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Inferring Centrality from Network 
Snapshots
Haibin Shao1, Mehran Mesbahi2, Dewei Li1 & Yugeng Xi1

The topology and dynamics of a complex network shape its functionality. However, the topologies of 
many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of 
network topology, we show how the data generated from the network dynamics can be utilised to infer 
the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We 
show that the tempo centrality can be used to construct an accurate estimate of both the propagation 
rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. 
Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. 
Our findings provide an approach to infer the performance of a consensus network from its temporal 
data.

Centrality is designed to identify the most important nodes in a network and has been examined for several dec-
ades1–3. A node with a larger centrality value is considered more influential in a network4. The network topology 
plays a paramount role in centrality metrics, for instance, through its degree (the number of connections incident 
upon a node), eigenvector (based on the idea that connections to high-scored nodes contribute more to the score 
of the node than connections to low-scored nodes), betweenness (quantifies the number of times a node acts as 
a bridge along the shortest path between two other nodes), closeness (the reciprocal of the sum of its distances 
from all other nodes), and k-shell (or k-core of a graph is its maximal connected subgraph in which all nodes have 
degree at least k), etc. However, the topology of many large-scale networks could be unavailable, incomplete or 
unreliable. Even when the network topology is known, it might be expensive to compute its centrality index using 
global information. To this end, we examine whether we can compute the network centrality without the explicit 
knowledge of network topology and whether each individual node can infer its role from local observations. 
In addition to the network topology, the dynamics provides an alternative ingredient for identifying the role of 
nodes in a complex network. Recently, more links between centrality metrics and the network dynamics have 
been explored, such as in the context of percolation centrality5, control centrality6, and grounding centrality7, etc.

In this paper, we focus on consensus networks, a type of complex network whose components are diffusively 
coupled, and provide an elegant prototype for collective behaviors such as flocking of birds, schooling of fish, and 
phase transition in self-propelled agents8. We introduce a novel metric tempo centrality to quantify the influ-
ence of nodes in a consensus network, and show that the proposed metric can be computed from the temporal 
data of the network, even when the network topology is unavailable. An algorithm is subsequently given for the 
computation of tempo centrality. Moreover, the tempo centrality is shown to have a close correlation with both 
convergence rate and functional robustness of consensus networks.

Results
Tempo Centrality.  Consider a networked system with ∈n  nodes depending on the application. Each 
agent ∈i  has a state at time t denoted by xi(t) that could represent position, temperature, or opinion. The inter-
action topology amongst agents is dictated by a graph G V E A= ( , , ) with a node set =  n{1, 2, , } , an edge set 
E V V= × , and an adjacency matrix , respectively. The adjacency matrix  ∈ ×n n is such that  = 1ij  when 

∈i j( , )   and = 0ij  otherwise. The networks discussed in this paper are assumed to be simple, undirected and 
connected9.
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We discuss the consensus dynamics
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that has been extensively examined in distributed coordination of multi-agent systems10–13, opinion formation in 
social networks14,15 and synchronization amongst oscillators16. We shall refer to network adopting consensus 
dynamics (1) as the consensus network. We say consensus is achieved for a consensus network when 

=→∞ →∞x t x tlim ( ) lim ( )t i t j  for all ≠ ∈i j 10. The consensus dynamics (1) provides an elegant prototype for the 
emergence of synchronization17.

Controlling a consensus network (steering the states of all the agents to a desired value) can be achieved by 
influencing a group of agents W V⊂  and the effect of control depends on the selection of the set  . In this paper, 
we are interested in understanding the role of agents in a consensus network when acting as anchors through 
which the external inputs exert influence on the network.

Denote the set of external inputs as  = u u u{ , , , }m1 2 , where ∈ui  and i ∈​ {1, 2, …​, m}. Those agents who 
are directly influenced by the external inputs are referred to as the leader agents (or informed agents). The set of 
leader agents is denoted by  l. Denote by ∈ ×n m  as the influence matrix such that  = 1il  if and only if there 
exists ∈ul   such that the agent ∈i l is directly influenced by ul, and = 0il  otherwise. It is assumed that each 
agent can be directly influenced by at most one external input. Thus the sum of each row of  is less than 1 and 
there exists a one-to-one correspondence between  l and . Denote the influence matrix determined by a node 
set ⊂W V  as B W( ). The individual behaviour is thus shifted to the following influenced consensus dynamics as 
a result of the external input,

A B∑ ∑= − + − .
= =
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The network state, denoted by x(t) =​ [x1(t), x2(t), …​, xn(t)]Τ, characterises the behaviour of the overall system 
where Τ represents the transpose operation. The dynamics of the network state with external inputs is then

L BB= − +

x xt t u( ) ( ) , (3)

where u =​ [u1, u2, …​, um]Τ, L L BBB = + Τ , and  ∈ ×n n represents the graph Laplacian or Kirchhoff matrix 
satisfying  = ∑ = aij j

n
ij1  for all i =​ j and  = −aij ij for all i ≠​ j. The complex network with the influenced consen-

sus dynamics (2) is referred to as the influenced consensus network.
An example of the structure of an influenced consensus network is shown in Supplementary Figure 1, where 

agent 1 is directly influenced by an external input ∈u  and therefore is a leader agent. In this example, the influ-
ence matrix is
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and the corresponding influenced consensus dynamics is
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On the one hand, the evolution of the influenced consensus network (3) depends on the type of external inputs. 
The set of external inputs   is homogeneous if ui =​ uj for all ∈u u,i j  and heterogeneous otherwise. If the external 
inputs are homogeneous, then consensus is achieved on the value of the external input, namely, limt→∞x(t) =​ ui1 
where = ∈Τ1 [1, 1, , 1] n and i ∈​ {1, 2, …​, m}11. Clusters (where the states of agents converge to several distinct 
values) would emerge when external inputs are heterogeneous18. The results in this paper are available for both 
homogeneous and heterogeneous inputs. We do assume however that the external inputs are time-invariant which 
can be considered as the belief of a zealot19 or the opinion of stubborn individuals or political leaders15.

On the other hand, the dynamics of the influenced consensus network is also shaped by the influence matrix 
. Note that Τ  is a diagonal matrix with only ii-th entry 1 where ∈i l, and 0 for other entries. The matrix LB 
is then derived from the perturbation of the graph Laplacian by the diagonal matrix Τ ; it is therefore referred 
to as the perturbed Laplacian matrix. The perturbed graph Laplacian of an undirected graph is symmetric; hence 
we denote the eigenvalues of LB as 0 <​ λ1 <​ λ2 ≤​ …​ ≤​ λn and the corresponding normalised eigenvectors as  
v1, v2, …​, vn. In essence, the spectra of LB dictates the evolution of influenced consensus dynamics (3).

Controlling a consensus network via different leader agents impacts the network differently. The influence of 
an agent (or a group of agents) in a consensus network can be measured by the fluctuation of the network state 
x(t) triggered by this agent(s). We shall characterise the state fluctuation by a differentiation operator.

Taking the influenced consensus network in Supplementary Figure 1 as an example, we use quantity
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to characterise the influence of leader agent 1, where ||⋅||2 represents the Euclidean vector norm. The state evolu-
tion of each agent and r{1}(t) are shown in Fig. 1(a) and (b), respectively. The time window can be divided into two 
stages according to the convergence of r{1}(t), denoted by the coherence stage and the tracking stage, respectively. 
During the coherence stage, agents aggregate their states under the attractive force generated by diffusive cou-
plings amongst agents. Since the consensus network is influenced by an external input u =​ 10, all agents subse-
quently track the external input via the leader agents. The two panels are both divided by the green dashed vertical 
lines at the time step t ≈​ 4.5, on which r{1}(t) has converged to a steady value of 0.328. The coherence stage is 
governed by all the eigenvalues of LB and the corresponding eigenvectors, but the tracking stage is dominated by 
λ1 and v1. According to the Perron– Frobenius theorem, the entries of v1 are all nonzero and can be selected to be 
positive20.

For a set of agents W V= ⊂i i i{ , , , }s1 2 , we define its tempo centrality (TC), denoted by α( ), as 
 vh( ) 1 2

, where v1 is the normalised eigenvector corresponding to the smallest eigenvalue of LB W( ), 
= ∈Τ Τ Τ Τ ×

h e e e( ) [ , , , ]i i i
s n

s1 2
 , and ∈ei

n
j

 denotes the column vector with 1 for the ij-th entry and 0 oth-
erwise, where j ∈​ {1, 2, …​, s}. It has been shown in ref. 21 that the long-term behaviour of
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is determined by v1, namely,

α= =
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vr t hlim ( ) ( ) ( ), (5)t
1 2 

implying that →∞r tlim ( )t  is independent of both the initial state x(0) and the external input u, as shown in 
Supplementary Figs 2 and 3. Note that TC takes values from entries of a positive normalised eigenvector, there-
fore α ∈( ) (0, 1]. The TC characterises the tempo of agents with respect to that of the entire network in the 
tracking stage when they act as leaders.

Computation of TC based on Temporal Data.  The evolution of the network state is dictated by the 
network topology and the individual node dynamics. According to (5), the network snapshots that are generated 
by the individual dynamics can provide an alternative way for the computation of TC even when the network 
topology is unknown. We shall utilize this property for the design of an algorithm for computing TC from the 
temporal data of a consensus network.

Consider a consensus network with the set of leader agent = i{ }l  and the corresponding perturbed Laplacian 
matrix LB. Denote by hi and hj as selection matrices for the leader agent {i} and a distinct agent {j}, respectively. 
The following result has been established linking the network state and the spectra of perturbed Laplacian matrix 
in ref. 21,
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where v1 is the normalized eigenvector corresponding to the smallest eigenvalue of LB.
We now show how TC can be computed from the network snapshots. Without loss of generality, designate 

agent 1 as the leader agent in the network, i.e., = {1}l . Discretizing (3) at the sampling points 
t0 ≤​ δ1 <​ δ2 <​ …​ <​ δm yields an m-length snapshots of the consensus network, i.e., = + δx xk t( ) ( )k0  where t0 ≥​ 0 
is the initial time step and k =​ 0, 1, …​, m. Denote β β β β= ∈Τk k k k( ) [ ( ), ( ), , ( )]n

n
1 2  satisfying

Figure 1.  Coherence and tracking. (a) The trajectories of agents’ states of the influenced consensus network in 
Supplementary Figure 1 and (b) the trajectory of r{1}(t).
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 approaches the TC of agent 1 when k →​ ∞​. A value 

threshold ε >​ 0 needs to be set such that the computation of 
r k( )j{1},{ }  terminates when reaching its steady state. 

The above discussions conclude the following algorithm that computes the TC of leader agent 1.

Algorithm 1 Computation of Tempo Centrality from Temporal Data

Require: ε β= > ≠ .��x k k m( ), 1, 2, , ; 0; (0) 01  

    k =​ 1

    while ε∃ ∈ − − > ‖˜ ˜ ‖j n r k r k{1, 2, , }\{1}such that ( ) ( 1)j j{1},{ } {1},{ }    do
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The complexity of Algorithm 1 depends on the convergence of r{i},{j}(k) for all ∈i j,  , which is controlled by 
the ε​. As a result, the computation complexity of Algorithm 1 is  ω ε⋅n(2 ( ))2  where n is the network size and 
ω(ε) denotes the total number of steps after which r{i},{j}(k) converges to its steady state with an accuracy of ε. Note 
that β k( ) 2 is a global information for a given influence structure and is usually not accessible to the agents in 
the network. However, according to (6), each agent can still infer the relative role of nodes via local 
measurements.

Here, we proceed to discuss the amount of data needed for the implementation of Algorithm 1. Theoretically, 
we have
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The smaller the value of ψ the more accurate the estimation of v1 with network snapshots. Intuitively, more 
data will improve the estimation accuracy. Figure 2(a) and (b) show the estimation error ψ is decreasing when 
more snapshots are used in an ER random network and a scale-free network. In fact, we can start sampling the 
network state x(t), over a time interval of t ∈​ [t1, t2], from t1 in a forward sequence (forward sampling), or from t2 
in a reversed sequence (backward sampling). The backward sampling is more preferable since r t( )i{ },  is closer to 
its steady state. In Fig. 2(c) and (d), we apply the backward sampling and the estimation error ψ is shown to be 
dramatically decreased compared with the forward sampling. In the backward sampling, it turns out that the 
length of snapshots m has little influence on the estimation error ψ. The two methods mentioned above sample 
x(t) with respect to time t uniformly, which is somewhat difficult to achieve due to the disturbance in 
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measurement. We subsequently examine the performance of random sampling of x(t), namely, selecting at most 
m snapshots randomly. Figure 2(e) and (f) show that the performance of random sampling and the length of 
snapshots m also has little influence on the improvement of estimation accuracy in this scenario (for instance, in 
ER random networks, the estimation error obtained from m =​ 5 snapshots in random sampling is better than that 
from m =​ 300 in a forward sampling, as shown in Fig. 2(a) and (e)). We now show the influence of initial point of 
sampling δ1 on ψ in Fig. 3. It turns out that the later the sampling process starts the more accurate the effect of 
estimation. Supplementary Figures 16, 17 and 18 show this trend in more networks. Therefore, the initial point of 
sampling is a critical factor. As a result, we can conclude that (a) the careful selection of sampling points is critical 

Figure 2.  The error bar plot between the estimation error ψ and the length of snapshots m for forward 
sampling, backward sampling and random sampling in ER random networks (ER) and scale-free networks 
(SF) on 100 nodes. The error bar is plotted with 500 realizations for each network type and one leader is 
randomly selected for each such realizations. The edge occurrence probability for ER random networks is 0.05. 
In random sampling, at most m of snapshots are selected.
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in the efficiency of Algorithm 1, (b) the length of snapshots can be as short as m =​ 2 (in order to make the compu-
tation of (8) feasible) and (c) the sampling points can be heterogeneously distributed over the time interval.

Correlation with Network Performance.  In this section, we proceed to explore the correlation between 
TC and two network performance metrics, namely, the convergence rate of consensus and the network robust-
ness, both of which are closely related to the spectra of LB 7,21. Since TC is derived from the normalised eigenvec-
tor of the perturbed Laplacian matrix, there are analytic connections between TC and network performances that 
are determined by the spectra of LB. However, one can compute TC based on network snapshots and thus the 
related network performances can be estimated with a data-driven approach.

Convergence Rate of Consensus.  The smallest eigenvalue of LB (denoted by λ1 in our discussion) pro-
vides us with the convergence rate of the consensus network influenced by the external input, on the other hand, 
λ1 reflects how fast the diffusion of the external input (friendly or malicious, deterministic or stochastic) proceeds 
on the network7,22. Therefore, λ1 can be regarded as a measure of spreading power of nodes in a consensus net-
work from the perspective of the propagation efficiency of external inputs (refer to section 1 in Supplementary 
Information for details). Here, we provide some analytical facts between TC and λ1. For an arbitrary agent ∈i   
with the corresponding selection matrix h and influence matrix , starting from

λ=v v , (9)1 1 1LB

and multiplying (9) by 1T from left on both sides yields

λ= .v v1 1 (10)T T
1 1 1LB

Since the entries of v1 can be chosen to have the same signs,

Figure 3.  Error bar plot of the influence of initial point of sampling on ψ in 100-node ER random networks 
(ER) with forward sampling (a) and random sampling (b); and scale-free (SF) networks with forward sampling 
(c) and random sampling (d). A consecutive 20 snapshots from δ1 have been selected. 500 realizations are used 
for each type of network.
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λ γ= =v vh i({ }) (11)1 1 1 1

where ⋅ 1 represents the 1-norm of vectors.
Note that v1 is normalised in terms of the 2-norm of vectors, i.e., =v 11 2

. According to the equivalency of 
vector norms, we have

≤ =n nv v , (12)1 1 1 2

which implies the propagation efficiency λ1 is lower bounded by α i
n

( { } ) . Figure 4(a,c) and Supplementary Table 3 
show that λ1 can be well-approximated by α i

n
( { } )  in ER random networks, scale-free networks and many empirical 

networks. The error bar of approximation errors in Fig. 4 reflects that the approximation effect is improved in 
large and dense networks. However, as shown in Supplementary Figures 19(a) and (c), the maximum relative 
errors corresponding to large sparse networks still imply an accurate estimation of λ1 with TC. We proceed to use 
Pearson correlation analysis to show that there is a strong linear correlation between TC and λ1. The Pearson 
coefficient between TC and λ1 in an 500-node Erdős-Rényi (ER) random network and a 500-node scale-free 
network (SF) is shown in Fig. 5(a,b). The Pearson coefficients (PC) are 1 and 0.99943 for ER random network and 
scale-free network, respectively, implying the total positive correlation between TC and λ1.

Figure 4.  Error bar plot of approximation error in ER random networks and scale-free networks. The error 
of approximating λ1 by α i

n
( { } )  in ER random networks (a) and scale-free networks (c); the error of approximating 

Kirchhoff index by ∑ −
α=( )ni

n n
i

1
2 1 ({ } )

2  in ER random networks (b) and scale-free networks (d). The possibility 
for edge occurrence p ranges from 0.1 to 1 at the regular interval 0.1 (the plot for p =​ 0.05 to p =​ 0.1 is shown in 
Supplementary Figure 19). For each realization of the network, we compute the TC for all nodes ∈i  in the 
network and the corresponding λ ( )i1 { } . Since the Kirchhoff index corresponds to the entire network, we only 
need to compute the Kirchhoff index for each realization of the network and its approximation by TC. 500 
realizations are used for each type of network.
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Kirchhoff Index and Network Robustness.  Viewing each edge in the network as a one-Ohm resistor, the 
effective resistance from the leader agents to all agents in the network is shown to be an index of network robust-
ness from the perspective of both the 2 system norm (ability of disturbance rejection in the presence of additive 
noise in consensus networks)23,24 and the vulnerability of the network connectivity to node or edge failures23–25. 
The perturbed Laplacian matrix turns out to be an important construct that is closely related to the effective 
resistance. Specifically, the −trace( )1LB  measures the functional robustness of the influenced consensus network 
in terms of the variance of deviation from consensus and the disturbance rejection properties of consensus net-
works, both of which can be characterised by the effective resistance of the network22,26–29. The structural robust-
ness of complex networks has also been widely investigated in the context of percolation theory30,31.

The resistance distance from agents i to j, denoted by dij, is the effective resistance between i and j, which can 
be quantified by the diagonal entries of −1LB  24,32. Suppose that the network is influenced by a single external input 
via agent ∈i  and denote the resultant perturbed Laplacian matrix as i{ } , which is invertible if  is connected32. 
The resistance distance from input u to agent ∈j   is −[ ]i jj{ }

1 22,32, and thus the resistance distance from the agent 
i to agent j is such that = −−d [ ] 1ij i jj{ }

1 . Hence, the resistance distance from agent i to all agents in , denoted by 
qi, is the summation of dij over all ∈j  , i.e.,
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Figure 5.  The TC as a function of λ1 in an Erdős-Rényi (ER) random network (a) and a scale-free network (SF) 
(b). The Pearson coefficient between TC and λ1 are 1 (ER) and 0.99948 (SF), respectively. The TC as a function 
of resistance distance (RD) in an Erdős-Rényi (ER) random network (c) and a scale-free network (SF) (d). The 
Pearson coefficient between TC and RD are −​0.99989 (ER) and −​0.91839 (SF), respectively.
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In the following discussion, we shall refer to qi as the resistance distance (RD) index of ∈i . The Kirchhoff 
index of a network  (introduced by Klein and Randic′​ in ref. 24) is half of the total effective resistance between 
all pair of nodes in  and can therefore be computed by

∑
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Kirchhoff index is a measure of connectivity and size of a network in terms of resistance distance23. A network 
with smaller value of Kirchhoff index is considered to be more robust to node or edge failures. Kirchhoff index 
is also related to the average power dissipation of the circuit with a random current excitation and the average 
commute time of a Markov chain on a graph. Algorithms have also been proposed for minimizing the Kirchhoff 
index a network33.

The smallest eigenvalue of the perturbed Laplacian matrix can be considered as the perturbation of the  
smallest eigenvalue of the Laplacian matrix, which is always zero. The influence of this perturbation decreases 
when the network size grows, and consequently the term 

λ
1

( )i1 { }
 would dominate qi in (13). Based on the estima-

tion of λ ≈ α( )i
i
n1 { }

( { } ) , we can further approximate qi by

α
≈ −q n

i
n

({ })
,

(15)i

and the Kirchhoff index by
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Figure 4(b) and (d) and Supplementary Table 3 show the effect of this approximation in ER random networks, 
scale-free networks, and empirical networks. The maximum relative errors shown in Supplementary Figures 19(c) 
and 19(d) corresponding to large sparse networks still imply a good estimation of Kirchhoff index with TC. 
The Pearson coefficient between TC and resistance distance in 500-node Erdős-Rényi (ER) random network 
and 500-node scale-free network is shown in Fig. 5(c) and (d). The Pearson coefficients (PC) are −​0.99988 and 
−​0.91485 for the ER random network and the scale-free network (both implying the strong negative correla-
tions). We have shown the results of Pearson correlation analysis and the corresponding regression coefficient in 
Supplementary Tables 1 and 2 for all 7 metrics mentioned in this paper under ER random networks, scale-free 
networks, and empirical networks. It has been shown that there exist a total positive correlation between TC 
and λ1, and a strong negative correlation between TC and resistance distance for different classes of networks, 
enabling us to estimate these network performance metrics from network snapshots. The robustness of nodes in 
terms of centrality attack is shown in Fig. 6 and Supplementary Figures 21 and 22.

Zachary’s Karate Club.  As a case study, we have applied TC to quantify the role of members in the Zachary’s 
Karate club34. In this case, TC highlights the president (node 1) and lesson instructor (node 34) in the club by 
assigning the top two largest TC values to them. The rank of each node in the network in terms of the value of 
TC, degree, eigenvector, betweenness, closeness and k-shell is shown in Table 1. We compute the Spearman’s 
rank correlation coefficient (the Pearson correlation between the rank values of two variables) between TC and 
degree, eigenvector, betweenness, closeness and k-shell, respectively. TC is shown closer to the degree (with 
Spearman’s rank correlation coefficient as 0.9422) in this example, followed by closeness (0.9251), betweenness 
(0.9013), eigenvector (0.8597) and k-shell (0.8481). We subsequently compared the TC with above five cen-
trality metrics in the Karate club network by normalising the values of these centrality metrics as illustrated in 
Supplementary Figure 4. The distribution of the TC values in the heat map is shown in Fig. 7. According to the 
pattern of the normalised centrality values, TC identifies the distinct role of nodes compared with the other five 
centrality metrics in this example. The scatter plots and Pearson coefficient between TC and seven other met-
rics (above five centralities plus λ1 and RD) in Karate club network are shown in Supplementary Figures 5 and 6 
respectively. More scatter plots are shown in Supplementary Figures 7–15 for 9 empirical networks.

Discussion
Instead of quantifying the importance of a single agent in the network, the importance of a group of agents 
can also be characterised by TC, which is meaningful when the group is considered as in union or multiple 
leader agents are needed to exert influence on a consensus network. For a given group of leader agents, the larger 
the value of TC the faster the external influence propagates throughout the network and the less resistance the 
external influence has to overcome. In the meanwhile, the larger TC implies that the leader agent related to the 
influence matrix evolves towards the external input with a faster tempo than the rest of the network. Note that 
the influence of a single agent decreases when the network size grows; as a result, more leader agents are needed 
to exert a stronger influence.

Topology identification (through such methods as compressive sensing, linear system identification, power 
spectral analysis, convex programming etc.) is generally based on the minimization of the distance between the 
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estimated and the real network structures. Therefore, the entry-wise errors are acceptable for the optimization 
procedure. However, the role of an individual node can be different with respect to an entry-wise error, even when 
the two estimated network structures are equivalent from an optimization perspective. Our data-driven approach 
is robust to this ambiguity.

The second smallest eigenvalue of the graph Laplacian is known as the algebraic connectivity of a network, 
characterising the convergence rate of the consensus process10,35; and the corresponding eigenvector, called the 
Fiedler vector, has been widely applied in the network partitioning35. We can regard all agents in a network  
along with the set of external input   as an expanded directed graph, in which the directed edges are present only 
from the external input to the leader agents. The vector ∈Τ

×
Τ Τ +v 0[ ]m

n m
1 1  can be considered as the Fiedler vec-

tor for this expanded digraph, where 0m×1 denotes the m ×​ 1 vector with all zero entries. The impact of the exter-
nal input on the network  can be characterised by the spectra of LB. Using the spectral decomposition of the 
perturbed Laplacian matrix, i.e., LB λ= ∑ =

Τv vi
n

i i i1 , we observe that the eigenvector v1 shapes the behaviour of 
the network when the dynamics in directions of v2, v3 …​, vn vanish. As one can see from Supplementary Figure 20, 
that the distribution of entries in v1 is shaped by the placement of the leader agent, that is, the farther a node is 
from the leader agent, the larger the absolute value of its corresponding entry in v1.

A summary of the utility of TC and our proposed approach is as follows. The TC is shown to be closely 
correlated to two performance metrics for consensus networks, namely, the convergence rate of the influenced 
consensus (characterising the propagation efficiency of the external influence over a consensus network) and the 
network functional robustness in terms of disturbance rejection; the TC can be computed from the network snap-
shots even when the network topology is unknown; the data-driven approach in this paper enables each agent 
to determine its relative role in the network by using the state of its neighbors; this relative role obtained by each 
agent via local information is a global information; since the linearization of the Kuramoto dynamics around the 

Figure 6.  The effect of centrality attack S
n

 as a function of the fraction of removed nodes f for centrality 
metrics including TC, degree, betweenness, closeness and k-shell. (a) The ER random (ER) network with 
n =​ 500 and p =​ 0.05, (b) the scale-free (SF) network with n =​ 100 and 〈​η〉​ =​ 0.02, (c) the Karate club network 
with n =​ 34, and (d) the IEEE 118 bus system network with n =​ 118. The error bar plots for ER and SF are over 
500 realizations for each network type.
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origin is consensus dynamics the results discussed in this paper have a natural extension to the Kuramoto model, 
widely investigated for oscillator networks36.

Methods
Normalization of Centrality.  The centrality vector c =​ [c1, c2, …​, cn]Τ of a network  is composed of the 
centrality value ci of all nodes ∈i  in . Since the value of centrality could differ in scale, we normalize ci to the 
interval [0, 1] by the maximum value of a given centrality as follows

′ = = .c c
c

i n
max{ }

, 1, 2, ,i
i

i
i

Pearson Correlation Coefficient.  The Pearson correlation coefficient for two vectors 
= ∈Τx x x x[ , , , ]n

n
1 2  and = ∈Τy y yy [ , , , ]n

n
1 2  is defined as
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Node TC D E B C K Node TC D E B C K

1 2 2 2 1 1 1 18 30 28 24 29 22 28

2 5 5 5 7 9 2 19 24 29 18 30 29 29

3 3 4 3 4 2 3 20 15 19 13 9 8 15

4 9 6 8 15 10 4 21 28 30 19 31 30 30

5 21 17 28 21 20 11 22 29 31 23 32 23 31

6 17 11 26 10 17 12 23 25 32 20 33 31 32

7 18 12 27 11 18 13 24 10 10 12 13 16 16

8 12 13 11 23 14 5 25 20 20 32 18 24 17

9 7 8 6 6 5 6 26 19 21 31 16 25 18

10 23 23 17 20 15 23 27 32 33 30 34 33 33

11 22 18 29 22 21 14 28 13 14 15 12 11 19

12 34 34 33 24 32 34 29 16 22 16 19 13 20

13 31 24 25 25 26 24 30 14 15 14 17 19 21

14 8 9 7 8 6 7 31 11 16 10 14 12 8

15 27 25 21 26 27 25 32 6 7 9 5 4 22

16 26 26 22 27 28 26 33 4 3 4 3 7 9

17 33 27 34 28 34 27 34 1 1 1 2 3 10

Table 1.   Rank of each node in Zachary’s Karate club network in terms of TC, degree (D), eigenvector (E), 
betweenness (B), closeness (C) and k-shell (K). The rank is arranged in descending order according to the 
respective centrality value.

Figure 7.  The TC distribution on Zachary’s Karate club network. The size of dots are proportional to their 
TC value. The top two largest TC values are achieved for agent 34 and agent 1 (0.1569 and 0.1561, respectively).
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Relative Error.  The approximation error is measured by the relative error between vectors. Let ∈x̂ n be an 
approximation of vector ∈x n. The relative error used in this paper is,

=
−

.
ˆx x

x
e 2

2

Edge Density.  The edge density of a network = ( , , )G V E A  is defined as the ratio between the number of 
edges and the maximum number of possible edges in a network, i.e.,

E
V V

η =
|
−

.
2

( 1)

Error Bar.  The error bar plots in this paper represent the fluctuation of data around their respective mean. The 
marker in the centre of an error bar represents the mean of the data; the upper and lower intervals represent the 
deviation of the mean from the maximum and minimum value of the data.

Centrality Attack.  In the centrality attack, the nodes in a network are sorted in descending order according 
to their centrality value, then the first f ∈​ (0, 1] fraction of nodes are removed from the network. The normalized 
size of largest connected component ∈ (0, 1]S

n
 is used to quantify the effect of the attack.

Networks.  An n-node Erdős-Rényi (ER) random network with the probability of edge realization p ∈​ [0, 1] is 
denoted by  n p( , ) and is constructed by randomGraph.m in Octave routines for network analysis37. The 
scale-free network with degree distribution p(k) ~ k−γ is generated by SFNG.m in B-A Scale-Free Network 
Generation and Visualization38. The empirical networks are from KONECT39. The centrality value of the network 
degree, eigenvector, betweenness and closeness are computed using Octave routines for network analysis37. The 
k-shell is computed by corenums.m in Graph Algorithms In Matlab Code (gaimc)40.
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