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Formation of equiaxed crystal 
structures in directionally solidified 
Al-Si alloys using Nb-based 
heterogeneous nuclei
Leandro Bolzoni1,3, Mingxu Xia2,3 & Nadendla Hari Babu3

The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous 
nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to 
achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 
compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB 
(x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these 
compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces 
the undercooling needed for solidification to take place. Moreover, we present evidences that these 
Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, 
fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent 
heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing 
conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation 
leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles.

Al-Si alloys are important structural materials commonly processed by means of casting methods due to their 
good fluidity1. Al-Si alloys are commonly used in a great variety of applications like automotive components 
(engine parts and wheels), marine fittings, architectural panels as well as medical and dental equipment2,3. The 
shape of these cast products such as engine blocks is generally rather complex and thus they are composed 
of sections with different wall thicknesses. Under standard solidification conditions, the cast part exhibits a 
non-uniform grain structure. Specifically, thicker sections solidify under slower cooling rates (i.e. smaller ther-
mal gradient) and thus will be characterised by coarser structures in comparison to thinner sections4. As the grain 
structure is related to the mechanical behaviour of the material, the cast part has an anisotropic response when 
withstanding external loads such as mechanical or thermal stresses causing its premature failure. The achieve-
ment of fine equiaxed grains is desirable in metals casting, as benefits in terms of increased soundness of the cast-
ings (i.e. lower rejection rate) due to the better feeding of the molten metal in the mushy zone resulting in more 
homogeneously distributed porosity and reduced hot tearing susceptibility, higher mechanical performances, and 
easier and more homogeneous subsequent mechanical working are obtained. A structure characterised by a fine 
equiaxed crystal structure independently of the cooling conditions (i.e. thickness of the walls of the part) would 
also open up the possibility to improve and optimise the design of the castings.

The formation of a non-uniform grain structure is particularly prominent in directionally solidified parts such 
as DC-casting (i.e. direct chill) billets, whose diameter can be in the range of meters. In directionally solidified 
materials the solidification starts from the outer surface (called chilled zone) and proceeds toward the centre 
of the casting. Because of the intrinsic nature of the solidification process, the casting is composed of colum-
nar grains in its outer part changing to equiaxed crystals moving towards its centre. This difference in crystal 
structure along the cross section of the casting negatively affects the response of the material during subsequent 
downstream deformation processes via rolling, extrusion, etc. For example, the Al-10Si braze alloy is normally 
obtained as DC-casting billet and then plastically deformed to manufacture cars’ radiators. Consequently, the 
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achievement of (fine) fully equiaxed grain structures is also paramount in directional solidified components in 
order to guarantee isotropic deformation behaviour and prevent the formation of defects and cracks5. Specifically, 
reduction of billets scalping and increased yield of expensive post-processed material are the advantages of having 
fine and uniform crystal structures.

As per the classical nucleation theory, more uniform grain structures can be achieved if potent nuclei are pres-
ent to favour the heterogeneous nucleation of the crystals of the primary phase6. Furthermore, the promotion of 
nucleation over growth (i.e. the two stages of solidification) results in the attainment of a greater number of fine 
crystals, independently of the local solidification conditions. Accordingly, improved properties and performances 
(regardless whether they are physical, mechanical or technological) as well a more isotropic behaviour of the 
material are also obtained3,7,8. The intentional addition of heterogeneous nuclei to promote nucleation is known 
as inoculation.

The energy barrier (∆ ⁎Ghet) for nucleation of a molten metal inoculated with heterogeneous nuclei is expressed 
in thermodynamic terms as (1):
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where γSL is the solid-liquid interface energy, ΔS is the variation in entropy, ΔT is the variation in temperature and 
f(θ) is a function of wetting angle (θ). ΔT is also known as the undercooling needed for solidification to take place. 
From (1), α∆ ∆⁎G T1/het

2 where ΔT is proportional to the square of the lattice mismatch (δ) between the hetero-
geneous nuclei and the nucleating phase ( α δ∆T 2), as reported by Turnbull and Vonnegut9. Hence, heterogene-
ous nuclei with high potency to promote nucleation must have good lattice and atom position matching with the 
nucleating phase (i.e. low δ). Other two aspects should be taken into account to design effective heterogeneous 
nuclei for the solidification of materials10: the nuclei must have a sufficiently high melting point as not to dissolve 
in the molten material and the nuclei must be chemically stable so its lattice structure will not change once the 
nuclei are in contact with the chemical elements present in the molten material. A typical example of the interac-
tion of intentionally added heterogeneous nuclei with the alloying elements of the molten material does happen 
when Al-Ti-B or Al-Ti-C master alloys are used to inoculate Al-Si alloys. These Ti-based master alloys, which are 
very efficient in promoting the nucleation in wrought Al alloys, are not effective in Al-Si alloys because the 
Ti-based nuclei react with the silicon of the Al-Si alloy to form titanium silicides (i.e. TiSi, Ti5Si3 and TiSi2)11–15. 
These titanium silicides have high δ with the Al lattice and therefore nucleation cannot be promoted. Moreover, it 
has been scientifically proven via thermodynamic studies that the excess Ti, compared to what is needed to form 
nucleating TiB2 particles, increases the growth rate of Al-dendrites so that growth wins over nucleation16–19. We 
discovered that Nb-based compounds (Al3Nb/NbB2) are not characterised by this phenomenon, at least at the 
processing temperature conventionally used in aluminium foundries (~700–800 °C). This is because the forma-
tion of niobium silicides occurs at much higher temperatures in comparison to titanium silicides. This means that 
Al3Nb/NbB2 are much more thermodynamically and chemically stable20,21 in comparison to Al3Ti/TiB2. 
Previously, we demonstrated that Al3Nb/NbB2 can promote the nucleation of Al crystals in Al-Si alloys processed 
by die casting22,23; however, the formation of uniform grain structures in directionally solidified Al-Si casting has 
not been achieved before. Al-10Si braze alloys are typically processed using DC casting process in which the melt 
undergoes directional solidification imposed by cooling by water spray. Large columnar grains formation is not 
ideal due to the non-uniform chemical composition and the need for scalping large portion of billet. In this work, 
we designed and successfully achieved enhanced heterogeneous nucleation of Al-10Si alloys via inoculation by 
means of Nb-based compounds using Al-2Nb-xB (x =​ 0.5, 1 and 2) master alloys. Most importantly, a compre-
hensive understanding of the effects and phenomena taking place during the inoculation of Al-Si alloys with 
Nb-based compounds is presented. In particular, the directional solidification of an Al-10Si braze alloy using an 
equipment which simulates the industrial scale DC-casting method was considered. The presence of Al3Nb/NbB2 
heterogeneous nuclei resulted in very fine uniform grain structure across the casting.

Characterisation of the Al-2Nb-xB (x  =​  0.5, 1 and 2) Master Alloys
Al, Nb and an Al-5B master alloy were used to produce the Al-2Nb-xB master alloys (x =​ 0.5, 1 and 2) containing 
the Nb-based compounds (Al3Nb/NbB2). These compounds should remain as stable crystals dispersed into the 
Al matrix once the Al-2Nb-xB master alloy is cast. Al3Nb/NbB2 crystals act as heterogeneous nuclei once the 
Al-2Nb-xB master alloy is added to the molten Al-Si cast alloys prior to their solidification. The actual formation 
and presence of these Nb-based compounds was confirmed via SEM-EDS and TEM analyses of the Al-2Nb-xB 
master alloys (Fig. 1).

A fairly homogeneous distribution of sub-micrometric to micrometers Nb-based compounds embedded into 
the Al matrix was found. Moreover, instead of coarse single crystals, agglomerations of Al3Nb/NbB2 crystals 
were formed as a consequence of the production route used to manufacture the Al-2Nb-xB master alloys. These 
agglomerates are present in the concentrated master alloy and when the master alloy is added to Al-10Si melt, 
inoculants disperse in to the alloy melt. For higher concentrations of x (1 and 2), in addition to Al3Nb/NbB2 com-
pounds, unreacted AlB12 blocky particles were present in the master alloy. TEM and SEM microstructural analy-
sis of the deep etched Al-2Nb-xB master alloys was conducted to study the crystallographic structure: tetragonal 
for Al3Nb (DO22)24,25 and hexagonal for NbB2 (P6/mmm)26. Lattice parameters of these structures are: a =​ 3.8485 Å 
and c =​ 8.615 Å for Al3Nb and a =​ 3.102 Å and c =​ 3.285 Å for NbB2, respectively27. The semi-quantitative EDS 
chemical analysis further proved the chemistry and stoichiometry of the Nb-based compounds.



www.nature.com/scientificreports/

3Scientific Reports | 6:39554 | DOI: 10.1038/srep39554

Solidification Experiments
Thermal analysis of the solidification of the Al-10Si alloy was performed in order to quantify the effect of the 
inoculation by means of Nb-based heterogeneous nuclei. The total undercooling (ΔT) needed to have a suffi-
ciently large stable cluster of atoms to nucleate primary α​-Al in the reference material is 2.1 °C (Fig. 2). The inoc-
ulation of the Al-10Si alloy via the addition of the Al-2Nb-xB master alloys lowers ΔT down to 1.3 °C, therefore 
reducing ∆ ⁎Ghet by approximately 40% and enhancing the formation of primary α​-Al crystals.

The inoculation of the Al-10Si alloy prior to directional solidification led to a significantly different crystallo-
graphic structure compared to the reference alloy (i.e. different solidification zones and relative variation of the 
nature and size of the crystals formed) as presented in Fig. 3.

The directional solidified Al-10Si reference alloy is characterised by a non-uniform grain structure composed 
of 4 zones. After inoculation by means of Nb-based heterogeneous nuclei the formation of columnar grains 
is prevented, hence the columnar to equiaxed transition (CET), and the microstructure is composed of equi-
axed crystals whose size slightly progressively coarsen along the direction of solidification. The microstructural 

Figure 1.  Representative results of the microstructural characterisation performed on the Al-2Nb-xB master 
alloys: (a,b) optical and secondary electron micrographs showing the distribution of the Nb-based compounds 
embedded into the Al matrix, (c,d) semi-quantitative EDS analysis of the chemistry and stoichiometry of the 
Nb-based compounds, and (e,f) TEM and SEM micrographs of deep etched Al-2Nb-xB master alloys showing 
the tetragonal and hexagonal crystallographic structure of Al3Nb and NbB2 crystals, respectively.
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characterization performed on the polished and etched cross sections of the billets confirmed the different crystal 
structures of the Al-10Si alloys (Fig. 4).

Apart from α​-Al crystals, the microstructure of the directionally solidified Al-10Si alloy is composed of 
needle-like eutectic Si, which are actually flakes in 3D, and primary Si particles. In the case of the reference alloy, 
a non-uniform distribution of the eutectic phase (50–200 μ​m) is formed in between the dendritic arms of the 
growing columnar and equiaxed crystals (Fig. 5a). Moreover, faceted primary Si particles (20–50 μ​m) are also 
present as the partitioning of Si becomes more important with the progression of the solidification. The number 
and size of these primary Si particles is thereby greater in the CEC zone of the reference alloy than in the CC and 
LCC zones (Fig. 4a). The Al-10Si alloy inoculated with Nb-based compounds shows a more uniform distribution 
of finer secondary eutectic phase (10–40 μ​m) as a consequence of the finer α​-Al crystals (Fig. 5b). Furthermore, 
the size and number of the primary Si particles (<​10 μ​m) is significantly lower (Fig. 4b).

Discussion
Nb-based compounds (Al3Nb/NbB2) are characterised by the same crystallographic structures of the Ti-based 
compounds (Al3Ti/TiB2) used to refine wrought Al alloys. Specifically, Al3Ti and Al3Nb crystallises into the 
tetragonal lattice whereas TiB2 and NbB2 have hexagonal lattice (Fig. 1). Apart from being isomorphous, Ti- and 
Nb-based compounds have also similar lattice parameters and therefore comparable lattice mismatch (δ) with the 
face-centred-cubic lattice of Al. The low δ is one of the critical factors to promote heterogeneous nucleation. As a 
consequence of the low δ, a reduction of the undercooling ΔT is expected8,28,29. The solidification experiments 
done on the Al-10Si alloy confirmed that the addition of engineered nuclei, actually, reduces ΔT (Fig. 2) due to 
the low δ between Al3Nb/NbB2 and primary α​-Al as α δ∆T 2. In particular, as per Bramfitt’s model for heteroge-
neous nucleation30, the nucleation of primary α​-Al crystals is likely to happen on: Al3Nb crystals, from an Al3Nb 
layer formed on top of NbB2 compounds (such as in the case of Ti-based nuclei31) as well as along low index 
planes of NbB2 crystlas.

During directional solidification, the Al-10Si reference alloy undergoes different changes in crystal morphol-
ogy (Fig. 3a) forming a non-uniform and complex crystal structure composed of four different zones (Fig. 4a). 
At the bottom of the billet, the alloy starts to solidify in contact with the Cu-plate and immediately afterwards, 
once the Cu-plate is removed, comes into direct contact with the water jet. Consequently, due to the high thermal 

Figure 2.  Solidification curves of the Al-10Si alloy without (a) and with (b) inoculation by means of Nb-based 
heterogeneous nuclei as to reduce the undercooling (ΔT) needed to commence the nucleation of primary α​-Al 
crystals.
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gradient (i.e. cooling rate) this zone is characterised by extremely fine randomly oriented dendritic crystals (Zone 
1: CZ). Starting from these non-faceted fine crystals, grains with specific orientation growing along the direction 
of the extraction of the latent heat prevail over the others. Thus, the microstructure of the Al-10Si alloy starts to 
be composed of a greater number of columnar crystals of relatively small size (Zone 2: CC). Afterwards, relatively 
few long columnar crystals survive and constitute the microstructure of the material (Zone 3: LCC). The forma-
tion of columnar crystals is due to different factors such as constrained growth imposed by the columnar crystals, 
solute partitioning, thermal gradient, latent heat extraction as well as the competition between the different grow-
ing crystals. At this stage, the predominant solidification mechanism is still columnar dendritic as it was in Zone 
2 and Zone 3. With the progression of directional solidification, the crystal structure of the material transforms 
to equiaxed (Zone 4: CEC), although the crystal size is relatively coarse. The CET is governed by the reduction of 
the thermal gradient combined with the lower growth rate and the formation of new stable nuclei due to solute 
enrichment. The formation of these randomly oriented crystals indicates that in the final stage the solidification 
mechanism is purely equiaxed dendritic. The behaviour described is consistent with the current understanding of 
microstructural evolution in the DC-casting process5.

In the case of the Al-10Si alloy inoculated by means of Nb-based heterogeneous nuclei, the chilled zone 
composed of randomly oriented crystals is still present (Zone 1: CZ). Once again, the formation of this zone 

Figure 3.   Macroetched surface of directionally solidified Al-10Si billets produced using the DC-casting 
simulator: (a) without inoculation, (b) with inoculation by means of Nb-based heterogeneous nuclei, and  
(c) schematic of the different grain structures.
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is governed by equiaxed solidification by heterogeneous nucleation due to the walls of the die and the fast heat 
exchange (i.e. extraction by conduction) due to the water jet. Conversely to the reference material, after CZ the 
microstructure of the inoculated Al-10Si alloy is characterised by the presence of very fine equiaxed crystals 
(Zone 2: VFEC) and the formation of columnar crystals is prevented thanks to the presence of the engineered 
heterogeneous nuclei (Fig. 4b). Finally, due to some solute enrichment (i.e. silicon) in combination with the 
remelting of nuclei and dissolution, dendrite coarsening occurs in the final section of the billet to solidify (Zone 
3: FEC). Nevertheless, these crystals are much smaller than those of the reference material. Therefore, it is evident 
that the introduction of the heterogeneous nuclei prevents the columnar dendritic growth and promotes the 
nucleation of fine equiaxed α​-Al dendritic crystals.

The formation of the constrained-growth columnar crystals along the direction of heat extraction during 
directional solidification is commonly described by means of the classical solidification theory32:

≠
∆G

V
T

D (2)
S L

gr L

/ 0

where GS/L is the thermal gradient at the solid-liquid interface, Vgr is the growth velocity, ΔT0 is the (constitu-
tional) undercooling and DL is the diffusion coefficient of the liquid metal. Depending on whether the left hand 
side term is higher/equal or lower than the right hand side term, planar or cellular/dendritic growth will occur, 

Figure 4.  Results of the microstructural analysis of the directionally solidified Al-10Si alloy showing the 
different crystallographic structures: (a) without inoculation and (b) with inoculation by means of Nb-based 
heterogeneous nuclei. The introduction of Nb-based compounds significantly enhances nucleation promoting 
the formation of equiaxed crystals and preventing the formation of columnar grains; this results in a much 
more isotropic crystallographic structure. As a consequence, better deformation behaviour in subsequent 
downstream processes and improved performances (technological and mechanical) are predicted. (Legend - 
CZ: chilled zone, CC: columnar crystals, LCC: long columnar crystals, CET: columnar-to-equiaxed transition 
zone, CEC: coarse equiaxed crystals and (V) FEC: (very) fine equiaxed crystals).
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respectively. The columnar dendritic structure found in the reference material is due to the high GS/L present in 
the directional solidification of the billet. As the columnar growth progresses, GS/L and Vgr decreases. ΔT0 pro-
motes the formation of new crystals ahead of the solidification front which contributes to latent heat release and 
solute enrichment, changing the growth mechanism to equiaxed dendritic. The formation of a fully columnar or 
fully equiaxed crystallographic structure depends on GS/L and the total number of nuclei per unit volume (N0):

. β > ⋅ ⋅ ⋅G 0 617 100 Nfully columnar: ( ) (3)S L 0
1 3

/
/

. β < ⋅ ⋅G 0 617 Nfully equiaxed: ( ) (4)S L 0
1 3

/
/

where β is a function of the critical ΔT for nucleation and of the local ΔT at the columnar front. From (3) and 
(4), equiaxed growth will occur when the volume fraction of equiaxed grains is greater than 0.49. The num-
ber of nuclei per unit volume N0 can be estimated from the grain size33. In the case of the LCC zone (Fig. 4) 
of the reference Al-10Si alloy, N0 is ~1 grain/mm3 whereas after inoculation, at the same position in the direc-
tionally solidified alloy, N0 is ~24 grains/mm3. From this, it is inferred that the prevention of the formation of 
constrained-growth columnar grains in the inoculated material is a direct consequence of the presence of potent 
heterogeneous nuclei ahead of the growth front. The formation of these heterogeneous nucleated equiaxed crys-
tals also leads to a greater homogeneous distribution of the solute (i.e. silicon) in the melting pool ahead of the 
solidification front which lowers ΔT. Concerning the eutectic phase that forms upon directional solidification 
of the Al-10Si, in the case of the reference material, the size and distribution of this secondary phase becomes 
coarser and more inhomogeneous along the cross section of the billet. The size and distribution of the eutec-
tic phase is a direct consequence of the nucleation and growth of the primary α​-Al dendritic crystals as solute 
remains confined to regions between the growing crystals independently whether they have a columnar or equi-
axed morphology4,34. The coarsening of the eutectic phase is also influenced by the enrichment in solute which 
is rejected and pushed by the solidification front. This means that the local content of Si increases leading to the 
formation of coarse eutectic needles and/or flakes (Fig. 5a). Furthermore, in the case of the reference alloy, the 
local Si concentration in the eutectic pools between the dendritic arms of the growing α​-Al crystals exceeds the 
eutectic composition (i.e. 12.6 wt.% as per the Al-Si binary phase diagram35). As a result, primary Si crystals (fac-
eted, black and blocky crystals visible in the micrographs shown in Fig. 4a) are found in the Al-10Si alloy despite 

Figure 5.  Details of the secondary eutectic phase of the directionally solidified Al-10Si alloys: (a) without 
inoculation and (b) with inoculation by means of Nb-based heterogeneous nuclei. The micrographs refer to the 
CEC and FEC zones described in Fig. 4, respectively.
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of the fact that it is a hypo-eutectic alloy. It is worth mentioning that both the size and number of these primary Si 
crystals becomes larger moving from CZ towards LCC/CEC. In particular, the larger Si crystals are found in the 
final section of the billet to solidify (i.e. CEC zone in Fig. 4) because it is the zone which is richest in rejected Si 
solute. The inoculation of the Al-10Si alloy by means of Nb-based heterogeneous nuclei results in the formation 
of finer eutectic Si as shown in Fig. 5. Moreover, their distribution is more homogeneous along the whole cross 
section of the directionally solidified inoculated material. Another aspect to be highlighted is the reduction in size 
and the lower number of primary Si crystals that form after inoculation. The Nb-based compounds that act as a 
heterogeneous nuclei for the α​-Al crystals should not promote the nucleation of the primary Si crystals because 
the lattice structure (i.e. parameters and δ) are not favourable. Hence, the refinement of the eutectic and primary 
Si particles is attributed to the more homogeneous distribution of the Si solute at the equiaxed solidification front 
as well as to the growth restriction factor imposed by the formation of a much greater number of primary α​-Al 
crystals leaving less space for the eutectic Si to grow. These aspects are also responsible for the formation of a 
lower amount of the primary Si crystals whose size is smaller than in the case of the reference Al-10Si alloy.

The current study demonstrates that the inoculation of cast Al-Si alloys via the introduction of Nb-based com-
pounds (Al3Nb/NbB2) using Al-2Nb-xB master alloys enhances the heterogeneous nucleation of the material. 
Consequently, the directionally solidified grain structure is not greatly influenced by the processing conditions 
(e.g. cooling rate, heat extraction, thermal gradient, growth velocity, etc.). The more isotropic behaviour of the 
inoculated material allows fabrication of geometrically complex products (i.e. with differences in walls thick-
nesses) with homogeneous properties. Furthermore, optimised and lighter structures could be produced due to 
the enhanced behaviour of the inoculated alloys. These aspects are particularly important and desirable for the 
automotive industry where the stringent regulations for decreasing the greenhouses gases emission is pushing 
this sector toward the use of lightweight structural components. Cast Al-Si alloys with non-optimised crystals 
structures are already extensively used for the production of engine parts such as engine blocks, pistons and 
wheels. Further weight savings will be achieved by obtaining fine and homogeneous grain structures via inocula-
tion by means of Nb-based heterogeneous nuclei.

From the study it can be concluded that an effective approach was developed to enhance heterogeneous nucle-
ation in Al-Si cast alloys as demonstrated in directionally solidified materials. The Nb-based compounds intro-
duced via the addition of the Al-2Nb-xB master alloys effectively act as heterogeneous nuclei due to their low 
lattice mismatch with the Al lattice and they are thermodynamically and chemically stable inside the melt. The 
inoculation of Al-Si cast alloys by means of Al3Nb/NbB2 prevents the formation of (long) columnar crystals thus 
permitting to achieve a highly homogeneous crystal structure, both in terms of primary α​-Al crystals and sec-
ondary phases (eutectic and primary Si crystals). It is foreseen that this translates into a more isotropic material 
with improved behaviour making it suitable to fabricate high performance braze alloys and also more optimised 
structural components using various Al-Si alloys.

Methods
Production and characterisation of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys.  The Al-2Nb-xB 
(x =​ 0.5, 1, and 2) master alloys were produced by melting commercially pure Al to which an Al-5B master alloy 
and Nb powder were added. For the dissolution of Nb and the formation of Nb-based compounds (Al3Nb/NbB2), 
the master alloy was kept at 850 °C during 3 hours with intermediate manual stirring every 15 minutes (Fig. 6) as 
it proved to be efficient to produced stable Nb-based compounds36.

Microstructural analysis of the master alloy was done on a JEOL 2200F-TEM and on a Zeiss Supra 35VP FEG 
microscope in order to confirm the formation and presence of the Nb-based compounds. EDS was performed to 
obtain semi-quantitative chemical composition data.

Solidification experiments.  Solidification experiments were done using a commercial Al-10Si braze alloy 
(Si =​ 9.9 wt.%, Fe =​ 0.09 wt.% and Al =​ balance). Initially, the Al-10Si alloy melt without and with the addition 
of the Al-2Nb-xB master alloys was solidified under slow cooling conditions (insulated crucible ~0.35 °C/s) to 
verify and quantify the effect of the presence of the engineered heterogeneous nuclei on the undercooling needed 
for nucleation. It is worth mentioning that in these experiments, Tmin and Tg are the minimum and maximum 

Figure 6.  Thermal cycle (temperature-time) used for the fabrication of Al-2Nb-xB (x = 0.5, 1 and 2) master 
alloys.
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temperature of the undercooling peak (Fig. 2). Tmin is the point where the latent heat of fusion is given off and Tg 
is the point at which the steady growth state is reached. The difference between these two temperatures is defined 
as the undercooling:

∆ = −T T T( ) (5)g min

Directional solidification experiments were done using a DC-casting simulator and for that the Al-10Si alloy 
was melted in a clay-bonded graphite crucible at 790 °C for 1 hour. In conventional industrial DC-casting of ingots 
and billets the directional solidification of the molten alloy takes place from the outer diameter towards the inner 
core of the billet aided by cooling from a water jet. In order to simulate this cooling system, the molten Al-10Si 
alloy was poured inside an insulated metallic cylinder and cooled from the bottom by means of a water jet. This 
can be seen in Fig. 7, which shows a schematic of both the industrial DC-casting process and the DC-casting 
simulator. In the latter case the cooling of the molten metal takes place along the length of the billet. The resulting 
microstructure is, therefore, the simulation of the cross section of very large billets or ingots.

In the case of the reference material, the Al-10Si alloy was poured into the DC-casting simulator and cooled/
chilled from 740 ±​ 3 °C. The same experimental procedure was used for the Al-10Si alloy inoculated by means 
of the Al-2Nb-xB master alloys (addition level equivalent to 0.1 wt.% of niobium). The master alloy was left in 
contact with the melt for 15 minutes prior pouring of the alloy in the DC-casting simulator. For all Al-2Nb-xB (for 
x =​ 0.5, 1, and 2) master alloys addition, the billets were composed of equiaxed crystals and the data and discus-
sion presented here is based on x =​ 2 as representative for all the Al-2Nb-xB master alloys.

On the one side, analysis of the macrostructure of the cast billets was done by chemically etching the surface of 
the billets using Tuckers solution (15 ml HF +​ 15 ml HNO3 +​ 45ml HCl +​ 25ml H2O). On the other side, micro-
structural analysis was performed on polished and etched samples using a Zeiss Axioscope A1 microscope. Light 
polarised micrographs were taken on samples anodised using a tetrafluoroboric acid (HBF4) solution and passing 
a current of approximately 10 V/1 A.
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