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Solving Large-Scale Inverse 
Magnetostatic Problems using the 
Adjoint Method
Florian Bruckner1, Claas Abert1, Gregor Wautischer1, Christian Huber1, Christoph Vogler2, 
Michael Hinze3 & Dieter Suess1

An efficient algorithm for the reconstruction of the magnetization state within magnetic components 
is presented. The occurring inverse magnetostatic problem is solved by means of an adjoint approach, 
based on the Fredkin-Koehler method for the solution of the forward problem. Due to the use of hybrid 
FEM-BEM coupling combined with matrix compression techniques the resulting algorithm is well 
suited for large-scale problems. Furthermore the reconstruction of the magnetization state within a 
permanent magnet as well as an optimal design application are demonstrated.

Magnetic materials are used in a wide range of applications, ranging from permanent magnets, magnetic 
machines, up to magnetic sensors and magnetic recording devices. Solving the Inverse Magnetostatic Problem 
allows to reconstruct the internal magnetization state of a magnetic component, by means of magnetic field meas-
urements outside of the magnetic part, which is of importance for quality control. Compared with the forward 
problem, where the magnetic state is known and the strayfield is calculated, inverse problems are much harder to 
solve, since they typically are much worse conditioned and often not uniquely solveable. Inverse problem solvers 
are based on stable and reliable solvers for the forward problem. In the case of magnetostatic Maxwell equations, 
Finite Element (FEM) formulations, combined with methods to handle the open-boundary, have proven to be the 
methods of choice for many efficient and accurate methods1–3.

The applications of inverse problems can be coarsely divided into optimal design and source identification. 
Optimal design problems define a desired strayfield and try to calculate optimal material distributions or geom-
etries to reach these requirements as accurate as possible4,5. In contrast to this, source identification problems try 
to reconstruct the state of existing magnetic components. The identification of (permanent) magnetic materials 
has e.g. been successfully applied for reconstructing the state of magnetic rollers used in copy machines6, magnet-
ically biased chokes7, or even for the magnetic anomaly created by ferromagnetic ships8.

The presented solver for the inverse 3D magnetostatic Maxwell equations, is based on the well-established 
Fredkin-Koehler-Method3, which uses a hybrid FEM-BEM coupling for efficient handling of the open-boundary 
conditions. Combined with a hierarchical matrix compression technique for the dense boundary integral matri-
ces, the algorithm is able to handle large-scale problems. Additionally, the use of a general Tikhonov regulariza-
tion (see e.g. ref. 9), provides a very flexible means to define application specific regularizations.

Adjoint Method
Forward Problem. The demagnetization field of a magnetic body is defined as ∇= −h ud , where the mag-
netic scalar potential u is given by

∇∆ = ⋅ Ωmu in (1)

∆ = Ωu 0 in \ (2)3

with jump and boundary conditions
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where m is the magnetization and Ω is the magnetic region.
The forward problem requires the solution of the potential u on the region Ωh generated by the magnetization 

in a magnetic region Ωm (see Fig. 1). This problem is solved by considering a single region Ω =  Ωm ∪  Ωh with 
m(x) =  0 for x ∈  Ωh. The hybrid FEM/BEM method introduced by Fredkin and Koehler3 is one of the most accu-
rate methods for the solution of this problem and will be used in the following. Consider the following splitting of 
the solution u:

= +u u u (6)1 2

Here u1 is defined by

∆ ∇= ⋅ Ωmu in (7)1

∂
∂
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n
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 Ω= .u 0 in \ (9)1
3

This Neumann problem is solved with the finite-element method. While u1 solves for the right-hand side m 
and fulfills the jump condition of the normal derivative − m · n, it is not continuous across ∂ Ω as required. This 
jump is compensated by u2 which is defined as

∆ = Ωu 0 in (10)2

= − ∂Ωu u[ ] [ ] on (11)2 1

Figure 1. Discretized magnetization region Ωm (blue) and measurement region Ωh (brown). Since the 
strayfield problem is scale-invariant, length units are omitted. The magnetization is defined on a unit cube. 
Measurement boxes of thickness 0.04 are located next to each side of the cube, using an airgap of 0.1 (the 2 
boxes in front are not shown in the figure).
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This system is solved by the following double-layer potential

∫= ∂
∂ − ′∂Ω n x x

u u x1 d
(14)

2 1

For efficiency reasons the double-layer potential is only computed on the boundary ∂ Ω using a Galerkin 
boundary-element method. Subsequently these values are used as Dirichlet boundary conditions to solve u2 
within Ω using the finite-element method.

All potentials are calculated using piecewise linear basis function (1) and the derived strayfield would be 
constant within each element. Thus, a mass lumping procedure needs to be used to project the field onto piece-
wise linear basis functions which are defined on each vertex of the mesh.

Inverse Problem. The inverse problem can be understood as a PDE constrained optimization problem. Due 
to the ill-posedness of the inverse problem, some additional information needs to be provided to allow reasona-
ble results. This can be achieved by using Tikhonov regularization, which uses an additional penalty term which 
should be considered for the optimization. A possible candidate for the objective function is

∫ α∇= − − +
Ω

h x mJ u T1
2

d ( ) (15)m
2

h

where hm is the prescribed (measured) field in Ωh and α is the Tikhonov constant corresponding to the regulari-
zation functional T(m). This functional should be minimized, constrained by

∇= ∆ − ⋅ = ΩmF u 0 on (16)

with boundary conditions as given above. We aim to solve this problem using a gradient based iterative minim-
izer. The constraint F gives an implicit expression for u(m) which allows to directly calculate the desired gradient 
by

=
∂
∂

∂
∂
+
∂
∂m m m

J J
u

u Jd
d (17)

The inefficient direct calculation of the term ∂
∂m

u  can be avoided using the adjoint approach, which makes use 
of the derivative of the constraint equation to eliminate the problematic term. Compared with a naive implemen-
tation using a dense system matrix ∂

∂
u
m

, the computational as well as storage costs can be reduced from O N( )2  to 
O N N( log ):

λ= ∂
∂
+
∂
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J F Jd
d (18)
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where λ is given by the adjoint equation
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Since the Poisson problem is self-adjoint, the adjoint system (19) can be solved along the lines of the forward 
problem. Computing the variational derivative on the RHS yields

λ ∇ ∇∆ = ⋅ + Ω.hu( ) on (20)m

where the sources (RHS) live on Ωh and the solution is only computed on Ωm. The same boundary conditions as 
for the forward problem hold. Thus, the above described hybrid method is applied. The gradient of J is then finally 
given by

λ α∇= +
∂
∂m m

J Td
d (21)

Note that ∇u and λ∇  are projected onto 1  before computing (20) and (21) respectively. The algorithm is 
implemented using Magnum.Fe10, which is based on the finite element library FEniCS11. This allows a very com-
fortable definition of the regularization functional. Furthermore, automatic differentiation can be used for the 
calculation of the corresponding partial derivatives. The algorithm was verified by comparison with a FEM-only 
implementation, using the dolfin-adjoint library12, which allows to automatically derive the adjoint equation for 
a given forward problem.
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Numerical Experiments
The presented algorithm is validated by the reconstruction of the flower-state within a magnetic unit cube. The 
strayfield is calculated within measurement planes next to each side of the cube (see Fig. 1). The magnetic state of 
the cube is parametrized by

θ φ
θ φ
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θ

φ
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= +
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sin( ) cos( )
sin( ) sin( )
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2 2

1

where ctilt is an open parameter that allows to change the strength of the flower state. For the proper reconstruc-
tion of the magnetic state additional knowledge about the solution needs to be provided. For all presented results 
a smooth reconstructed magnetization is desired which suggests using the following default regularization 
functional

∫= ∇
Ω

m m xT ( ) ( ) d (23)
2

m

For this specific flower-state the absolute value of the magnetization is known to be constant. Thus, the solu-
tion of the inverse problem could be simplified by using the following penaltization functional

∫= −
Ω

⁎ m m xT ( ) ( 1) d (24)
2 2

m

The assumption of a constant magnetization may be a good approximation for (isotropic) permanent mag-
netic materials. Due to the large magnetic remanence and the relatively small susceptibility the induced magneti-
zation may be negligible (see ref. 13 for a simple model of isotropic permanent magnetic materials).

A Gaussian noise with zero mean and a standard deviation σ  =  10−4 has been added to the field, calculated 
by the forward problem, which should simulate unavoidable measurement errors. The minimization problem is 
solved by a gradient descent method combined with a line-search strategy. As expected, reconstruction without 
using a proper regularization leads to large magnetization vectors near to the edges of the unit cube. Increasing the 
regularization parameter α, first avoids the over-fitting of the noisy measurement data, but finally leads to blurring 
of the reconstruction results if α gets too large. Determining the optimal alpha is a crucial step for the solution 
of an inverse problem. The results for the reconstruction of a flower state with ctilt =  2 using α =  10−3 is visual-
ized in Fig. 2. Although there are some deviations of the reconstructed magnetization from the reference state.  

Figure 2. Reconstruction of a flower-state within a unit cube according to Eqn. (22) using ctilt = 2. A cut 
through the y =  0 plane is visualized. Starting from the initial parametrized flower state in Ωm the magnetic 
strayfield is calculated within the fieldboxes Ωh (green arrows). In order to simulate measurement errors a 
Gaussian noise with σ  =  10−4 has been added to the forward strayfield. The reconstructed magnetization as well 
as strayfield are computed using α =  10−3 (red arrows). The relative differences of initial and reconstructed 
states are indicated by the gray-scale. Maximal relative errors of the x-components amount to 0.25 for the 
magnetization, and 5 · 10−3 for the induced magnetic field, respectively.
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It can be seen that the created strayfield is nearly identical. As stated above this is a clear indication of the bad 
condition of the inverse problem.

Using the so-called L-curve method14, allows to visualize the trade-off between the reconstruction of the 
strayfield and the fulfillment of the regularization constraint. Plotting the regularization norm (also called solu-
tion norm) T m( )  over the residual norm ∇− − hu m  for different regularization parameters α, shows an 
L-shaped curve. The optimal αopt can be selected at the corner of the L-curve which means that α is large enough 
to reduce the regularization norm significantly, but it does not change the residual norm too much. The resulting 
L-curves for the reconstruction of the flower state for different noise levels are summarized in Fig. 3. An optimal 
value αopt ≈  5 · 10−5 can be found.

The application of the presented method to optimal design problems should now be demonstrated by means 
of a Halbach cylinder configuration. The goal is to find a magnetization configuration within a cylindrical 
domain, which creates a homogeneous strayfield inside of the cylinder. The magnetization domain Ωm has an 

Figure 3. L-curves for the reconstruction of the flower state for different noise levels σ. 

Figure 4. Optimal design problem of a Halbach cylinder creating a homogeneous strayfield inside of the 
cylinder. Starting from a homogeneous strayfield the presented algorithm reproduces a Halbach like 
magnetization configuration within Ωm (red arrows). A constant-norm regularization with α =  104 is used and 
shows a nearly perfect match with the analytical solution (green arrows). The resulting strayfield is calculated 
inside Ωh and shows a nearly homogeneous distribution (red arrows). The relative errors of the magnetization 
magnitude and the reconstruced strayfield are indicated by the gray-scale, and their maximum amount to 2% 
and 6%, respectively.
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outer radius ro =  1.0, an inner radius ri =  0.6, and a height of h =  2.0, while a cylindrical measurement domain Ωh 
with radius rm =  0.5 and the same height is used. The magnetization vectors should have constant norm, which 
suggests using the constant-norm penaltization functional (24). The analytic solution for a cylindical Halbach 
array15 can be expressed in cylindrical coordinates as

ρ φ φ φ= −ρ φm e e( , ) cos( ) sin( ) (25)

where ρ, φ are the cylindrical coordinates, with the corresponding unit vectors eρ, eφ.
As visualized in Fig. 4 there is a nearly perfect match of the reconstructed and the analytical Halbach 

configuration.

Conclusion
An efficient algorithm for the solution of inverse problems has been introduced. The use of the Finite Element 
library FEniCS allows to easily define application specific regularization functionals in a very flexible way. Thus, 
the implemented algorithm is suitable for a wide range of applications including reverse engineering of magnetic 
components, design and optimization of magnetic circuits and topology optimization, respectively. Using the 
hybrid FEM-BEM method proposed by Fredkin-Koehler allows to handle the open-boundary problem accurately 
and without the need for global mesh including a large airbox. Source identification has been validated by the 
successful reconstruction of the magnetic flower-state within a unit cube by means of Tikhonov regularization. 
The selection of a suitable regularization parameter has been demonstrated using the L-curve method. Finally, the 
application of the method to an optimal design problem has been demonstrated by means of an Halbach cylinder, 
which is nearly perfectly reproduced.
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