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Detecting N6-methyladenosine 
sites from RNA transcriptomes 
using ensemble Support Vector 
Machines
Wei Chen1, Pengwei Xing2 & Quan Zou2,3

As one of the most abundant RNA post-transcriptional modifications, N6-methyladenosine (m6A) 
involves in a broad spectrum of biological and physiological processes ranging from mRNA splicing 
and stability to cell differentiation and reprogramming. However, experimental identification of m6A 
sites is expensive and laborious. Therefore, it is urgent to develop computational methods for reliable 
prediction of m6A sites from primary RNA sequences. In the current study, a new method called RAM-
ESVM was developed for detecting m6A sites from Saccharomyces cerevisiae transcriptome, which 
employed ensemble support vector machine classifiers and novel sequence features. The jackknife test 
results show that RAM-ESVM outperforms single support vector machine classifiers and other existing 
methods, indicating that it would be a useful computational tool for detecting m6A sites in S. cerevisiae. 
Furthermore, a web server named RAM-ESVM was constructed and could be freely accessible at http://
server.malab.cn/RAM-ESVM/.

Among the ~150 kinds of RNA modifications identified in cellular RNA1, N6-methyladenosine (m6A) is the most 
abundant one and is catalyzed by N6-adenosyl methyltransferases including METTL3, METTL14 and WTAP2. 
Since it was discovered in 1970s, m6A has been found from bacteria to Homo sapiens1. Recent studies have sug-
gested that m6A joined a series of molecular processes such as protein translation and localization3, and even con-
tributed to obesity4, brain development abnormalities and other diseases5. As indicated in a recent study6, m6A is 
non-randomly distributed in the genome. Thus, the knowledge about the positions of m6A site is important for 
understanding its biological functions.

Attribute to the high-throughput experimental techniques, the genome-wide distribution of m6A are now 
available for several species, such as Saccharomyces cerevisiae6, Arabidopsis thaliana7, Mus musculus8 and Homo 
sapiens8. Recently, Jaffrey and his colleagues provided the single-nucleotide resolution map of the m6A sites across 
human transcriptome by using the miCLIP technique9. However, the resolution of m6A sites for other species 
is not fully satisfactory, i.e. they couldn’t pick out the modified adenosine residue sites. Moreover, wet experi-
ments are laborious in performing genome-wide m6A sites detections. So it is essential and necessary to employ 
novel computational approaches for detecting m6A sites. In silico approaches would also do the detection in 
genome-wide scale and could help to save the wet experiments cost.

The high-resolution experimental data provided unprecedented opportunities and made it feasible to develop 
computational methods for accurately predicting m6A sites. Depending on these data, various computational 
methods have been proposed to identify m6A sites. By encoding RNA sequence using nucleotide chemical prop-
erty and pseudo nucleotide composition, Chen et al. have proposed two yeast-specific m6A site prediction web-
servers10,11. Inspired by Chen et al.’s works10,11, Zhou and his co-workers also proposed a mammalian m6A site 
predictor named SRAMP12. Subsequently, a webserver called MethyRNA was proposed to identify m6A sites in 
H. sapiens and M. musculus13. Although the performances of existing methods are satisfactory for identifying 
m6A site in mammalian transcriptomes13, they fails to accurately identify m6A site in yeast12. This may be due 
to the fact that the information around the yeast m6A site has not been fully characterized12. More recently, 

1School of Science, Center for Genomics and Computational Biology, North China University of Science and 
Technology, Tangshan 063009, China. 2School of Computer Science and Technology, Tianjin University, Tianjin 
300354, China. 3State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300074, China. 
Correspondence and requests for materials should be addressed to Q.Z. (email: zouquan@nclab.net)

received: 05 August 2016

Accepted: 05 December 2016

Published: 12 January 2017

OPEN

http://server.malab.cn/RAM-ESVM/
http://server.malab.cn/RAM-ESVM/
mailto:zouquan@nclab.net


www.nature.com/scientificreports/

2Scientific RepoRts | 7:40242 | DOI: 10.1038/srep40242

Zhang et al. improved the performance of identifying m6A site in yeast by introducing the heuristic nucleotide 
physical-chemical property selection algorithm14. However, the performance for identifying m6A site in yeast 
transcriptome is still not satisfactory and should be improved further.

Keeping this in mind, in the present study, we proposed an ensemble classifier, called RAM-ESVM, for detect-
ing m6A sites in S. cerevisiae. RAM-ESVM combined three basic classifiers, namely SVM-PseKNC, SVM-motif 
and GkmSVM15, which were constructed by using PseKNC16,17, motif features, and optimized K-mer as the fea-
tures, respectively. The predictive results obtained on the benchmark dataset demonstrate that RAM-ESVM can 
obviously improve the predictive performance by combining various features and also outperforms the existing 
methods.

Result and Discussion
Comparison of different feature extraction strategies. In order to demonstrate the effectiveness 
of PseDNC and motif features for m6A sites prediction, we compared the performance of PseDNC and motif 
features with other RNA sequence features. Xue et al.18 have proposed 32-D (dimensional) triplet features for 
microRNA precursor identification. The 32-D features include RNA secondary structure information and are 
proved to represent RNA sequence well. More recently, Wei et al.19 developed the RNA sequence numeric finger-
prints to 98-D, which was proved to be more robust for human microRNA detection. The 98-D features not only 
include Xue’s 32-D features and but also include free energy features. Therefore, we employed the SVM to perform 
the comparisons between the models based on our PseDNC and motif features with that based on the 32D and 
98D features. Their jackknife test results are showed in Table 1. We can see that the model based on motif features 
yielded the best predictive accuracy. The performance of the model based on PseDNC is comparable with that 
based on the 98D features. However, the PseDNC could include local and global sequence order information with 
a lower dimension. Therefore, PseDNC and motif features were used to encode the samples in the current work.

Comparison of SVM and other classifiers. To demonstrate the superiority of using SVM for identifying 
m6A sites, we compared its performance with that of other methods, such as Random Forest (RF), K-Nearest 
Neighbor (KNN), J48 and Naïve Bayes. Inspired by a previous study11, the other classifiers were implemented 
in WEKA20 with their default parameters. Table 2 showed the jackknife test comparison of m6A sites prediction 
accuracy in the benchmark dataset. We noticed that the predictive accuracy (Acc) and mathew’s correlation coef-
ficient (MCC) of SVM are superior to those of other methods by using the PseDNC and motif features, respec-
tively. Therefore, the SVM was used to build computational models in the followings.

Comparison of ensemble SVM with single SVM. Several works suggested that ensemble classifier 
would improve the performance21–23. Here, we employed PseDNC features together with SVM, motif features 
together with SVM, and GkSVM as three basic classifiers. They vote for the final results. Table 3 shows the per-
formance comparison in detail. We found that the ensemble SVM worked better and improved nearly 10 percent 
from the basic classifiers for identifying m6A sites. Therefore, a m6A site predictor, called RAM-ESVM, was 
developed based on the ensemble SVM, where “R” stands for RNA, “A” stands for N6-adenosine, “M” stands for 
methylation, “E” stands for Ensemble, “SVM” stands for Support Vector Machine.

Parameters Sn (%) Sp (%) Acc (%) MCC

32D 64.27 55.78 60.02 0.20

98D 70.00 63.42 66.71 0.33

motif 66.25 78.56 72.41 0.45

PseDNC 71.08 60.21 65.65 0.31

Table 1.  Comparison of different parameters for identifying m6A sites.

Classifiers Parameters Sn (%) Sp (%) Acc (%) MCC

Naïve Bayes
motif 84.92 50.49 67.71 0.38

PseDNC 74.98 51.87 63.43 0.27

Random Forest
motif 66.64 75.59 71.11 0.42

PseDNC 65.72 60.52 63.12 0.26

J48
motif 62.74 68.94 65.84 0.32

PseDNC 62.89 51.26 57.08 0.14

KNN
motif 32.36 86.91 59.64 0.23

PseDNC 57.84 54.39 56.12 0.12

SVM
motif 66.25 78.56 72.41 0.45

PseDNC 71.08 60.21 65.65 0.31

Table 2.  Comparison of SVM with other classifiers for identifying m6A sites.
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Comparison of RAM-ESVM with existing method. To the best of our knowledge, M6A-HPCS14 is 
the best predictor for identifying m6A sites in yeast. In order to further verify the power of RAM-ESVM on 
the m6A prediction task, we compared its performance with that of M6A-HPCS by using the same benchmark 
dataset as that used in the current work. From Table 4 we could conclude that the rates for Sn, Sp, Acc and MCC 
of RAM-ESVM are all higher than that of M6A-HPCS, indicating that RAM-ESVM is quite promising for iden-
tifying m6A sites.

Web server description. In order for the conveniences of scientific community, a freely accessible online 
web-server of RAM-ESVM was established, which could benefit for the biological researchers. Its top-page is 
shown in Fig. 1.

The users can either paste or type their query RNA sequences for submission, which should be with FASTA 
format. By clicking the “Submit” button, the predictive results will be shown in a new page and the detected m6A 
sites will be indicated in red. For the user’s convenience, the results can also be saved in tab-delimited text format 
by clicking the “Fasta Format Result” button.

Conclusions
m6A plays important roles in many biological processes. With the rapid increase in amount of transcrip-
tome data, there is a growing need for developing efficient and reliable computational methods to accurately 
identify m6A sites. In the present work, a new predictor, called RAM-ESVM, was developed to identify m6A 

Parameters Sn (%) Sp (%) Acc (%) MCC

motif 66.25 78.56 72.41 0.45

PseDNC 71.08 60.21 65.65 0.31

gksvm 72.03 77.39 74.71 0.49

Ensemble SVM 78.93 77.78 78.35 0.57

Table 3.  Performance of ensemble SVM and the single SVMs.

Predictor Sn (%) Sp (%) Acc (%) MCC

M6A-HPCS 77.35 67.41 72.38 0.45

RAM-ESVM 78.93 77.78 78.35 0.57

Table 4.  Comparative results for identifying m6A sites between different methods.

Figure 1. A semi-screenshot for the top-page of the RAM-ESVM web-server at http://server.malab.cn/
RAM-ESVM/.

http://server.malab.cn/RAM-ESVM/
http://server.malab.cn/RAM-ESVM/
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sites, which is based on an ensemble of support vector machine classifiers. Although SVM was chosen as the 
classifier, the features are heterogeneous. The first one employed PseKNC features, which are always used 
in RNA/DNA classification. The second one is motif features, which is proposed first time in this work. The 
third one is a string classifier. It avoided feature extraction for RNA sequences. They modified the kernel 
computation and deal with the strings as vectors. The jackknife test results demonstrate that RAM-ESVM 
is very promising and outperforms M6A-HPCS which is the best of the existing web servers for m6A sites 
detection in S. cerevisiae.

The better performance of RAM-ESVM could be attributed to the following reasons. In RAM-ESVM, not 
only the sequence local and global sequence information was included by encoding RNA sequences using 
PseKNC, but also the sequence motifs were considered. Since the m6A is catalyzed by N6-adenosyl methyltrans-
ferases, the sequence motifs determined by MEME and DMINDA may be the binding targets of the N6-adenosyl 
methyltransferases.

In order to benefit for the vast majority of biology scientists, a user-friendly web server named RAM-ESVM 
has been established at http://server.malab.cn/RAM-ESVM/, by which users can easily obtain their desired 
results. It is anticipated that RAM-ESVM will become an essential software tool for identifying m6A in yeast.

Materials and Methods
Dataset. The benchmark dataset in this paper was obtained from our previous work10, which contains 1,307 
positive sequences (containing m6A sites) and 1,307 negative sequences (non m6A sites). The 1,307 positive sam-
ples were experimentally identified m6A sites. In order to balance the training set, the 1,307 negative samples 
were randomly picked out from the 33,280 non-m6A sites. All the positive and negative samples are 51-nt with 
the sequence similarity less than 85%.

Sequence encoding schemes. The merits of multi view learning have been demonstrated in several weak 
classification problems. Therefore, in order to include the genomic information as much as possible, two kinds of 
features were used to build SVM classifiers. The first kind of feature is pseudo nucleotide composition. The other 
one is the gapped sequence motif features. These two kinds of features were extracted with different views. Their 
definitions are as following.

Pseudo nucleotide composition. In order to formulate the sequences using a mathematical expression that 
can truly reflect their intrinsic correlation with the target to be predicted, the pseudo nucleotide composition 
(PseKNC) has been proposed16,17. By using PseKNC, both the local and global sequence order information could 
be included24. Accordingly, the pseudo dinucleotide composition (PseDNC) was used to represent the RNA 
sequences in the benchmark dataset and can be defined as,
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where fk = k( 1, 2, , 16) is the normalized occurrence frequency of the non-overlapping dinucleotides in RNA 
sequence. λ is the number of the total counted ranks (or tiers) of the correlations along a RNA sequence, and w is 
the weight factor; while the correlation factor θj represents the j-tier structural correlation factor between all the 
j-th most contiguous dinucleotide Di =  RiRi+1 and is defined as,
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where v is the number of RNA physicochemical properties.
Since the formation of RNA secondary structure decreases the m6A methylation6, the following three phys-

icochemical properties, namely enthalpy25, entropy25 and free energy26 that can quantify the RNA secondary 
structures, are used to calculate the global or long-range sequence-order effects. Hence, v equals to 3 and indicates 
three kinds of physicochemical properties were considered in the current study. The concrete values of the three 
physicochemical properties are listed in Table 5. Note that before substituting them into Eq. 4, all the original 
values were subjected to a standard conversion, as described by the following equation

http://server.malab.cn/RAM-ESVM/
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where the symbol <  >  means taking the average of the quantity therein over the 16 different dinucleotides, and 
SD means the corresponding standard deviation.

In order to reduce the computational time, the 10-fold cross-validation approach was used to optimize the two 
parameters. We found that the optimal values for w and λ are 0.9 and 6, respectively.

Motif features. Motifs are considered as sequence signal for several genomic elements, such as gene 
Transcription Starting Sites (TSS), Transcription Factor Binding Sites (TFBS). There are also some works consid-
ering that weak motifs also appears in the upstream regions of miRNAs27,28. Sequence motifs can be detected from 
software tools, including MEME29, DMINDA30. Here we try to analyze the motifs around the m6A sites, and then 
employ them as classification features.

Positive and negative sequences were inserted into a general suffix tree. Then all the substrings were listed if it 
only appeared in the positive sequences or negative ones. We set the least length as 4. So the appearance of these 
substrings was selected as motif features. If it appeared in one sequence, the feature value was set as 1. Otherwise, 
the value is 0. Following this process, every sequence was represented as a Boolean vector.

Ensembles of Support Vector Machine classifiers. Ensemble classifiers were considered to work well 
on the weak classification problems. However, if the training set was not big enough, ensemble classifiers may 
cause over-fitting and had weak generalization. Support vector machine (SVM) was always employed for the 
“small sample size problem”. Structural risk minimization brings good generalization for support vector machine. 
In order to improve the prediction performance and avoid the over-fitting problem, we proposed a novel ensem-
ble support vector machine strategy for m6A prediction.

Ensemble classifier consists of several basic classifiers, and outputs the voting results of the basic classifiers. 
Research works have agreed that diversity of basic classifiers would improve the voting performance. Here we 
employed three different SVM classifiers and combined them as an ensemble one. Diversity of the three different 
SVM classifiers ought to be as more as possible, while accuracy of every SVM classifier need be maintained.

The first two classifiers, namely SVM-PseKNC and SVM-motif, were built based on SVM by using PseKNC 
and motif features as the inputs, respectively. Although these proper sequence features could be helpful for DNA/
protein function prediction, it is believed that numerical features would miss sequence information. Finding 
good features for the DNA/protein sequence is still empirically difficult and a challenge for the weak classification 
problems. So some researchers proposed string kernel SVM for the DNA/protein sequence classification prob-
lems. Optimized gapped kmers were embedded in the kernel computation, and numerical feature extraction was 
avoided before SVM classification. GkmSVM15 is a software tool, which can deal with DNA sequences directly as 
training samples. Here we employed GkmSVM as the third basic classifier.

Figure 2 shows the prediction process with the ensemble SVM classifiers. The three basic classifiers votes for 
the final result. We set different weights to the three basic classifiers as following,

∑= = =
=
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Dinucleotide Enthalpy Entropy Free energy

GG − 12.2 − 29.7 − 3.26

GA − 13.3 − 35.5 − 2.35

GC − 14.2 − 34.9 − 3.42

GU − 10.2 − 26.2 − 2.24

AG − 7.6 − 19.2 − 2.08

AA − 6.6 − 18.4 − 0.93

AC − 10.2 − 26.2 − 2.24

AU − 5.7 − 15.5 − 1.10

CG − 8.0 − 19.4 − 2.36

CA − 10.5 − 27.8 − 2.11

CC − 12.2 − 29.7 − 3.26

CU − 7.6 − 19.2 − 2.08

UG − 7.6 − 19.2 − 2.11

UA − 8.1 − 22.6 − 1.33

UC − 10.2 − 26.2 − 2.35

UU − 6.6 − 18.4 − 0.93

Table 5.  The original enthalpy, entropy and free energy values of the dinucleotides.
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where Vi is the voting score for the RNA sample belonging to the classi (m6A sites or non- m6A sites), f(pre(Ck), 
Classi) is the score function defined as

=
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The final prediction is determined by.

= =Sgn i arg max V i( ) { }, ( 1, 2) (8)i i

Sgn(i) is argument that maximizes the voting score Vi.

Why and when will voting win? Here we try to analyze the 3 classifiers’ voting strategy. Suppose that the 
accuracies of the 3 classifiers are p1, p2, p3 (0.5 <  {p1, p2, p3} <  1), respectively. So the accuracy of the voted ensem-
ble independent classifiers would be

+ − + − + −
= + + −
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If p1 ≈  p2 ≈  p3 =  q, the accuracy of ensemble classifier would be 3q2 −  2q3. It is easy to prove that 3q2 −  2q3 >  q. 
Since 0.5 <  q <  1, q(2q −  1)(q −  1) <  0, it’s obvious 3q2 −  2q3 >  q. Therefore, we can conclude that if the three basic 
classifiers are independent and approximately equally accuracy, the voting result would be better than the single 
classifier. In this work, our three basic classifiers employed different features and performed among ~70% accu-
racy. So the voting strategy could improve the performance.

Performance evaluation. All the methods were evaluated with sensitivity (Sn), specificity (Sp), Accuracy 
(Acc) and the Mathew’s correlation coefficient (MCC), which are expressed as
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where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, respectively.

Figure 2. The workflow of RAM-ESVM. 
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