
1Scientific RepoRts | 7:41033 | DOI: 10.1038/srep41033

www.nature.com/scientificreports

Anisotropic hydrogen diffusion 
in α-Zr and Zircaloy predicted by 
accelerated kinetic Monte Carlo 
simulations
Yongfeng Zhang1, Chao Jiang1 & Xianming Bai2

This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity 
of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum 
tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins 
formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time 
and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC 
method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, 
without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion 
in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum 
tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous 
independent experiments and theories, without using any data fitting. The diffusivity along <c> is 
found to be slightly higher than that along <a>, with the anisotropy saturated at about 1.20 at high 
temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen 
diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems 
with similar trapping basins.

The diffusion of hydrogen in hcp metals has attracted extensive research interests for both its scientific merit 
and technological importance. It is the rate-limiting step for solid hydrogen storage in Mg based alloys1 and 
for mechanical property degradation in Ti2 and Zr alloys3. For instance, Zr-based alloys such as Zircaloy2 and 
Zircaloy4 (denoted as Zircaloy) are widely used as the cladding of fuel rods in nuclear reactors for their excel-
lent corrosion resistance and very low absorption cross-section of thermal neutrons. During their service time, 
these alloys operate in extremely harsh environments, combining high temperatures and corrosive coolants such 
as water. In light water reactors, Zircaloy claddings directly contact coolant water, with a local temperature at 
the interface of about 400 °C. Consequently, Zircaloy react with water, producing an oxide layer at the interface 
and hydrogen (H), of which a substantial fraction infiltrates into the cladding interior3. Due to the low solu-
bility of H in α -Zr, which is the main component of claddings, hydrides precipitate in the cladding matrix4–6. 
Hydride formation can detrimentally affect the cladding integrity primarily in two ways. First, the formation of 
hydrides reduces the fracture toughness of the cladding matrix7,8, increasing the probability of fuel failure when 
fuel-cladding mechanical interaction (PCMI) occurs during fuel operation. Second, upon cyclic thermal and 
mechanical loadings, hydrides can dissolve and reorient. During used-fuel storage, fracture may propagate via 
the so-called delayed-hydride-cracking (DHC) mechanism, which is induced by the dissolving of matrix hydrides 
and their subsequent re-formation at crack tips3,9. To mitigate these detrimental effects requires fundamental 
understanding of the thermodynamics and kinetics governing hydrogen uptake and hydride formation. In this 
work, we focus on H diffusion, which is the rate-limiting factor for both hydrogen uptake and DHC.

In the past, understanding of hydrogen diffusion in α -Zr and Zircaloy has relied mostly on experimental 
measurements10–15. It has been commonly accepted that H diffuses in Zircaloy via the same mechanism as in 
α -Zr, with additional trapping caused by alloying elements and impurities. Due to the differences in the meas-
uring methods and the preparation of samples, scattered data for H diffusivity10–14 and contradictory results 
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regarding the diffusion anisotropy have been reported. Due to the hexagonal symmetry of α -Zr, the diffusivity 
of H along < c>  usually differs from that along < a>  (in a plane parallel to < a>  and normal to < c> ), with the 
former suggested to be higher than the latter by Kearns et al.14. However, in a more recent experiment, the latter 
was reported to be over an order higher than the former15. In addition to these experiments, atomic scale stud-
ies such as density functional theory (DFT) calculations have also been applied to H diffusion in α -Zr16–18. At 
high temperatures, H diffuses in metals via thermally activated hopping with the hopping rates described by the 
transition-state-theory (TST). At low temperatures, due to the small mass of H, the contribution from quantum 
tunneling may become significant16,19. The transition temperature is not clear for H in α -Zr. The contribution 
of thermal hopping at high temperatures can be estimated provided the hopping rates for all involved hopping 
paths are known. To fully assess the effect of quantum tunneling requires information on the potential energy 
surface (PES) of H interstitials at energy minima and transition states (TSs) for each hopping path. An alternative 
approach is to use the semiclassically corrected harmonic-transition-state-theory (SC-HTST) which assumes that 
the PES is harmonic and requires only the potential energies and vibration frequencies at energy minima and TSs, 
instead of the full PES20,21. The effect of tunneling is accounted for by a correction to the classical thermal hopping 
rates. For H in α -Zr, the information needed for the SC-HTST approach is not yet available.

H diffusion in α -Zr involves multiple hopping paths coupled with each other for long-range diffusion. The 
hopping rates obtained from DFT calculations need to be incorporated into either analytical theories or other 
modeling methods such as kinetic Monte Carlo (KMC) to predict diffusivity. In the literature, several theories 
have been proposed for H diffusion in hcp crystals22,23. These theories give different predictions for H diffusivity. 
Therefore, they need to be testified to resolve the discrepancies. In this work, we use lattice KMC parameterized 
by DFT calculations to compute H diffusivity in α -Zr. The KMC method is well known to be capable of provid-
ing atomic scale insights on kinetic processes in crystalline solids24. In particular, for diffusion on a pre-defined 
lattice with known hopping rates, KMC is capable of predicting the diffusivity in cases involving multiple jumps 
and random trapping sites25,26. One challenge to apply KMC to H diffusion in hcp metals is that the PES usually 
contains an energy basin formed by neighboring tetrahedral sites, which strongly limits the efficiency of KMC at 
low temperatures due to basin trapping. Since accurate H diffusivity is highly desired at low temperatures to pre-
dict the kinetics of DHC, which is active in the temperature range of about 150 to 300 °C27, acceleration of KMC 
is needed. Although guidance for general acceleration approaches already exists in the literature28, analytical 
solutions that directly apply to interstitial diffusion in hcp crystals are yet to be derived.

The objectives of this paper are threefold: (i) to develop an accelerated KMC method for H diffusion in hcp 
metals, (ii) to obtain H diffusivity in Zr and Zircaloy in a wide range of temperatures, and (iii) to resolve the con-
troversy in previous experiments on H diffusion anisotropy in α -Zr. A systematic understanding of H diffusion in 
α -Zr is expected by accomplishing these objectives. Although in this work the method is demonstrated using Zr 
and Zircaloy, the same method can be directly applied to other hcp metals and alloys such as Mg and Ti, provided 
that the required information for hopping rates are available.

Results
The details of DFT calculations and KMC simulations are provided in the Methods Section. In this section the 
results are presented.

Hopping rates and impurity trapping from DFT calculations. For α -Zr, the lattice constants are cal-
culated as c =  5.18 Å and a =  3.24 Å, agreeing well with previous DFT calculations17,18,29,30 and experiments31,32. 
Due to its small size, H stays in hcp metals as an interstitial occupying either the tetrahedral (T) site or the 
octahedral (O) site, as shown in Fig. 1(a). At finite temperatures, both sites are occupied with the partition at 
thermal equilibrium dictated by the solution energies, and they both are involved in long-range diffusion. Four 

Figure 1. (a) The hcp unit cell of Zr (gold) with tetrahedral (green) and octahedral (red) interstitial sites 
for hydrogen. (b) Schematic of an energy basin with two transition states (T1 and T2). p1 (p3) represents the 
probability for the system to transition from T1 to T2 (T2 to T1) in next event. p2 (p4) is the probability for the 
system to exit the basin from the left (right) side in next event. By definition p1 +  p2 =  p3 +  p4 =  1. (c) 1NN 
interaction between possible impurity trapping sites (blue) with hydrogen interstitials at tetrahedral and 
octahedral sites.
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hopping paths, namely first nearest neighbor (1NN) TT, TO, OT and OO jumps, are found responsible for the 
three-dimensional diffusion of H. The activation barriers and vibrational frequencies needed to calculate the hop-
ping rates are predicted by DFT calculations, as listed in Table 1. The activation barriers calculated here agree well 
with those computed by Domain et al.17 and Christensen et al.18. In addition to these 1NN jumps, second nearest 
neighbor (2NN) TT and OO jumps (denoted as TT2 and OO2, respectively) were also suggested in Domain  
et al.17. These 2NN jumps are however found to be unstable in this work. Our calculations show that TT2 and 
OO2 paths spontaneously relax into TO +  OT and OT +  TO, respectively. Therefore, in our KMC simulations, 
only 1NN TT, TO, OT and OO jumps are considered. The TT jump has a much lower barrier than others, forming 
a trapping energy basin in the PES (Fig. 1(b)), which significantly reduces the efficiency of KMC modeling.

Although the absolute solution energy is not needed in KMC simulations, it is calculated in this work for 
comparisons with the literature. Using Eq. (21) in the Method Section, H solution energy is given as − 0.429 eV 
and − 0.366 eV at the tetrahedral and the octahedral site, respectively. Therefore, the tetrahedral site is more 
stable than the octahedral site for H, with an energetic preference of − 0.063 eV, which compares well with the  
− 0.059 eV reported in Domain et al.17 and − 0.086 eV in Burr et al.29. For a more general comparison, most 
previous DFT calculations17,18,29,30,33 have predicted that H prefers the tetrahedral site over the octahedral site 
based on the solution energy as defined in Eq. (21), which was reported to be − 0.60 eV in Domain et al.17 and 
Lumley et al.33, − 0.46 eV in Burr et al.29, and − 0.52 eV in Udagawa et al.30. Experimentally, a value of − 0.66 eV 
was suggested32.

It has been pointed out that while evaluating the relative stability of various H interstitial configurations, the 
contribution of zero-point-energy (ZPE) in the solution energy should be included due to the small mass of H18. 
At 0 K, the ZPE of a H atom at interstitial site i is given by ∑ hv /2j i j, . Here h is Planck’s constant, and vi,j the jth 
vibration frequency at site i. The summation runs over all three vibrational frequencies at energy minima and 
only the two real frequencies at TSs. Using the results listed in Table 1, the ZPE within the harmonic approxima-
tion is found to be 0.134 eV for the octahedral site, and 0.221 eV for the tetrahedral site, respectively. For the ZPE 
of H at the O site, our result agrees well with the value (0.123 eV) predicted by Christensen et al.18. With ZPE 
included, the octahedral site becomes more stable than the tetrahedral site with an energetic preference of 
0.026 eV at 0 K. Such a small difference is actually within the uncertainty caused by the harmonic assumption in 
DFT calculations. It has been shown by Christensen18 that by fully taking into account the anharmonic effect, the 
ZPE at the T site could be reduced from 0.18 eV to 0.166 eV if the neighboring Zr atoms were allowed to relax. A 
detailed consideration of this anharmonic effect is beyond the scope of this work. Nevertheless, the results indi-
cate that T and O sites are both occupied by H atoms at finite temperatures due to their similar energetic levels.

The binding energies between H and alloying elements such as Sn, Fe, Cr, and Ni are calculated using Eq. (23). 
The results are listed in Table 2. The concentrations of the alloying elements used in the KMC simulations are also 
listed. Here, only the 1NN interactions are considered. The 2NN interactions are found to be much weaker than 
1NN ones and are therefore neglected. For each type of impurity, three types of 1NN interactions with H exist, 
depending on the site of H and the relative positions of impurity atoms in reference to the H atom. As shown in 
Fig. 1(c), H at an octahedral site can be trapped symmetrically by six impurity sites within 1NN distance (number 
of trapping sites Nt =  6) with a binding energy of Eb

O. Tetrahedral H interstitials can be trapped by one impurity 
site along < c>  (Nt =  1) with a binding energy of Eb

Tc, and three others symmetrically (Nt =  3) with Eb
Ta. As shown 

in Table 2, Fe, Cr and Ni are attractive to H. The presence of these alloying elements will increase the overall H 
solubility and reduce H diffusivity by trapping H atoms locally. Sn is repulsive to H. In particular, H at the tetra-
hedral sites surrounding a Sn atom is not stable and automatically relaxes into a nearby interstitial site, meaning 
that these sites are blocked for H diffusion. Accordingly, the rate for H to jump to these sites is set to be zero in 
KMC simulations. Except for Ni, the trapping energies calculated here are much lower than those given in 
Christensen et al.18, which are also listed in Table 2. The comparison is made by comparing with the highest 

Path Em (eV) νi,1 (THz) νi,2 (THz) νi,3 (THz) νts,1 (THz) νts,1 (THz) ν± (THz)

TT 0.129 (0.1217, 0.12918) 36.87 36.87 33.06 43.06 43.04 − 17.92

TO 0.406 (0.4117, 0.41218) 36.87 36.87 33.06 45.80 42.66 − 17.59

OT 0.346 (0.3517) 23.32 20.84 20.84 45.80 42.66 − 17.59

OO 0.398 (0.4117, 0.42718) 23.32 20.84 20.84 47.30 47.29 − 9.95

Table 1.  Activation barriers and vibrational frequencies for 1NN jumps from DFT calculations. The 
activation barriers from refs 17 and 18 are listed in parentheses.

Element Concentration, ci Eb
Tc Eb

Ta Eb
O

Sn 0.0111 Not stable Not stable − 0.037 (− 0.03118)

Fe 0.00268 0.094 (0.5818) 0.069 0.106

Cr 0.00173 0.089 (0.26918) 0.065 0.085

Ni 0.0003622 0.212 (0.18718) 0.153 0.165

Table 2.  Concentrations (atomic fraction) of Zn, Fe, Cr, and Ni in Zircaloy and their binding energies (eV) 
with hydrogen. Positive (negative) binding energy means attractive (repulsive) interaction.
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binding energies from our calculations for each type of impurity. As will be shown later by KMC simulations, the 
large trapping energies given by Christensen et al. can lead to much lower H diffusivity in Zircaloy than that 
reported by experiments.

Accuracy and efficiency of accelerated KMC. The key of our accelerated KMC is to replace the 
time-consuming T-T jumps spent at the energy basins in KMC with the analytical solutions for basin exiting time 
and probability, as described in the Method Section. Before presenting the results on H diffusivity, the accuracy 
and efficiency of the accelerated KMC method are demonstrated. To preserve the diffusion kinetics, it is impor-
tant to reproduce both the average basin exiting time and the exiting probability for each path. Since the analytical 
solutions in Eqs (16) and (17) are exact, the acceleration is expected to result in no change in the H diffusion 
kinetics. To confirm this, KMC simulations are carried out every 100 K from 300 K to 1100 K. In each simulation, 
100,000 basin exiting events are used to obtain good statistics. As shown in Fig. 2(a,b), for both exiting time and 
probability, the results from accelerated KMC perfectly match the analytical solutions and the results from regular 
KMC as well, indicating the correctness of the analytical solutions and the preservation of diffusion kinetics with 
acceleration. At 300 K and 400 K, regular KMC is too inefficient to get sufficient sampling of KMC events. Still, the 
results from accelerated KMC follow the analytical solutions.

It is also interesting to note that at low temperature, the hopping rate ω 1 ≫  ω 2 (thus p1 ≫  p2), so that PL ≅  PR 
as given by Eq. (17). This implies that after a long trapping time in a basin, the memory of the basin-entering 
site is lost, leading to nearly equal exiting probability to the left (from the path H enters basin) and right existing 
path. However, at high temperatures, the trapping time is short and the escaping probability is biased favoring 
the basin-entering site. Capturing the escaping probabilities is critical for accurate H diffusivity in hcp crystals. 
Since exiting to the left results in zero net displacement along < c> , overestimate (underestimate) of its proba-
bility effectively suppresses (accelerates) H diffusion along < c> , leading to error in both overall diffusivity and 
diffusion anisotropy.

The average basin exiting time depends on temperature, as does the rate of acceleration relative to regular 
KMC. At low temperatures, p1 approaches unity and the acceleration rate nacc, as defined in Eq. (19) in the Method 
Section, approaches 1/p2. It should be noted that the acceleration in Eq. (19) applies only to basin exiting. The 
computing time for jumps outside the basin remains constant. Therefore, the overall acceleration depends on 
how often the system visits basins and how long it takes to exit a basin by average. For H in α -Zr, the tetrahedral 
site is frequently visited since its population is twice of that of the octahedral site, with similar energies for both 
sites. As shown in Fig. 2(c), the acceleration is significant at low temperatures and decreases upon increasing tem-
perature, mainly because of decreasing basin exiting time as given in Eq. (16). At room temperature, over 2,000 
times overall acceleration can be obtained. Even at high temperature such as 800 K, the KMC simulations can still 
be accelerated by a rate of about 10. Since DHC is usually active in the temperature range of about 150 to 300 °C 
in Zircaloy claddings27, acceleration is important for efficient calculations of H diffusivity at low temperatures.

Hydrogen diffusion in pure Zr. The three-dimensional H diffusivity in α -Zr calculated by accelerated 
KMC is plotted in Fig. 3. The calculations are performed from 300 K to 1100 K, one data point every 100 K, 
covering the temperature range used in previous experiments. To minimize stochastic scattering, at each temper-
ature 100,000 KMC simulations are carried out, each lasting until 100,000 basin exits are detected for sufficient 
statistics. The averaged mean-square-displacements (MSD) display the expected linear relationship with time 
(Fig. 3(a)), with the slope proportional to diffusivity. At high temperatures (> 600 K), the KMC results are at 
the upper bound of the scatter in the experimental data, within a factor of 2 different from most experimental 
results10–14, as shown in Fig. 3(b). It should be emphasized that the modeling prediction is based on first principles 
and is completely independent of the experiments (i.e., no data fitting is used). Thus, this work demonstrates the 
predictive power of computer modeling. The minor discrepancy between KMC and experiments may come from 
uncertainty in DFT calculations due to underbinding of GGA or that in experiments due to the differences in 
measuring method and sample preparation. In particular, in Kearns et al. polycrystalline samples with various 
types of impurities were used14,34. Depending on their interactions with H, impurities and grain boundaries may 

Figure 2. (a) Basin exiting time, (b) probability of exiting left, and (c) acceleration rate as functions of 
temperature.
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either facilitate or impede H diffusion. Involving multiple jumps, the diffusivity of H may not necessarily follow 
the Arrhenius equation. Nevertheless, it is still fitted using the equation D =  D0exp(− Em/KBT) for comparison 
with experiments, with D0 being the prefactor and Em the effective migration barrier. The fitting of KMC results 
gives 5.55 ×  10−7 m2/s and 0.41 eV for D0 and Em, respectively, agreeing well with the experimental values of 
6.94–7.82 ×  10−7 m2/s and 0.46–0.47 eV for α -Zr14. As will be shown later, better agreement can be achieved by 
including impurity effects. At low temperatures (< 500 K), good agreement between KMC results and experi-
ments15 is also observed, with the former being higher but no more than a factor of 2 than the latter. It needs to be 
pointed out that in ref. 15, H diffusivity was measured separately along < a>  and < c> , and the overall diffusivity 
plotted in Fig. 3(b) is converted using Eq. (13). As will be elaborated later, the results on Dc reported by that work 
was unreasonably low compared to Da, possibly leading to a low overall diffusivity as well.

Interstitial diffusion in hcp metals involving octahedral and tetrahedral sites has been treated theoretically by 
different groups. Using an on-lattice random walk model, Ishioka and Koiwa22 proposed an algorithm to derive 
the diffusivities of impurity atoms on a crystal lattice containing multiple sublattices, such as the octahedral and 
tetrahedral sites in hcp crystals. For H in hcp metals, the diffusivities along < c>  and < a>  directions are given by:
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where the hopping rate ωij can be calculated using Eq. (5). More recently, starting from Fick’s law and consider-
ing the balanced flux between equilibrated tetrahedral and octahedral sites, in Klyukin et al. an expression was 
derived for H diffusivity in hcp metal as23:
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Here Δ ETO is the difference between the solution energies at the tetrahedral and the octahedral sites, including 
ZPE. KB is the Boltzmann constant. Note that in Eq. (2) there is no differentiation of Dc and Da. The parameters 
listed in Table 1 are used while applying the above theories. As shown in Fig. 3(b), our KMC results agree perfectly 
with the Ishioka model, which involves all relevant jumps. The Klyukin model is found to overestimate H diffu-
sivity. It ignores the TT and OO jumps and essentially considers only H diffusion along < a> . The overestimation 
probably comes from the fact that it ignores the time spent for TT and OO jumps.

The above results are obtained without considering quantum tunneling19,20, which could be important at low 
temperatures. Given the relatively high barriers for OO and OT jumps, for H diffusion in α -Zr, tunneling is 
expected to be less important than in some other metals16. According to the SC-HTST theory, the contribution 
of tunneling becomes significant below a critical temperature, Tc =  (hv± EZP/KB)/(2πEZP −  hv± ln2). Here ν ± is the 
imaginary vibrational frequency at the TS (Table 1), and EZP the migration barrier with ZPE correction. For TT, 
TO, OT and OO jumps, the critical temperature is estimated as 72 K, 68 K, 68 K and 38 K, respectively, indicating 
that tunneling is not significant above room temperature. To better estimate the tunneling effect, Eqs (8) to (10) 
are applied to the Ishioka theory and in KMC from 300 K to 1100 K. The ratio of tunneling corrected diffusivity 
(DT) over that without correction (D) is plotted in Fig. 4. Since the correction factor in Eq. (9) is always larger 
than 1, so is the ratio of DT/D. Also, DT/D decreases with increasing temperature, upon which the tunneling effect 
diminishes. Above room temperature, the tunneling correction increases H diffusivity by less than 10%, with a 

Figure 3. (a) Mean-square-displacements (MSDs) of H at 600, 700 and 900 K as functions of time. The symbols 
are from KMC and lines from linear fitting. (b) H diffusivity in α -Zr as a function of inverse temperature, 1/KT.



www.nature.com/scientificreports/

6Scientific RepoRts | 7:41033 | DOI: 10.1038/srep41033

similar effect along < c>  and < a>  and thus negligible change in the anisotropy, as shown in Fig. 4. This indicates 
that above room temperature, H diffusion in α -Zr is dominated by thermally activated hopping. For this reason, 
H diffusivity will be calculated without considering the tunneling correction in the rest of the paper.

Hydrogen diffusion in Zircaloy. The diffusivity of H in Zircaloy is plotted in Fig. 5. To better compare 
with the previous experiments, here the concentrations of Sn, Fe, Cr, and Ni are taken as the average values 
for Zircaloy2 and Zircaloy4 in Kearns et al.34, where the exact compositions of the pure-Zr, Zircaloy2 and 
Zircaloy4 samples were given. The concentrations used in our KMC calculations are listed in Table 2 in unit of 
atomic percent. As shown in Fig. 5, with all four alloying elements present, the overall hydrogen diffusivity is 
reduced, with greater reduction at lower temperatures. Fitting of the KMC results using D =  D0exp(− Em/KBT) 
gives 1.08 ×  10−6 m2/s and 0.46 eV for D0 and Em, agreeing nicely with the averaged values of 7.0 ×  10−7 m2/s and 
0.46 eV for α -Zr and Zircaloy from experiments14. The higher fitted migration barrier for Zircaloy in reference 
to that of pure Zr (0.41 eV) is mainly due to the reduction in diffusivity at low temperatures. In the high temper-
ature region (≥ 600 K), the reduction as shown by the KMC results is less than 15% (mostly within 10%). Such 
a small reduction is within the experimental scatter, in good agreement with Kearns et al. that H diffusivities in 
Zr, Zircaloy2 and Zircaloy4 are hardly distinguishable from each other14. In the previous experiments, the pure 
Zr samples contained impurities with very dilute concentrations34, which may have brought the H diffusion 
lower and closer to that in Zircaloy. Again, the minor discrepancy between KMC and experiments for Zircaloy 
could be caused by errors in DFT calculations, or possible presence of other impurities and grain boundaries in 
experiments.

As shown in Table 2, the binding energies calculated here are quite different from that given in Christensen  
et al.18. For a comparison, KMC simulations were also performed with the binding energies taken from ref. 18. 
As no information about the trapping site was given in ref. 18, in KMC only the trapping of a H atom at a tetrahe-
dral site by a nearby solute atom along < c>  direction (with Nt =  1) is considered, so that the least trapping (i.e., 
minimum reduction of H diffusivity) is expected. Still, significant reduction in H diffusivity is observed using the 
binding energies in ref. 18 (Fig. 5), in contrast to previous experiments that showed similar H diffusivity in α -Zr 

Figure 4. Ratio of tunneling corrected diffusivity (DT) over that without correction (D). 

Figure 5. H diffusivity in Zircaloy as a function of inverse temperature, 1/KT. 
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and Zircaloy14. This suggests that the H-solute binding might be overestimated in Christensen et al.18, which is 
possibly due to the neglect of local magnetic moments of Fe and Cr atoms in DFT calculations.

Theoretically, the trapping of impurities can be estimated using the Oriani model25,35 when the concentrations 
of the diffuser and impurities are not very high. Specifically, the diffusivity with impurities Dim is given by:

=
− ∑ + ∑

D D
c c E K T1 exp( / ) (3)

im
L

i t
i

i t
i

t
i

B

Eq. (3) holds when c 1t
i . DL is the diffusivity without impurities. The physical meanings of other symbols are 

the same as in Eq. (20) in the Method Section. As shown in Fig. 5, the results from KMC simulations agree well 
with the Oriani model, while applying which the impurity-free diffusivity DL is obtained using the Ishioka model 
and the binding energies in Table 2 are used. According to Eq. (3), alloying elements that are attractive to H, such 
as Fe, Cr and Ni, reduce H diffusivity. In contrast, solutes such as Sn that are repulsive to H slightly increase H 
diffusivity. The results from KMC on the separate effect of each element are also in good agreement with the 
Oriani model, which adopts the same assumptions as used in the mean-field KMC method.

Hydrogen diffusion anisotropy. Due to the hexagonal symmetry of α -Zr, H diffuses anisotropically along 
< c>  and < a>  directions, with the latter representing the isotropic 2D diffusion in the basal plane. Since multiple 
jumps are involved, the anisotropy is not readily evident by just examining the individual hopping rates. KMC 
simulations allow for the calculation of diffusivity along both < c>  and < a>  and thus the anisotropy. Moreover, 
the relative importance of the jump paths can be evaluated at given temperatures to fully elucidate the controversy 
as reported in previous experiments: Dc/Da >  1 but not exceeding 2 at temperatures above 600 K in Kearns et al.14, 
and Dc/Da <  0.1 below 500 K in Zhang et al.15. Even though these experiments were done in different temperature 
ranges, the data reported were sufficient to establish contradicting trends over a wide range of temperatures.

In KMC simulations, Dc and Da can be calculated using Eq. (12) by decomposing the MSD into components 
along < c>  and < a> . The results obtained from KMC simulations follow the Ishioka model well, as shown in 
Fig. 6(b). Some scatter in the KMC results is observed due to the stochastic nature of the KMC method. The Dc/Da  
ratio is found to increase with temperature and saturates to about 1.2 at high temperatures (Fig. 6(b)), again 
agreeing well with the Ishioka model, where the anisotropy is given by:
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The temperature dependence in Dc/Da comes from the temperature dependent hopping rates. At very low 
temperatures, ωOO ≪  ωOT and ωTO ≪  ωTT, so that Dc/Da approaches 3c2/8a2, which is 1.0 for hcp metals with the 
ideal c/a ratio and about 0.96 for α -Zr using the lattice constants from our DFT calculations. This means that at 
very low temperatures, Da >  Dc for H in α -Zr. Upon increasing temperature, OO jumps become more important 
and the first term in the parentheses of Eq. (4) increases. Since the migration barrier for TT jump is significantly 
lower than that for TO jump (see Table 1), the second term in the parenthesis of Eq. (4) remains close to 1 and 
only slightly decreases with increasing temperature. The overall trend is that Dc/Da continuously increases with 
temperature. As a result, at high temperatures Dc becomes higher than Da. The transition between Dc/Da <  1 and 
Dc/Da >  1 occurs at about 270 K. In the above analysis the anisotropic thermal expansion of α -Zr is ignored since 
its effect is orders of magnitude lower.

Both KMC and the Ishioka model agree with Kearns et al., which predicted Dc/Da >  1 with a ratio no more 
than 2.0 at temperatures above 600 K14. The KMC results on Da agree perfectly with those measured by Zhang et al. 

Figure 6. (a) H diffusivities along < c>  and < a>  as functions of inverse temperature, 1/KT. (b) Dc/Da ratio as 
obtained from KMC simulations and from the Ishioka model from 300 K to 1100 K.
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(Fig. 6(a)), where pure single-crystal α -Zr samples were used15. However, substantial discrepancy on Dc is 
noticed. In KMC simulations, Dc is not distinguishable from Da from 300 K to 500 K, while in the experiments the 
former was reported to be over an order of magnitude lower than the latter15 (see Fig. 6(a)). Such a low Dc/Da ratio 
is very unlikely if the 3-D, on lattice random walk of H is not altered. H diffusion along < a>  is via TO and OT 
jumps, both with a component along < c>  and thus contributing to diffusion along < c> . TT and OO jumps 
contribute only to < c>  diffusion but via two different ways: i) the net displacement induced by these two jumps, 
and ii) providing a path for H to jump from one < a>  plane to another, i.e., bridging TO (OT) jumps in neighbor-
ing < a>  planes, so that H can perform 3-D random walk. Without the bridging effect, H diffusion will be con-
fined in < a>  planes, and the < c>  component of TO and OT jumps will cancel each other. During 3-D random 
walk, the geometry of TO and OT jumps sets a lower bound of Dc/Da, determined by the ratio of l l/c

OT
a
OT; here la

OT 
and lc

OT are the components in absolute length of OT jump (or TO) along < a>  and < c> , respectively. For H in 
α -Zr, = ≈ .l l l l/ / 0 36c

OT
a
OT

c
TO

a
TO , giving a lower bound of = ≈ .D D/ 0 26c a

l t

l t

( ) /2

( ) /4
c
OT

a
OT

2

2
. Such a geometric effect is 

independent of temperature except for negligible anisotropic thermal expansion. Indeed, as shown in Fig. 7(a), 
with sufficient KMC jumps, + + r r( ) /( )c

OT TO
a
OT TO2 2 converges to 0.13 regardless of temperature, corresponding to 

a Dc/Da ratio of 0.26. Here, +r c
OT TO +r( )a

OT TO  is the total displacement along < c>  (< a> ) summed over all OT and 
TO jumps. The KMC analysis also proves our assumption of the 3-D, on-lattice random walk of H, because oth-
erwise + + r r( ) /( )c

OT TO
a
OT TO2 2 cannot converge to 0.13. Note that this ratio is obtained without including the con-

tribution from TT and OO. Therefore, Dc/Da should be no less than 0.26 as long as H performs 3-D random walk, 
suggesting that in Zhang et al., Dc was likely be measured at a situation where H diffusion along < c>  was sup-
pressed, deviating the random walk behavior. Given the small barrier of TT jump, confined diffusion along < a>  
is very unlikely in α -Zr or Zircaloy in the dilute concentration regime. Actually, our KMC simulations show that 
regardless of temperature, TT jumps that bridge two neighboring < a>  planes accounts for about 20% of all KMC 
jumps (Fig. 7(b)), and provides an effective path bridging OT and TO jumps in neighboring < a>  planes. Here, 
each TT jump represents a basin exit event involving a net TT displacement, not an actual TT move as in regular 
KMC. With increasing temperature, OO jump becomes more important in contributing to < c>  diffusion, for its 
increasing fraction of jumps and long absolute length.

The unreasonably low Dc/Da ratio measured in Zhang et al.15 may be explained by the so-called blocking layer 
effect observed in experiments on H in hcp Mg36. In Zhang et al., H diffusivity was measured using the surface 
segregation approach15. It is possible that although the matrix H concentration was kept below the solubility 
limit, the local H concentration near surface could have exceeded that limit when surface segregation occurred. 
Consequently, precipitation of hydrides such as coherent hydride clusters37 may have occurred. As the hydrides 
habit on basal planes with small thickness along < c> , they block H diffusion along < c> , reducing Dc without 
affecting Da much, similar to the situation for H in hcp Mg36.

Discussion
In this section, some discussion is given regarding the comparison between the present results with previous 
experiments and theories, as well as the applicability of the accelerated KMC method in other material systems.

The diffusivity of H in α -Zr predicted by KMC is at the upper bound of the scatter in the experimental data. 
The minor discrepancy, which is within the experimental error limit, may come from uncertainties in DFT cal-
culations or in previous experiments. While calculating H vibrational frequencies using DFT, it is assumed that 
the vibration of H can be decoupled from that of the α -Zr lattice due to the large difference in their masses. 
Specifically, Zr atoms are fixed in these calculations since their vibration frequencies are orders lower. Minor 

Figure 7. (a) Ratio of MSD along < c>  over that along < a>  induced by TO and OT moves as a function of 
time at several temperatures. (b) Fractions of KMC moves taking TO +  OT, TT and OO jumps at various 
temperatures. Here one TT move represents a basin exit event involving a net TT displacement, not an actual 
TT move as in regular KMC simulations.
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error might be induced by such a treatment. For instance, an error of about 0.30 THz (~10 cm−1) was identified 
for the vibrational frequencies of H (at the order of ~30 THz) on a Ni (111) surface by ignoring lattice atom 
vibration38. Similar anharmonic effect has been noticed for H in α -Zr by Christensen et al.18. We also note that in 
the diffusivity calculations (Figs 3 and 5), the effect of quantum tunneling is neglected because its contribution 
is negligible above room temperature. It should be pointed out that the previous experiments are not exempted 
from uncertainties either due to the differences in measurement method and sample preparation, as indicated by 
the scatter in results.

For Zircaloy, again the KMC results are higher but within a factor of 2 than those from experiments. 
Compared to that in α -Zr, the addition of alloying elements slightly reduces H diffusivity, with negligible effect at 
high temperatures. This is in line with previous experiments, which found similar H diffusivity in α -Zr, Zircaloy2, 
and Zircaloy414. The mean-field KMC approach for impurity trapping has two major assumptions. First, Eq. (20) 
is used assuming that the impurity atom located in the proximity of an H atom modifies only the energy of the 
initial state without altering the TS. This is inaccurate for H hopping around impurity atoms. However, it still 
captures the effective migration barrier for an H atom to move away from an impurity atom. To confirm this, the 
diffusion barrier for an H atom to diffuse away from a Ni atom, from a 1NN tetrahedral site to a 2NN tetrahedral 
site along < c> , is calculated using DFT. The directly calculated barrier is 0.350 eV, very close to that estimated 
using Eq. (20), 0.341 eV (Eb

Tc, 0.212 eV, plus Em for T-T jump, 0.129 eV). Second, in this work only interaction 
between H and impurity atoms is considered, with no interactions between H atoms and between impurity atoms. 
Such an assumption applies when the concentrations of H and impurities are low (i.e., dilute solution). For high 
H concentration or high impurity concentrations, the interactions between H atoms and between impurity atoms 
need to be included. The mean-field approximation in Eq. (20) needs to be replaced by more accurate calculations 
of rate parameters considering local atomic configurations. The same assumptions are shared by the Oriani 
model35, which essentially predicts the same results as those from the mean-field KMC.

By comparing KMC with previous theories, this work demonstrates that for hcp metals the Ishioka model is 
accurate for H diffusivity, and a correction using the Oriani model is sufficient for dilute alloys, provided that all 
hopping rates are available. However, KMC simulations will be more useful in cases involving spatial heteroge-
neities, e.g., stress fields induced by cracks and hydrides. The presence of stress fields alters the local solubility and 
hopping rates as well at each atomic site, making the mean-field approach not applicable.

While the current work focuses on α -Zr and Zircaloy, the same method can be directly applied for H dif-
fusion in other hcp metals such as Mg and Ti and their alloys, where similar diffusion mechanisms and energy 
basin hold. In Mg, the barrier for T-T jump is about 0.1 eV, much lower than that for T-O (~0.23 eV) and O-O 
(~0.21 eV) jumps23. In Ti, the barrier of T-T jump (0.061 eV) is nearly an order lower than that of T-O (0.424 eV) 
and O-O (0.625 eV) jumps2. H diffusion is critical for H storage in Mg and its alloys1, and for hydride embrittle-
ment in Ti-based alloys2. In a more general sense, the acceleration method applies to interstitial diffusion in hcp 
metals, or to problems with similar energy basins39 as shown in Fig. 1(b).

Conclusion
In this work, an accelerated KMC method is developed for efficient calculations of H diffusivity in hcp metals, and 
demonstrated using H diffusion in α -Zr. Using the hopping rates predicted by DFT, the method accurately pre-
dicts H diffusivity in α -Zr and Zircaloy, providing reliable data that could be used for upper scale modeling5,6. The 
results from KMC agree very nicely with previous independent experiments at various temperature ranges10–15 
and the Ishioka theory22. The perfect agreement between KMC and Ishioka theory validates the correctness of the 
analytical equations in this theory. The microscopic diffusion mechanisms obtained from DFT and KMC provide 
a systematic understanding of H diffusion in α -Zr, which helps to resolve the controversy in previous experiments 
regarding H diffusion anisotropy. Above room temperature, H diffuses by thermal hopping involving 1NN OT, 
TT, TO and OO jumps. At low temperatures, an effective diffusion path is via OT- >  TT- >  TO moves, with the 
contribution of OO increasing with increasing temperature. The diffusion of H is anisotropic, with the Dc/Da ratio 
increasing from below 1.0 at very low temperatures to about 1.20 at high temperatures. In addition to H diffusion 
in hcp metals, the accelerated KMC method may be applied in other material systems with similar energy basins.

Methods
Residence time lattice kinetic Monte Carlo. In this work we use lattice KMC to calculate the diffusivity 
of H in Zr. Due to its small atomic size, H stays in Zr as an interstitial, residing in either a tetrahedral or an octahe-
dral site, as shown in Fig. 1(a). A H atom at a tetrahedral site, T1 for instance, can jump to the neighboring T2 site 
(TT jump) or one of the three neighboring O sites (TO). A H atom at an octahedral site, say O2, can jump to one 
of the two neighboring O sites (OO), or one of the six neighboring T sites (OT). All these jumps are involved in 
three-dimensional diffusion. According to the quantum corrected harmonic transition state theory40, the hopping 
rate from site i to j is given by:

ω = −K T
h

Z
Z

e
(5)ij

B TS

i

E K T/m B

Here T is temperature; and h is the Planck constant. Em is the classical migration barrier associated with the i- >  j 
path. ZTS and Zi are the partition functions for the transition state (TS) and the initial state. Their ratio accounts 
for the zero-point energy correction and it is given by:
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where f(x) =  sinh (x)/x. Note that Eq. (6) takes into account the ZPE correction at low temperatures and also 
reproduces the classical hopping rate at high temperatures.

In Eq. (6) vi,j (vTS,k) is the jth (kth) vibrational frequency of H at site i (TS). For each jump, the migration barriers 
and vibrating frequencies are calculated using DFT calculations at 0 K. The results are listed in Table 1. At each 
KMC step, the hopping rates are calculated using Eq. (5) for all possible moves. A random number is drawn to 
pick one jump from the list. The time is advanced following the residence time algorithm by:

∑ ∑ω ω∆ = −t or R1/ , ln( )/
(7)j

ij
j

ij

with R being another random number between 0 and 1. The use of a random number in Eq. (7) better mimics the 
stochastic nature of kinetic events. With sufficient sampling, the two expressions in Eq. (7) converge to each other.

The above formulation describes diffusion via thermally activated hopping without considering quantum 
mechanical tunneling, which has been shown to have substantial contribution to H diffusion in some metals 
at low temperatures16. Quantitative prediction of tunneling requires time-consuming calculations of the PES 
of H interstitial for each jump. Alternatively, assuming that the PES is harmonic at TSs and energy minima, the 
effect of tunneling can be estimated by applying a semiclassical correction to the hopping rates following the 
SC-HTST20,21, given by:

ω ω= Γ (8)ij
SC

ij ij
SC

Here ωSC
ij is the corrected hopping rate with quantum tunneling, accounted for by the coefficient Γij

SC. At a given 
temperature T, Γij

SC is given by:
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In Eq. (9), EZP is the ZPE corrected migration barrier, by

∑ ∑= − +E E hv hv/2 /2
(10)

ZP m
j

i j
k

TS k, ,

and v± is the imaginary vibration frequency at the transition state, given as negative in Table 1. The upper limit of 
the integration is given by θ0 =  πEZP/hv±.

To obtain diffusivity, the mean-square-displacement (MSD) of the migrating H atoms at a time t is calculated 
by:

∑= −r t r t r N( ) ( ( ) (0)) /
(11)i

i i
2 2

where N is the number of total H atoms in a KMC simulation, and ri(t) and ri(0) are the atomic positions of the 
ith H atom at time t and time 0, respectively. When multiple H atoms are used in a simulation, they are treated as 
non-interacting with each other and allowed to overlap, to give the diffusivity in the dilute concentration regime.

Decomposing the total MSD into that along < c>  and < a> , the diffusivities along < c> , Dc, and < a> , Da, can 
be calculated by:

=

=

D r t

D r t

/2

/4 (12)
c c

a a

2

2

The different coefficients in the denominator for Dc and Da are due to the fact that Da is two-dimensional in  
< a>  plane (normal to < c> ), while Dc is one-dimensional along < c> .

The three-dimensional diffusivity is given by:

= = + = +D r t r r t D D/6 ( )/6 (2 )/3 (13)a c a c
2 2 2

By plotting the MSD as a function of time, diffusivities at various temperatures can be obtained by linearly 
fitting the MSD curves. Usually, averaging over a large number of independent KMC runs is needed to minimize 
the stochastic effect.

Acceleration of KMC. For H in hcp metals, the migration barrier of TT jump is usually much smaller than 
that of TO, OT and OO, forming an energy basin (Fig. 1(b)). At low temperatures, in regular KMC simulations 
a large fraction of the KMC moves are the back and forth moves between 1NN tetrahedral sites, with zero con-
tribution to the long-range diffusion. This drastically affects the simulation efficiency, assuming that each KMC 
step costs about the same CPU time. (This assumption holds well for the case here. In general it depends on the 
number of events at each KMC step and the complexity to calculate the rates of all events). In general, the energy 
basin problem can be overcome by solving the master equations of the absorbing Markov chain for the occupa-
tion probability of the system as a function of time for each transition state28. The solutions can be used to replace 
regular KMC events to improve the efficiency. Following the same method, the expected exiting time and exiting 
probability for energy basin containing two energy minima (Fig. 1(b)) are derived as:
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Here PL is the probability for the system to exit to the left, i.e., the site from where it enters the basin, and PR that 
to the right. By definition PL +  PR =  1 once the system exits the basin. t1 (t2) are the residence time at the T1 (T2) 
states before next event occurs, which is the time step in a KMC simulation as given in Eq. (7). p1 (p3) represents 
the probability for the system to transition from T1 to T2 (T2 to T1) in next event. And p2 (p4) is the probability for 
the system to exit the basin from the left (right) side in next event. By definition p1 +  p2 =  1 and p3 +  p4 =  1.

In pure hcp crystals, the two neighboring T sites (T1 and T2 in Fig. 1(b)) are symmetrical and so are the O sites 
(for each exit in Fig. 1(b) there are three symmetrical O sites) for the H atom to exit to. Therefore, we have p1 =  p3 
and p2 =  p4. Similarly, t1 =  t2 =  t0. Eqs (14) and (15) can thus be reduced to:
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with ωi being the hopping rate of the ith jump, as given by Eq. (5). As can be seen from Eq. (17), a H atom always 
exits with a higher probability from the tetrahedral site where it enters the basin, since PL >  PR always holds. In 
cases of ω1 ≫  ω2, e.g., at low temperatures, PR approaches PL, giving nearly equal probabilities to exit from both T 
sites. To assure that the diffusion kinetics is preserved during acceleration, it is critical to capture the probability of 
each exiting path in addition to the basin exiting time. It is also interesting to note from Eq. (16) that for this case 
the expected exiting time is independent of the barrier between the two minima in the basin.

For acceleration, the KMC events in basins are replaced using the solutions in Eqs (16) and (17). In a KMC 
simulation with only one H atom, once it enters a basin, it will be taken out in next event, with the exiting path 
chosen according to Eq. (17). The time advancement is:

= −dt t Rln( ) (18)exit

where R is another random number. Statistically, a H atom in a basin will perform p1/ 2 moves before exiting. 
Assuming that each KMC step consumes the same CPU time, the acceleration rate of basing exiting time can 
estimated by the below equation:

=n
p
1

(19)
acc

2

The above approach is for KMC simulations with one H atom in each. In simulations with multiple H atoms, 
the same acceleration can be achieved by combining neighboring tetrahedral sites (T1 and T2 in Fig. 1(b) for 
example) into a super site (T*), and modifying the hopping rates towards neighboring octahedral sites based on 
the path along which a H atom enters the combined T* site. We note that since the time step is inversely propor-
tional to the number of H atoms used in the simulation, the use of multiple non-interacting H atoms results in no 
change in the diffusion kinetics and theoretically no change in the efficiency either.

Mean-field impurity trapping. To consider impurity trapping, the mean-field KMC approach25,26 devel-
oped for cubic lattice is extended to hcp, where each impurity atom can trap H in three different ways with 
different binding energies (see Fig. 1(c)). At each KMC step, the migration barrier of each jump is modified by:

= + <E E E if R c (20)m m t
i

t
i0

Here Em
0  is the barrier without trapping. Et

i is the binding energy of H at a trapping site t with a concentration ct
i, 

induced by impurity i, whose concentration is ci. R is a random number to be drawn each time when the jump rate 
is evaluated. The concentration of trapping site t is given by =c N ct

i
t i, with Nt being the number of trapping sites 

induced by an impurity atom.

DFT calculations. Ab initio calculations are performed using the all-electron projector augmented wave 
method within the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE-GGA)41, as 



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7:41033 | DOI: 10.1038/srep41033

implemented in VASP42. Large 96-atom supercells, which can be constructed from a 4 ×  4 ×  3 extension of the 
2-atom hcp Zr unit cell, are used throughout our calculations in order to minimize the unphysical interactions 
between a H atom and its periodic images. A high plane-wave cut-off energy of 500 eV and a dense 5 ×  5 ×  5 
Monkhorst–Pack k-point mesh are used to ensure high numerical accuracy for total energy calculations. All inter-
nal atomic positions are fully optimized using a conjugate gradient method until forces are less than 0.01 eV/Å.  
Further relaxations of supercell volumes have been found to have negligible effect on the final results.

Following Domain et al.17, we calculate the H solution energy in Zr as:

= − −E E Zr H E Zr E H( ) ( ) 1
2

( ) (21)s N N1 2

Here E(ZrNH1) and E(ZrN) are the total energies of a hcp-Zr simulation cell containing N Zr atoms, with and with-
out a H atom, respectively. E(H2) is calculated by placing a single hydrogen molecule in a large 10 Å ×  10 Å ×  10 Å 
simulation cell. The equilibrium H-H distance dH-H, vibrational frequency vH-H, and dissociation energy EH-H of 
of H2 molecule are calculated to be 0.75 Å, 130.1 THz and 4.54 eV, respectively. These values are in excellent agree-
ment with the experimental values19 (dH-H =  0.74 Å, vH-H =  130.8 THz, and EH-H =  4.48 eV).

The definition used in Eq. (21) is the classical solution energy without considering the ZPE, which should be 
included when free energy is of interest. The ZPE corrected solution energy can be estimated as:

∑= + −−

=

−E E hv hv
2 4 (22)s

ZPE corrected
s

i

i H H

1

3

The TSs for all diffusion paths of H are obtained using the climbing image nudged elastic band (CI-NEB) tech-
nique43 with 3 intermediate images. Here we only consider 1NN TT, TO, OT and OO jumps since the 2NN jumps 
are found to be unstable and they spontaneously relax into 1NN jumps. The normal-mode vibrational frequencies 
of H are obtained from the eigenvalues of the Hessian matrix constructed using finite differences with a small 
displacement of 0.05 Å. All metal atoms are rigidly constrained during such calculations.

The binding energy between a substitutional solute element X (X =  Sn, Fe, Cr, Ni) and an interstitial H atom 
in hcp Zr can be calculated using the following equation:

= + − −− −E E Zr X H E Zr E Zr X E Zr H( ) ( ) ( ) ( ) (23)bind N N N N1 1 1 1 1 1

where E(ZrN−1X1H1) is the total energy of the supercell containing one impurity atom X and one H interstitial 
in close proximity of each other. E(ZrN) and E(ZrN−1X1) are the total energy of the perfect Zr supercell with N Zr 
and the Zr supercell with a substitutional X atom, respectively. E(ZrNH1) is the energy of a Zr supercell with one 
H occupying the same type of interstitial site as that in the supercell used for E(ZrN−1X1H1). As shown in Fig. 1(c), 
there exist three different 1NN interactions between H and an impurity within 1NN distance. All these interac-
tions are considered in our calculations. For binding between H and Fe, Cr and Ni, spin-polarized calculations 
have been performed. According to our calculations, Fe and Cr develop large local magnetic moments (> 2 μ B), 
while Ni is essentially non-magnetic. The final results are summarized in Table 2.
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