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Published: 20 January 2017 The ability to engineer material properties at the nanoscale is a crl_JuaI prereqU_ISIte fc_:r nanotechnology.
Hereunder, we suggest and demonstrate a novel approach to realize non-hemispherically shaped
nanowire catalysts, subsequently used to grow InP nanowires with a cross section anisotropy ratio of
up to 1:1.8. Gold was deposited inside high aspect ratio nanotrenches in a 5 nm thick SiN, selective area
mask; inside the growth chamber, upon heating to 455 °C, the thin gold stripes agglomerated, resulting
in an ellipsoidal dome (hemiellipsoid). The initial shape of the catalyst was preserved during growth to
realize asymmetrically cross-sectioned nanowires. Moreover, the crystalline nature of the nanowire
side facets was found to depend on the nano-trench orientation atop the substrate, resulting in
hexagonal or octagonal cross-sections when the nano-trenches are aligned or misaligned with the [110]
orientation atop a [111]B substrate. These results establish the role of catalyst shape as a unique tool to
engineer nanowire growth, potentially allowing further control over its physical properties.

For the purpose of controlling and improving semiconducting nanowire (NW) devices for various applications'~7,
an extensive research effort has been invested in studying NW growth; this was typically achieved by studying the
different effects of user controlled parameters: (i) materials - including type and size of NW catalyst, the growth
substrates and precursors, and (ii) by altering growth-system parameters, i.e., temperature and precursor flow®-"’.
In the following report we present a new paradigm, that of catalyst shape engineering, as a useful tool to control
NW growth results; in particular, we show that by imposing a non-hemispherical shape to the catalyst-substrate
interface, anisotropic cross-sectioned NWs may be grown - NWs with potentially new physical characteristics.
Furthermore, we show that the combination of a non-hemispherical catalyst with different crystalline orienta-
tions of the long axis results in non-trivial side-faceting of the grown NWs.

Nanowire cross section shape and faceting is expected to influence its electrical, mechanical, optical and
chemical properties'®-24. In particular, Foster et al. have shown that the emission of InGaAs quantum wells
embedded inside selective-area-grown anisotropically cross-sectioned GaAs NWs, exhibited linear polarization
aligned with the long cross-section axis; basically, when one cross-sectional length-scale is too small to support an
optical mode, the spatial degeneracy is lifted and the photoluminescence becomes linearly polarized??. This work
is an excellent reference for catalyst free growth of anisotropic cross-sectioned NWs, and will be discussed below
in further detail. Similar results have been reported by Li et al., in regards to polarisation of laser emission from
top-down fabricated GaN NWs?. In a different case, Mankin et al. have studied the reactivity of different facets of
a VLS grown SiNW; over-grown CdS shells were found to selectively form on {110} and {111} facets, while {113}
facets remained bare. They suggest that differences in the nature of the native oxide grown on the various facets
results in an efficient passivation on {113} facets?*. These examples demonstrate how control and understanding
of surface shape and facet orientation open up further possibilities to engineer other physical properties. The only
report we are aware of, trying to link NW catalyst shape with its properties, is the report by Lin et al., where round
and faceted (shaped) gold nanoparticles were used to catalyze InAs NWs. Their results show faceted catalysts
induced a higher growth rate to the NWs, however no other distinctions were found®.

The underlying concept which allows efficient manipulation of the catalyst shape in this work, is growth by the
selective area vapor-liquid-solid (SAVLS) mechanism - where the metal catalyst is deposited within an opening
in a selective growth mask (usually SiO, or SiN,); see refs 26, 27 for a comprehensive overview of this growth
regime. When a metallic layer is deposited on top of a mask-less substrate and subsequently heated, a process of
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Figure 1. Catalyst shape engineering. (a) Side- and top-view schematics of the suggested route to realize
anisotropic cross-sectioned catalysts and NWs: trench-like openings in a selective area mask, induce anisotropic
agglomeration of the catalyst to form anisotropic NWs. The dashed circle indicates the equilibrium shape, not
reached during this process. (b) Top-view schematics of the nanotrench orientations, with trenches aligned at
[110],[121] and 45° with respect to[110]. The wafer [110] flat was used for lithography orientation. (c) False-
colored SEM images of 1 um nanotrenches with 12nm of gold deposited within; the red rectangle in [b]
schematically depicts this area. The inset shows a close-up on one of the nanotrenches oriented along the[12
direction. Scale bars are 5 zm and 500 nm for the inset.
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agglomeration through dewetting is expected to change the layer morphology®®?’; in regards to mask-less NW
growth, this property is used to rapidly realize NW catalysts - following the deposition of a thin layer of metal®*-32,

Recently, we have studied the effect of a selective area mask on the dewetting of large catalyst discs (100-
450 nm in diameter). It was found that the mask edges prevent the migration of catalyst droplets outside the open-
ing area, and increase the chances of agglomeration into a single particle; as a result, up to 3 fold reduction of the
NW diameter compared to the original lithography was obtained simply by using the SAVLS approach. Moreover,
it was found that a final shape of a hemisphere adequately describes the catalyst agglomeration®.

We suggest utilizing these findings is useful to realize anisotropic catalysts: consider a metal stripe of width
W, thickness T and length L deposited in a trench of a slightly larger width of W; the total deposited volume is
therefore V= W), TL. The diameter of a hypothetical equilibrium hemisphere resulting from this metal stripe
is given by

1/3
6V ear ]

Dcat,hemisphere = 2[ 4

1
where V,, is the effective volume, increased due to incorporation of substrate material inside the metal at a
volumetric fraction f3, (e.g., silicon, germanium, or group III elements), sustaining V., = V,,/(1 — (). It
stands to reason that in case the equilibrium catalyst diameter is larger than the trench width, i.e. D.,,> W, a
non-hemispherical shape for the catalyst-substrate interface is expected - under the assumption that the catalyst
does not wet the mask edges efficiently, as has been demonstrated in our previous study. The suggested process
is shown schematically in Fig. 1a, depicting side- and top-view of the metal stripe evolution, from deposition to
NW growth. Figures 1b,c show a schematics and a corresponding SEM image of the growth site: three orienta-
tions of metal stripes inside lithography defined openings in a selective area mask, atop the InP growth wafer
(see experimental section below for further details). A detailed study regarding controlled dewetting of gold on
trench-patterned substrates was recently published by Lu et al., demonstrating a high level of control over the
resulting nano-patterns*.

Results and Discussion

The following account of the results is mainly focused on two aspects, comprising the core of this work: first, the
ability to induce anisotropic agglomeration of the gold within the nanotrenches, and the subsequent growth of
anisotropically cross-sectioned NWs; second, the effect of nanotrench orientation on the faceting of grown NWs.
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Figure 2. Anisotropic cross-sectioned NWs. Scanning electron micrographs (all but [g2] are 30° tilted)

of growth results from ~90 nm nanotrenches with 12 nm of deposited gold: (a-d) growth from different
orientations of 1 1m nanotrenches at 450 °C; (e-g) an extended growth, where an additional stage at 480 °C was
performed - leading to further axial growth. [g2] shows the same NW as [g1]; [a-g] scale bars are 500 nm, [g2]
is 200 nm.

Figure 3. Crystalline orientation dependence of NW cross-section. Top view scanning electron micrographs
of typical growth results from (a,b,c) nanotrenches of ~80 nm width and 1 ym length with 12 nm of deposited
gold; [a] —45°, [b] —30° and [c] —0° rotated relative to [110] orientation. Red and blue dashed lines mark the
top-viewed facets of the NW, and yellow dashed lines mark the nanotrench. (d) Nanotrench of ~80 nm width
and 2 im length with 12 nm of deposited gold in the [110] orientation; the agglomeration is not perfect and
arrows mark two catalyst particles which resulted in growth of symmetrical NWs. Inset shows schematic of the
facet orientations in ZB and WZ notations. Blue dashes represent the {110}/{1210} family, and red dashes the
{121}/{1100} family of facets.

In addition, findings regarding the unintentional growth of non-vertical square cross-sectioned NWs will be
presented. For consistency, the SEM results in Figs 2, 3 and 4 are presented such that the[110] is pointing to the
right.

Anisotropically cross-sectioned nanowires. Figure 2 shows growth results from individual ~90 nm
nanotrenches, variously oriented, with 12 nm of deposited gold (see supporting information for array view).
Figures 2a—c correspond to nanotrenches at 45°, 30° (211]) and 0° ([110]) rotation; it can be seen that similar sizes
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of the catalyst were obtained on the different locations and that indeed, anisotropically cross-sectioned NWs may
be grown in the proposed method. The NWs shown in Fig. 2a-d are relatively short, about 350 nm, due to the
large catalyst inducing a low growth rate (blue rectangle); the results of a prolonged growth are shown in
Fig. 2e-g. Figure 2d shows a nanotrench similar to the one depicted in Fig. 2¢, with the distinction that the cata-
lyst did not maintain the confinement; consequently, the anisotropic nature of the catalyst was lost, as evident by
the width projection measured in the[110] direction which is about 130 nm, compared to about 180 nm in Fig. 2c.
Furthermore, in order to examine the ability to grow longer NWs maintaining the confinement, an extended
growth was performed, which consisted of 10 minutes at 420 °C followed by 50 minutes at 480 °C (this growth is
marked by a red rectangle throughout the paper); the results are shown in Fig. 2e—-g. Remarkably, the NW cata-
lysts maintained the confinement of the nanotrench to grow p1m scale NWs. Figure 2g, shows the top view of the
NW depicted in Fig. 2g,, establishing that indeed an anisotropic cross-section has been obtained throughout the
NW length. Some roughening of the sidewalls is observed following the transition to 480 °C, which might be
related to an increased density of stacking faults related to a higher growth rate; however, these results prove the
viability of the suggested process as a route to realizing high aspect ratio NW's with an anisotropic cross section.

The problem of template controlled dewetting has been considered be several authors***. In addition to the
already complex nature of this phenomenon, our work introduces two significant non-idealities: (i) the different
nature of the mask and substrate, where different interface energies dictate the preferred wetting of the substrate®;
(ii) significant interaction between the substrate and the catalyst, deviating from pure dewetting®*. Nonetheless,
the ideal model recently presented in ref. 34, still points out to the critical role of dimension interplay between
layer thickness, trench width and trench depth in the dewetting process. The tolerance of the method was checked
by deposition of thinner and thicker metallizations (6 and 18 nm; see supporting information). It was found
that the thin metallization resulted in non-agglomerated nanoparticles, essentially inducing the growth of com-
monly encountered NWs. Conversely, the thick metallization resulted in an increased tendency of the catalyst
to lose confinement by the mask edges, allowing the catalysts to spill outside the opening (similar to Fig. 2d).
Nonetheless, when the confinement was not lost, higher anisotropic aspect ratios were obtained per a given nano-
trench length compared to 12 nm metallization - as would be expected due to the increased amount of gold. The
obtained results indicate that the scalability of this method requires optimization.

Nanowire side facet engineering. We now turn to take a closer look at the growth results, with particular
consideration of growth from different trench orientations. Figure 3a—c shows a high magnification, top view, of
typical growth results (when catalysts are successfully confined) from ~80 nm wide, 1 zm long, nanotrenches at
45°,30° ([211]) and 0° ([110]) rotation; the deposition thickness was 12 nm. The top point of view allows careful
examination of the catalyst and NW circumference; indeed, the anisotropic nature of the cross-section is evident.
These NWs exhibit an anisotropic ratio of about 1:1.5, with the NW cross section short axis measuring at about
100 nm - somewhat larger than the trench width (marked by yellow dashed lines). This could be brought by “spill-
age” of the catalyst when the growth front protrudes out of the selective area mask, or by a certain degree of radial
growth. By plugging-in the process dimensions indicated above (We account for a 30 nm wide deposition, with the
rest of the trench resulting from wet-etch broadening) and assuming 45% of indium in the catalyst®, into Eq. 1, an
equilibrium hemispherical catalyst diameter of 135 nm is calculated - indicating that indeed, confinement is
expected since the trench width is 80 nm. Lower aspect ratios were observed; for example, 1:1.65 when the depo-
sition is thicker (18 nm) for similar 1 gm lithography (see Supporting Information - Fig. S2e), down to 1:1.8
(110:200 nm), which is the lowest ratio observed in this set of experiments, for a 2 ym long nanotrench exhibiting
single particle agglomeration in the conditions mentioned above (see Supporting Information - Fig. S3).

Furthermore, an important finding is that the misoriented trenches induced an octagonal circumference to
the NWs, as can be seen in Fig. 3a,b. This stands in contrast compared to a nearly perfect hexagonal cross-section
in the[110] trench orientation (“standard” hexagonal faceting is also evident in Figs 2g, and 3d). The inset in Fig. 3
schematically shows the {110} and {121} Zinc-blende (ZB) facet families and their corresponding Wurtzite (WZ)
counterparts: {1210} and {1100}; thus allowing the understanding of the grown NWs facet configurations. If so,
[110] oriented trenches induced the growth of hexagonal NWs with {121}/{1100} type facets (marked red), while
the octagonal NWs, grown from misoriented trenches, have six {121}/{1100} facets, with an addition of two
{110}/{1210} facets (marked blue). This result already shows that the NWs grown from nanotrenches aligned with
different crystalline orientations, may posses different physical properties due to the two additional facets of a
different family. Fonseka et al. have reported the growth of [100] oriented InP NWs with octagonal cross-sections
in the NW section close to the catalyst; in that case, lateral growth renders a square cross-section to the remainder
of the NW, and the details of the growth as a whole are controlled by standard growth conditions - temperature
and precursor flow?. This picture stands in contrast to the micron-scale anisotropic cross sections demonstrated
in Fig. 2e-g.

In order to understand the growth of octagonal cross-sectioned NWs, we first examine the growth of the hex-
agonal cross-sectioned NWs. Interestingly, non-confined NWs also exhibit hexagonal {121} faceting; as shown in
Fig. 3d, where a catalyst stripe did not yield a single particle, and the smaller residues resulted in the growth of
symmetrically cross-sectioned NWs with visible {121} facets. Sibirev et al. have calculated different
facet-associated surface energies of III-V NWs for WZ and ZB configurations; their calculations exhibited a high
degree of agreement with reported experimental results®. Table 1 shows the calculated surface energies of {121}
and {110} facets for InP and GaAs. Although the calculations are based on a simplified nearest neighbor model, a
useful rule of thumb can be outlined: for WZ nanowires, grown along the [0001]/[111]B directions, the {1100}
({121}) faceting is energetically favored; conversely, for ZB nanowires grown along the same axis, the {110}
({1210}) is preferred (this has also been demonstrated by Ikejiri et al.*?). For the growth system used in this study,
under a relatively wide range of conditions, WZ structure is most commonly observed, exhibiting high purity
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Material Facet Pair | WZ Energy [J/m?] | ZB Energy [J/m?]
{121}/{1100} 1.19 1.56
InP = —
{110}/{1210} 1.38 1.38
121}/{1100 13 1.79
ane {L21}/(1100}
{110}/{i210} 1.54 1.54

Table 1. WZ and ZB associated surface energies for InP and GaAS3®.

levels, up to the absence of stacking faults'®. Indeed, the unconfined NWs in Fig. 3d exhibit the preferred { — 1100},
facets in agreement with the theoretical predictions.

Next, it is beneficial to examine the catalyst-free anisotropically cross-sectioned GaAs NWs reported by Foster
et al., under these theoretical guidelines?. To realize such NWs, they have created asymmetric trench-like open-
ings in a selective area growth mask; the trenches were aligned with various {110} and {121} type orientations.
Notably, their growth is purely based on the selective area approach and is catalyst-free. Their main experimental
observation was that [121] oriented trenches resulted in the growth of anisotropically cross-sectioned hexagonal
NWs, having {110} facets; while [110] oriented trenches yielded more symmetrical hexagonal structures, having
the same {110} facets (see ref. 22 Figs 1 and 2). Although not directly stated in that publication, previous publica-
tions from that group regarding GaAs NWs in similar conditions, indicate these NWs are ZB with {110}
Faceting*®*!. Once again, the crystalline structure and side-facets are in good agreement with the surface energy
prediction by Sibirev and co-workers.

We can now point out the differences and similarities between the catalyst-assisted and catalyst-free growth of
NWs. In both cases, when the nanotrench orientation is such that facets normal to the long axis are energetically
favored, hexagonal anisotropically cross-sectioned NWs are grown, maintaining the preferred faceting (for either
WZ or ZB). A crucial distinction between the methods is observed when the nanotrenches are oriented such that
the long-axis normal facet is not compatible with the energetic criteria (as in Fig. 3a,b above and Fig. 2 in ref. 22):
for the catalyst-free case, the energy considerations still dictate the growth, resulting in a smaller extent of asym-
metry in the cross-section; thus limiting the ability to grow such structures in orientations other than the energet-
ically preferred ones. Contrary, in catalyst assisted growth, the catalysts, and subsequently the NWs, maintain
confinement despite the facet energy considerations, and the asymmetrical shape of the droplet. The confinement
and the energy considerations are reconciled by the additional facets, leading to the octagonal cross-section
observed - effectively opening up new possibilities to engineer NW properties. Importantly, the confinement is
maintained not only in “natural” nanotrench orientations such as {110} and [121], but also in the 45° oriented
nanotrenches, which in terms of crystalline symmetry could be considered “arbitrary”.

The maintained confinement, which resulted in the growth of increased energy facets, was observed on-top of
the already less energetically favored non-hemispherical catalyst; apparently, both the facet and droplet energetic
considerations make this observation improbable. We examine this result from a phenomenological point of view,
in order to obtain better insight into the growth of octagonal NWs. Consider a[121] oriented nanotrench, as seen
in Fig. 3b. Prior to growth, due to surface (energy) minimization, the agglomeration results in a droplet which is
as close as possible to a hemisphere, after which growth commences. From that point, there are two routes for a
hexagonal NW to be grown (see Supporting Information - Fig. S4): (1) loss of confinement, with a
hemispherical-like catalyst (similar to growth from non energetically favored trenches in the report by Foster et
al. in ref. 22); (2) decrease of interfacial area, accompanied by increase of the catalyst/ambient interfacial area, in
a symmetrical or asymmetrical manner, such that the catalyst/NW interfacial shape is aligned with the energeti-
cally favored facets.

Consider the first option: for the catalyst to become more hemispherical, it needs to wet either the NW edges,
or the mask (in the initial growth stages); both processes come at an energetic cost®. Indeed no actual growth of
vertical NW's was observed in the cases where confinement was lost. The implications of the second option are
that the total surface area of the catalyst is increased (the cost of a lower interfacial area), and with it its energy,
which is also unfavorable. Therefore, based on this qualitative analysis, we conclude that although the initial state
considered seems improbable, it is favored compared to the alternatives for lowering the facet energies, given that
the NW has already started growing these facets. The octagonal NWs could be viewed as growing in a metastable
state, reconciling the energetic demands of the catalyst and the NW facets. This observation could be an extension
of the geometrical frustration concept for ZB NWs*2,

Growth of square cross-sectioned nanowires. Finally, we report the growth of NWs with square and
rectangular cross-sections; a rare finding on (111)B III-V substrates. This consistently occurred in about 2-4% of
the growth locations where confinement was lost and a round catalyst was seen at the top of an epitaxially grown
NW. Figure 4 shows several examples of such NWs, grown at various conditions, observed in top view and tilted
view. Figure 4a shows an example where growth from a 2 yzm nanotrench, without successful single-particle
agglomeration, resulted in the growth of a square cross-sectioned NW among other [111] NWs; this is an image
taken at 30° tilt, nonetheless it already demonstrates the “off-axis” nature of these NWs, as subsequently seen in
the top-view images.

The most common occurrence of these NWs was in the [110] oriented nanotrenches, while in the 45° orienta-
tions, fewer such NWs were observed (Fig. 4fh); interestingly, in the[121] orientations no such NWs were found
- an issue for future research, together with the general growth mechanism of these NWs. When different growth
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Figure 4. Growth of square cross-sectioned NWs. Scanning electron micrographs of NWs with square/
rectangular cross section; [a,b,,e,g] are tilted-view while others are top-view. (a—d) Results from a 450°C
growth (blue rectangle - same growth as in Fig. 2a-d). The sample was tilted until the NW in [b,] reached a
vertical point of view at 16° tilt - [b,]. The arrows point to tetrahedron-like structures found at the base of cubic
NWs, and calculated facet orientations are shown in [b,]; (e,f) results from a 480 °C growth (red rectangle -
same growth as in Fig. 2e-g); (g,h) Results from a 90 minute 450 °C growth (yellow rectangle). Scale bars are

1 pm [a], 200 nm [b-d] and 500 nm [e-h].

conditions were used (differently colored frames), it was found that these NWss are able to elongate along the
growth direction (alongside radial growth, as indicated by the difference between catalyst and NW diameters in
Fig. 4e), and that in prolonged growth times a rectangular cross section is developed - indicating different growth
rate of side-facet pairs (Fig. 4f-h).

The full analysis of the NWs’ growth mechanism and structure is a subject for future work, however, a prelim-
inary analysis, based on SEM directional examination, was performed for the most commonly observed NWs
(such as those seen in Fig. 4b—d). While keeping the NW in Fig. 4b, in view, the sample was tilted until the side
facets were not visible, indicating an aligned top-view; this occurred at 16° tilt. In addition, this NW is obviously
orthogonal to the nanotrench, therefore two of its side facets are {110} type. The orientation exhibiting 16° and 90°
with [111] and [110] (correspondingly), is [221] (accurately - 15.79° with [111]); the two other side facets in this
case are [114] and [114]. This makes a remarkable finding, considering that reports of square/rectangular NW's
usually regard the [110]/[100] growth orientations®"*344,

Interestingly, for NWs pointing to the other way (e.g. Fig. 4c) top-view alignment was found in 16° again,
when the “mirrored” procedure was performed. It is worth examining the base of the NWss in Fig. 4b,d compared
to Fig. 4c (marked by arrows): the top view reveals a mirror symmetry of the tetrahedron base, relative to the [110]
orientation. In a publication by Ikejiri ef al., similar structures were found during growth of selective area GaAs
NWs; it was suggested that twining is responsible for the mirror-like inversion of the tetrahedron orientation®. If
s0, it is probable that a twin defect results in the symmetry observed here for the growth of square cross-sectioned
NWs, atop mirrored tetrahedrons, at both 16° and —16° relative to the substrate normal, within the [110] plane.

The square cross section of these NWs was found to develop into a rectangular cross section in the prolonged
90 minute growth (yellow frame). This kind of NW evolution is usually attributed to different growth rate of different
facets; in particular, Shtrikman et al. have demonstrated rectangular NWs having {110} and {100} facets (opposite
two of each type), with a slow growth rate of the {110} facets*’. In our case, as the {114} type facets are composed of
micro {100} and {111} facets*®*, it is similarly expected they have a higher growth rate compared to the {110} facets
- as indeed observed (Fig. 4g,h - notice that the tetrahedron in Fig. 4h is mirrored). Further research, focused on
TEM examination of these NWs is necessary to fully understand their growth, and to verify their growth direction.
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Conclusion

We presented a method to grow anisotropically cross-sectioned catalyst assisted NWs. At the heart of this method
lies the ability to engineer the shape of the catalyst, and the catalyst/substrate interface. We observed NWs with
an anisotropic cross-section ratio of up to 1:1.8, and have demonstrated the ability to grow such NWs to um-scale
length. The orientation of the long asymmetry axis atop the growth substrate was found to have a profound effect
on growth, where nanotrenches aligned (misaligned) with the [110] orientation resulted in NW's of hexagonal
(octagonal) cross sections; the two additional facets are of different crystalline orientation, compared to the six
“energetically trivial” facets, and may induce different chemical properties to the octagonal NWs. In addition, a
consistent fraction of the growth sites resulted in growth of NWs having square/rectangular cross sections, a
remarkable finding in growth on (111)b III-V substrates. Preliminary directional analysis of these NW's suggests
that most of them grew in the [221] direction, with {110} and {114} type facets.

This report presents a new paradigm in bottom-up catalyzed growth of NWs, demonstrating that the cat-
alyst shape prior to growth can be controlled inside the growth chamber, and subsequently impose a spatially
non-symmetric growth interface. Furthermore, the significance of the catalyst exceeds the mere shaping of NW
growth interface; as indicated by growth of octagonal NWs, and off-axis cubic NWs. These results open-up a
variety of future research directions, from devices based on anisotropically cross-sectioned NWs and NW facet
engineering, to fundamental studies regarding the catalyst-mask-substrate interaction and the growth of cubic
NWs on (111)B substrates.

Methods
InP Nanowires were grown on (111)B oriented InP substrates (Semiconductor wafer Inc.) by metal organic
molecular beam epitaxy (MOMBE). The sample was first coated by ~5nm of SiN, by PECVD to act as a selective
area mask for the growth. Subsequently, the sample was spin-coated with PMMA (495 A5 Microchem), and line
patterns with lengths ranging from 300 nm to 2 um and widths of about 30-60 £5nm were difined by e-beam
lithography; most of these lines were aligned with the [110] direction, however 1 zm lines were written also at 30°
and 45° relative to that orientation - the former corresponds to[211] (see manuscript Fig. 1b). Directional align-
ment was performed relative to the wafer flat. Using this lithography pattern, the mask was etched by buffered HF
(resulting is a 20-30 nm widening of the nanotrenches), and gold (6, 12 or 18 nm) was deposited within the etched
nanotrenches. Since wet etching is used to open-up the nanotrenches, a widening of their width compared to the
original lithography is unavoidable. An etching step with better directionality (e.g., RIE) would be more efficient in
controlling the aspect ratios of the resulting catalyst; a similar process was presented by Foster and co workers?2. The
samples were inserted into the growth chamber and heated to 455 °C under PH; flux prior to growth - performed at
450°C for 30 minutes (blue rectangles throughout the paper), unless otherwise stated.

Scanning electron microscopy (Hitachi S-4700) with magnification of up to 200k was used to characterize the
growth results, in terms of dimensions, orientations and faceting.
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