of the nitrogen-fixing cyanobacterium Anabaena

: sp. PCC 7120 was purified, and its activity was inhibited in the presence of malate. Substitution of

. thelysine at position 946 (equivalent to position 954 in Synechocystis 6803) with glutamate made

* Anabaena 7120 PEPC tolerant to malate. These results demonstrate that the allosteric regulation of

© PEPCin cyanobacteria is determined by a single amino acid residue, a characteristic that is conserved in
different orders.

Cyanobacteria are a group of bacteria that perform oxygenic photosynthesis and fix carbon dioxide. Ribulose-
1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the most famous CO, fixing enzyme, which operates in the
Calvin-Benson cycle?. Besides RubisCO, metabolic flux analysis revealed that phosphoenolpyruvate carboxylase
(PEPC) [EC 4.1.1.31] accounts for 25% of CO, fixation in the unicellular cyanobacterium Synechocystis sp. PCC
6803 (hereafter Synechocystis 6803)°. PEPC is a crucial branch point enzyme determining the type of carbon fix-
© ation in photosynthetic organisms?. PEPC catalyses an irreversible carboxylation of phosphoenolpyruvate (PEP)

- with bicarbonate (HCO; ") to generate oxaloacetate and inorganic phosphate in the presence of Mg?** PEPC is

- conserved among plants, algae, cyanobacteria, archaea, and heterotrophic bacteria, but not among animals, fungi,

. and yeasts®. Cyanobacterial PEPC also plays an anaplerotic role in energy storage and biosynthesis of various

. metabolites by replenishing oxaloacetate to the citric acid cycle®.

: The kinetics of PEPCs are diverse among organisms. Higher plants can be classified as C3-type, C4-type, and
crassulacean acid metabolism (CAM) plants. PEPC is responsible for the primary carbon fixation in C4-type
and CAM plants®’. The affinity of PEPCs in C4-plants to bicarbonate is 10 times higher than that of PEPCs in

: C3-plants®®. Most PEPCs are allosterically regulated by various metabolic effectors. Maize PEPCs are inhibited

. by malate or aspartate, and activated by glucose-6-phosphate'®. Escherichia coli PEPC is inhibited by malate or

: aspartate, and activated by acetyl-CoA!l. Cyanobacterial PEPCs are evolutionally diverse. One group has sug-

. gested that PEPCs of the orders Oscillatoriales and Nostocales (including the nitrogen-fixing cyanobacterium

. Anabaena sp. PCC 7120, hereafter Anabaena 7120) resemble C4-type PEPC because of the serine residue con-

. served among C4 plants at position 774'2. However, subsequent sequence analysis has revealed that most PEPCs
contain the conserved serine residue; nevertheless the kinetic properties of cyanobacteria PEPCs are diverse'>.
Therefore, there may be a different type of regulation in cyanobacterial PEPCs. Cyanobacterial PEPCs in the
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Figure 1. Biochemical analysis of Synechocystis 6803 phosphoenolpyruvate carboxylase (SyPEPC).

(A) Purification of GST-tagged PEPC. Proteins were electrophoresed on an 8% SDS-PAGE gel, and stained with
Instant Blue reagent. Arrowheads indicate the molecular weight. (B) Effect of temperature on SyPEPC activity.
Data represent means of the values from three independent experiments. (C) Effect of pH on SyPEPC activity.
Data represent relative values of means from three independent experiments. Four pmol (0.6 ug) of SyPEPC was
used for the enzyme assay. One unit of PEPC activity was defined as the consumption of 1 pmol NADPH per
minute.

order Nostocales, Coccochloris peniocystis, and Thermosynechococcus vulcanus are inhibited by either malate or
aspartate!>"1>. Several effectors regulate cyanobacterial PEPCs, but their effects are dependent on the taxonomic
order of the PEPCs'. The biochemical properties, including V.., and K, values, of several cyanobacterial PEPCs
have been determined'>'*'>, although those of the PEPCs in Synechocystis 6803 have not. A comparison of cyano-
bacterial PEPCs including both phylogenetic and biochemical analyses has also been lacking until now.

Here, using the model cyanobacterium Synechocystis 6803, we performed biochemical analysis using purified
PEPC proteins. Our analysis demonstrated that a single amino acid substitution between glutamate and lysine at
position 954 was important for allosteric regulation.

Results

Measurement of the kinetic parameters of and inhibitor effects on Synechocystis 6803
PEPC. Synechocystis 6803 is one of the most studied cyanobacteria; nevertheless, the kinetic parameters of
Synechocystis 6803 PEPC (SyPEPC) have not been determined until now. Glutathione S-transferase (GST)-tagged
SyPEPC proteins were expressed in E. coli and purified by affinity chromatography (Fig. 1A). The enzymatic
activity of SyPEPC was highest at pH 7.3 and 30°C (Fig. 1B and C). Biochemical analysis revealed the V.., value
of SyPEPC was 1.74 units/mg, and the K, values of SyPEPC for PEP and HCO;~ were 0.34 and 0.80 mM, respec-
tively (Fig. 2A).

We next examined the effects of various metabolic effectors on SyPEPC activity. The enzyme assay was per-
formed at the optimal pH 7.3 and temperature 30 °C using a half-saturating concentration of PEP. Aspartate
decreased the SyPEPC activity to 85.2% (Table 1). The tricarboxylic acid cycle (TCA) metabolites malate, fuma-
rate, and citrate reduced the SyPEPC activity to 75-86% (Table 1). Both malate and fumarate increased the V,,,,
and K|, values for PEP (Fig. 2B and C).

To strengthen the integrity of our results, we performed biochemical assays using commercially available
PEPCs and cell extracts from other organisms. The purified PEPCs of Acetobacter and Zea mays were inhibited
by both aspartate and malate (Fig. S1A). The activity of PEPCs in Nostoc sp. NIES-3756 and E. coli DH5 extracts
were decreased by both aspartate and malate (Fig. S1B). These results were consistent with previous results'>!%!7,
confirming our data were reliable (Fig. S1C).

We tested the inhibitory effects of aspartate and malate at alkaline pH, because the inhibitory effect on
Thermosynechococcus vulcanus PEPC was stronger at alkaline pH than at neutral pH'. The inhibitory effects of
malate and aspartate on SyPEPC were enhanced at pH 9.0 compared with pH 7.3 (Fig. 3).

In silico prediction and biochemical assay identified a glutamate residue at position 954 as
important for allosteric regulation.  To understand the differences among cyanobacterial PEPCs, phy-
logenetic analysis was performed. The phylogenetic tree of PEPCs built using maximum likelihood methods
showed a classification dependent on order; the PEPCs of Synechocystis 6803, Thermosynechococcus vulcanus, and
Coccochloris peniocystis, all three of which belong to the order Chroococcales, were grouped in the same cluster,
and were distinguished from Anabaena 7120 belonging to the order Nostocales (Fig. 4).
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Figure 2. The V,,, and K, values for phosphoenolpyruvate (PEP) in the presence of various compounds.
(A) Saturation curves of the activity of purified SyPEPC. The graph shows the means of three independent
experiments. The V, and K, values for PEP of GST-tagged SyPEPC proteins are shown in (B) and (C),
respectively. (B) Mean £ SD V,,, (units/pmol protein) values in the presence of various compounds, obtained
from three independent experiments. (C) Mean £ SD K, values for PEP, obtained from three independent
experiments. Mock indicates the enzymatic activity in the absence of additional compounds. One unit of PEPC
activity was defined as the consumption of 1 umol NADPH per minute.

Mock 100+5.2
GTP 101£0.6
Acetyl-CoA 1114+14.0
Fructose-1,6-bisphophate 96.9+4.1
Aspartate 85.2+£10.7
Citrate 86.1£6.7
Malate 77.1£6.3
Fumarate 75.0£9.7
Succinate 1244123

Table 1. Effect of various metabolites on SyPEPC activity. Enzyme activities were measured at pH 7.3 and
30°C in the presence of 0.5 mM PEP. The concentration of each metabolite was 1 mM, except for GTP (5mM),
acetyl-CoA (0.4 mM), and fructose-1,6-bisphosphate (2 mM). Mock indicates the enzymatic activity in the
absence of additional compounds. Data represent means & SD from three independent assays. Mock was set at
100%.

A previous biochemical analysis showed that Anabaena 7120 PEPC (hereafter AnPEPC) is sensitive to aspar-
tate and malate'?, but SyPEPC was less sensitive to these metabolites (Table 1). To reveal the cause of the differ-
ence among these cyanobacterial PEPCs, a multiple sequence alignment was performed with the software CLC
sequence viewer 7.0 (Fig. 5). The carboxyl-terminal region, called region 5, is important for inhibitor binding in
higher plants”'8, and five conserved amino acid residues are important for aspartate inhibition'! (Fig. 5). These
amino acid residues were also conserved in cyanobacterial PEPCs (Fig. 5). Therefore, at least one other amino
acid residue is responsible for the difference between cyanobacterial and higher plant PEPCs. We first looked
for amino acid residues unique to SyPEPC and found 28 (Fig. 5). Among them, we searched for amino acid
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Figure 3. SyPEPC activity at pH 7.3 and pH 9.0 in the presence of aspartate (top) or malate (bottom). The
graphs show means + SD obtained from three independent experiments. The activity of SyPEPC in the absence
of aspartate or malate was set at 100%.
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Figure 4. Phylogenetic analysis of the PEPCs from cyanobacteria, Flaveria, Zea mays, and E. coli. Protein
sequences and accession numbers were obtained from GenBank. The protein sequences were aligned by the
software CLC Sequence Viewer, and a maximum-likelihood tree based on 780 conserved amino acids was
constructed using PHYML online (http://www.atgc-montpellier.fr/phyml/). The bootstrap values were obtained
from 500 replications.

residues that were highly conserved in the order Nostocales (Nostoc/ Anabaena) but different from those in either
Oscillatoriales or Chroococcales (including Synechococcus and Synechocystis). Consequently, we found two can-
didates—the amino acids at positions 954 and 967 in SyPEPC, which were glutamate and serine, respectively

(Fig. 5).
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Figure 5. Multiple protein sequence alignment of phosphoenolpyruvate carboxylase. Only the alignment
of region 5 (carboxyl terminal region involved in allosteric regulation of PEPCs) is shown in this figure. The
multiple sequence alignment was performed using CLC Sequence Viewer.

Because the PEPCs in the order Nostocales contained lysine at position 954 and valine at position 967, we
substituted the glutamate residue at position 954 in SyPEPC with lysine (the protein was named SyPEPC_E954K)
and the serine residue at position 967 with valine (SyPEPC_S967V). Biochemical analysis revealed that SyPEPC_
$967V had no enzymatic activity, but purified SyPEPC_E954K (Fig. 6A) had enzymatic activity. SyPEPC_E954K
activity was reduced to 60% in the presence of 1 mM aspartate or malate (Fig. 6B), although neither 1 mM
aspartate nor malate markedly decreased SyPEPC activity (Fig. 6B). The addition of 5mM aspartate or malate
showed similar results to 1 mM on SyPEPC and SyPEPC_E954K (Fig. 6B). The V,,,, value of SyPEPC_E954K
was increased to 2.2 units/mg. The K, value of SyPEPC_E954K for PEP (0.82 mM) was more than double that
of SyPEPC, but the K, value for HCO;~ (0.76 mM) was not altered. The inhibitory effect of fumarate was also
enhanced in SyPEPC_E954K compared with SyPEPC (Fig. 6C).

A conserved lysine residue in Anabaena 7120 PEPC is important for allosteric regulation. The
importance of the amino acid residue at position 954 in SyPEPC was then examined in another cyanobacterium,
Anabaena 7120. The lysine residue at position 946 in AnPEPC is equivalent to the glutamate residue at position
954 in SyPEPC. We substituted lysine 946 of AnPEPC with glutamate, and named the protein AnPEPC_K946E.
Both GST-tagged AnPEPC and AnPEPC_K946E were similarly purified by affinity chromatography (Fig. 7A).
The optimum pH and temperature of AnPEPC were 8.0 and 35 °C (Fig. 7B). The activity of AnPEPC in the
absence or presence of either malate or aspartate was determined at various PEP concentrations (Fig. S2). A
biochemical assay demonstrated that AnPEPC_K946E was less inhibited by malate (the activity decreased to
80% in the presence of 1 mM malate) than AnPEPC, the activity of which decreased to less than 30% in the
same conditions (Fig. 7C). Additionally, 5mM malate had a similar effect to 1 mM malate on both A#PEPC and
AnPEPC_K946E (Fig. 7C). The inhibitory effect of aspartate on AnPEPC was not altered by this amino acid sub-
stitution (Fig. 7D). The V,,, values of AnPEPC and AnPEPC_K946E were 2.6 and 3.6 units/mg, respectively. The
K., values of AnPEPC and AnPEPC_K946E for PEP were 1.1 and 0.8 mM, respectively. The K, values of AnPEPC
and AnPEPC_K946E for HCO;~ were 0.24 and 0.25 mM, respectively.

Discussion

In this study, we demonstrated the biochemical properties of SYPEPC, which are unique among cyanobacterial
PEPCs. Other groups showed that the optimum pH and temperature of the PEPCs in Thermosynechococcus vul-
canus and Coccochloris peniocystis are pH 9.0 and 42 °C, and pH 8.0 and 40 °C, respectively'*!*. The optimum pH
of cyanobacterial PEPCs is thus 7.0-9.0; SyPEPC is relatively active at acidic pH and low temperature (Fig. 1B
and C). The optimum pH of C4-type PEPCs from Sorghum, Digitaria sanguinalis, and Zea mays is 7.0-8.0'>12,
and therefore the optimum pH of SyPEPC is similar to C4-type plants (Fig. 1B). In silico analysis provided the
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Figure 6. Biochemical analysis of SyPEPC with a single substituted amino acid residue. SyPEPC_E954K

is SyPEPC with the glutamate at position 954 substituted with lysine. (A) Purification of GST-tagged
SyPEPC_E954K. Proteins were electrophoresed on an 8% SDS-PAGE gel, and stained with Instant Blue reagent.
Arrowheads indicate the molecular weight. (B) Effect of malate on SyPEPC_E954K activity. Data represent
means =+ SD of relative activity from three independent experiments. SyPEPC activity in the absence of malate
was set at 100%. (C) Effect of fumarate on SyPEPC_E954K activity. The data represent means & SD of relative
activity from three independent experiments. The SyPEPC activity in the absence of fumarate was set at 100%.

aliphatic index (Ai), which was calculated from the ratio of alanine, valine, isoleucine, and leucine in the primary
amino acid sequence?. High Ai values suggest proteins are highly stable over a large range of temperatures. The
Ai values of the PEPCs in Nostocales are higher than in Chroococcales®!, and the in silico prediction is consistent
with our results; AnPEPC is more active at high temperature than SyPEPC (Figs 1B and 7B). The combination of
in silico and biochemical analyses thus drives the development of PEPC studies in cyanobacteria, as also shown in
the multiple alignment and phylogenetic tree (Figs 4 and 5).

The K, value of SyPEPC for PEP was 0.34 mM (Fig. 2), which is close to the K, value of PEPCs of
Thermosynechococcus vulcanus (0.58 mM)'. The K, value of AnPEPC for PEP (1.1 mM) was higher than
those of unicellular cyanobacteria, demonstrating the apparent distinction of PEPC kinetics between the
orders Chroococcales and Nostocales. The K, values for PEP of the PEPCs in Oryza sativa and Flaveria pring-
lei (C3-plants) are 0.03-0.56 mM and those of PEPCs in Flaveria trinervia and Zea mays (C4-plants) are 0.28-
1.5 mM??-%%, The K, value for PEP of SyPEPC is thus in between C3- and C4-plants. In the case of PEPCs of
Flaveria species, the increased PEP saturation kinetics depends on a serine residue at position 774?2. Our data
revealed that the amino acid at positions 954 in SyPEPC and 946 in AnPEPC affect the K, values for PEP, but not
for bicarbonate. These results indicate the residue important for the binding of PEP to PEPC is different from that
in higher plants. The K, value for bicarbonate of SyPEPC (0.8 mM) was higher than those of PEPCs in both C3-
and C4-plants (between 0.06 and 0.33 mM)?. These results may indicate the necessity for a carbon concentration
mechanism in cyanobacteria to support carbon fixation by encapsulation of Rubis CO,. Phylogenetic analyses
revealed that the kinetic changes of Flaveria PEPCs occurred during the last steps of the evolutionary process’,
and the variation among cyanobacterial PEPCs may also have appeared during recent evolution.

We found that SyPEPC was less inhibited by metabolic effectors, and that a single amino acid substitution
at position 954 affected the allosteric regulation by malate or aspartate (Fig. 6B). The inhibitory effect of the
metabolites on SyPEPC was higher at pH 9.0 than at pH 7.3 (Fig. 3), while the optimal enzymatic activity was at
pH 7.3 (Fig. 1C). In Coccochloris peniocystis, PEPC activity is higher at pH 8.0 than at pH 7.0, while the inhib-
itory effect of aspartate or malate is greater at pH 7.0 than at pH 8.0'%. Thus, the optimal pHs for enzymatic
activities and inhibitory effects by metabolites are not correlated in cyanobacteria. The importance of the amino
acid substitution between glutamate and lysine was conserved in another cyanobacterium, Anabaena 7120
(Fig. 7C). Among Flaveria species, E. pringlei performs C3-type photosynthesis and E. trinervia performs C4-type
photosynthesis®**?¢. The C3-type PEPCs in Flaveria containing an arginine residue at position 884 are inhibited
by malate, while the C4-type PEPCs containing a glycine residue at position 884 are tolerant to malate'®. Our
multiple sequence alignment analysis revealed the amino acid residue at position 954 in SyPEPC is not equiva-
lent to the residue at position 884 in Flaveria PEPCs (Fig. 5). The lysine residue at position 946 in Anabaena is
highly conserved among nitrogen-fixing cyanobacteria (Fig. 5), and the positive charge of lysine may play critical
role in malate binding. The inhibitory effect of aspartate was not affected by substitution of the lysine residue at
position 946 in AnPEPC (Fig. 7D). At least five amino acid residues play roles in the binding of aspartate to PEPC
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Figure 7. Biochemical analysis of Anabaena 7120 PEPCs (AnPEPC). (A) Purification of GST-tagged
AnPEPC and AnPEPC_K946E (the lysine residue was substituted with glutamate). Proteins were
electrophoresed on an 8% SDS-PAGE gel, and stained with Instant Blue reagent. Arrowheads indicate the
molecular weight. (B) Effect of temperature and pH on AnPEPC activity. Data represent relative values of
means £ SD from three independent experiments. Sixteen pmol (0.6 pg) of SyPEPC was used for the enzyme
assay. One unit of PEPC activity was defined as the consumption of 1 pmol NADPH per minute. (C) Effect of
malate on AnPEPC_K946E activity. Data represent means = SD of relative activity from three independent
experiments. AnPEPC activity in the absence of malate was set at 100%. (D) Effect of aspartate on AnPEPC_
K946E activity. The data represent means =+ SD of relative activity from three independent experiments. The
AnPEPC activity in the absence of aspartate was set at 100%.

proteins'® (Fig. 5); therefore, other amino acids compensate for the absence of the lysine residue at position 946
in AnPEPC during aspartate binding. Thus, we discovered changes in allosteric regulation by a single amino
acid substitution are conserved in both cyanobacteria and higher plants, although the key residues differ. In this
study, we focused on region 5 of cyanobacterial PEPCs and showed the importance of this region in allosteric
regulation. The structure of cyanobacterial PEPCs remains to be determined and future biochemical studies will
elucidate the detailed mechanism of allosteric inhibition in cyanobacterial PEPCs.

Methods
Construction of cloning vectors for recombinant protein expression. The region of the
Synechocystis 6803 genome containing the ppc (s110920, encoding SyPEPC) ORF was amplified by PCR using
KOD plus neo polymerase and the primers 5'-GAAGGTCGTGGGATCATGAACTTGGCAGTTCCTG-3' and
5-GATGCGGCCGCTCGAGTCAACCAGTATTACGCATTC-3'. The amplified DNA fragments were cloned
into the BamHI-Xhol site of pGEX5X-1 (GE Healthcare Japan, Tokyo, Japan) using an In-Fusion HD cloning kit
(Takara Bio, Shiga, Japan). Site-directed mutagenesis was commercially performed by Takara Bio. For SyPEPC_
E954K and SyPEPC_S967V, +2860-2862 and +2899-2901 from the start codon were changed from GAA to
AAA and from TCT to GTG, respectively.

The region of the Anabaena 7120 genome containing the ppc (all4861, encoding AnPEPC) ORF was artificially
synthesized and cloned into the BamHI-Xhol site of pGEX5X-1 by Takara Bio.

Affinity purification of recombinant proteins. The expression vectors were transformed into
E. coli BL21(DE3) (Takara Bio). Several liters of E. coli containing the vectors were cultivated at 30°C
by shaking (150 rpm), and protein expression was induced overnight by adding 0.01 mM isopropyl
3-D-1-thiogalactopyranoside (Wako Chemicals, Osaka, Japan).

Affinity chromatography for protein purification was performed as described previously?. Briefly, E. coli cells
from 2 L culture were disrupted by sonication VC-750 (EYELA, Tokyo, Japan) for 5min with 30% intensity, and
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centrifuged at 5,800 x g for 2min at 4 °C. The supernatant was transferred to a new 50-mL plastic tube, and 560 pL
of glutathione-Sepharose 4B resin (GE Healthcare Japan, Tokyo, Japan) was added. After rotating for 30 min, the
resin was washed with 500 uL of PBS-T (1.37 M NaCl, 27 mM KCl, 81 mM Na,HPO,-12H,0, 14.7 mM KH,PO,,
0.05% Tween-20) with 1 mM ATP, and eluted three times with 500 pL of GST elution buffer (50 mM Tris-HCl,
pH 8.0, 10 mM reduced glutathione). The protein concentration was measured with a PIERCE BCA Protein
Assay Kit (Thermo Scientific, Rockford, IL). Protein purification was confirmed by SDS-PAGE with staining with
InstantBlue (Expedion Protein Solutions, San Diego, CA).

Enzyme assay. For the assay of the purified proteins, 4 pmol of SyPEPCs or 16 pmol of AnPEPCs were mixed
in a 1 mL assay solution (100 mM MOPS-Tris, 10 mM MgCl,, 1 mM EDTA, 50 mM NaHCOj3, 0.2 mM nicotina-
mide adenine dinucleotide hydride (NADH), 2.5 mM PEP, 10 U of malate dehydrogenase (Oriental Yeast, Tokyo,
Japan)). For the cell extract assay, 150 ug of total proteins was added to 1 mL assay solution. The absorbance at A5,
was measured using a Hitachi U-3310 spectrophotometer (Hitachi High-Tech., Tokyo, Japan). One unit of PEPC
activity was defined as the consumption of 1 pmol NADPH per minute. V,,,, and K,, values were determined by
a Lineweaver-Burk double reciprocal plot. The results were plotted as a graph of the rate of reaction against the
concentration of substrate. The Y and X intercepts were 1/V,,.. and —1/K,,, respectively.

Bacterial strains. The glucose-tolerant (GT) strain of Synechocystis sp. PCC 6803, isolated by Williams?,
and Nostoc sp. PCC 3756 from the National Institute of Environmental Science (Tsukuba, Japan) were grown
in modified BG-11 medium, consisting of BG-11, liquid medium?® supplemented with 5mM NH,Cl (buffered
with 20 mM HEPES-KOH, pH 7.8). The liquid cultures were bubbled with air containing 1% (v/v) CO, (flow
rate was 20-50 mL/min) and incubated at 30 °C under continuous white light (~50-70 pmol photons m~2s™1).
For enzymatic assay, the cells were suspended in 1 mL of assay solution with one-tenth of a tablet of Complete
mini protease inhibitor (Roche, Basel, Switzerland), followed by disruption with a VC-750 sonicator (EYELA)
for 3 min with 30% intensity. The cell extracts were centrifuged at 5,800 X g for 2 min at 4°C, and the supernatant
was used for PEPC activity assay.

Statistical analysis. P-values were determined using paired two-tailed Student’s t-tests with Microsoft Excel
for Mac 2011 (Redmond, WA, USA). All results were obtained using biologically independent replicates.
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