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In vitro synthesis of a Major 
Facilitator Transporter for specific 
active transport across Droplet 
Interface Bilayers
Heather E. Findlay, Nicola J. Harris & Paula J. Booth

Nature encapsulates reactions within membrane-bound compartments, affording sequential and 
spatial control over biochemical reactions. Droplet Interface Bilayers are evolving into a valuable 
platform to mimic this key biological feature in artificial systems. A major issue is manipulating flow 
across synthetic bilayers. Droplet Interface Bilayers must be functionalised, with seminal work using 
membrane-inserting toxins, ion channels and pumps illustrating the potential. Specific transport of 
biomolecules, and notably transport against a concentration gradient, across these bilayers has yet 
to be demonstrated. Here, we successfully incorporate the archetypal Major Facilitator Superfamily 
transporter, lactose permease, into Droplet Interface Bilayers and demonstrate both passive and active, 
uphill transport. This paves the way for controllable transport of sugars, metabolites and other essential 
biomolecular substrates of this ubiquitous transporter superfamily in DIB networks. Furthermore, 
cell-free synthesis of lactose permease during DIB formation also results in active transport across the 
interface bilayer. This adds a specific disaccharide transporter to the small list of integral membrane 
proteins that can be synthesised via in vitro transcription/translation for applications of DIB-based 
artificial cell systems. The introduction of a means to promote specific transport of molecules across 
Droplet Interface Bilayers against a concentration gradient gives a new facet to droplet networks.

Biological membranes are complex environments, with both integral and peripheral membrane proteins sur-
rounded by bilayers composed of many different types of lipid. To study membrane protein function in vitro 
or to utilise them in synthetic biological systems it is generally necessary to extract the protein from this native 
membrane and reconstitute it into a detergent or lipid system, the properties of which can be more readily con-
trolled. A variety of lipid structures have been used to replicate the membrane environment; from bicelles1,2 and 
nanodiscs3,4 to larger liposomes and giant unilamellar vesicles5,6. These vesicles provide a self-contained inner 
compartment that allows for the study of movement of molecules across the bilayer and are increasingly used as 
drug delivery systems in the medical field7. A more recent development is the Droplet Interface Bilayer (DIB). 
In this system sub-microlitre aqueous droplets are submerged in an oil phase, with each droplet surrounded by a 
lipid monolayer. When two droplets are brought together, they spontaneously zip up to form a stable bilayer area 
at the point of contact8,9. DIBs have several advantages for the study of membrane proteins; smaller amounts of 
protein are required than for traditional planar lipid bilayer techniques and DIBs are particularly useful for the 
analysis of bilayer asymmetry. Although the first examples of DIBs involved only two droplets, manually manipu-
lated, microscale technologies are transforming these systems. Microfluidics devices and 3D printing techniques 
that allow precise control of the contents and flow rate during droplet formation have been used to make DIBs 
networks of defined size, composition and spatial distribution that could provide a promising platform for further 
synthetic biology applications and the development of synthetic tissues10–12.

The clear spatial compartmentalisation between droplets provides a prospective method of controlling chem-
ical reactions and biological processes in synthetic in vitro systems. In order to realise the potential of DIBs in 
synthetic devices the bilayers have to be functionalised. Self-inserting toxins, together with integral membrane 
channel and transport proteins provide a means to regulate transport and information exchange across the DIB. 
To date the main protein harnessed in DIBs has been the toxin, α -haemolysin which spontaneously inserts into 
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membranes to give a large, non-selective pore13,14. There have been very few uses of integral membrane proteins 
in DIBs. Existing examples have predominantly been channels, including the mechanosensitive channel MscL 
that provides a large non-selective pore15. Ion channels such as K+ channels have been used enabling flow of 
specific ions across the DIB16 and the light-driven proton pump bacteriorhodopsin has been successfully used to 
produce a proton gradient across DIBs, in response to illumination17. In addition to controlling ion flow, however, 
to exploit DIB systems for compartmentalised chemistry or artificial cells it is desirable to have a more specific 
method of moving a large variety of small molecules between droplets in a controlled manner. Harnessing natural 
membrane transport proteins would provide an ideal solution. It remains to be demonstrated that small molecule 
and metabolite transporters can be efficiently integrated in DIBs to regulate specific transport across the bilayer. 
Moreover, in order to utilise droplets separated by DIBs as nanoreactors, the transport of reactants/products 
across the DIB must be sufficient to enable efficient reactions within the droplets.

The Major Facilitator Superfamily (MFS) is a large and diverse family of secondary transporters with over 
10,000 sequenced members including those that show specificity for sugars, amino acids, neurotransmitters and 
drugs18, making them good targets for transport in DIBs. The 3-dimensional crystal structures of several of these 
proteins have been determined, such as the clinically important human glucose transporter GLUT119, which 
displays a common fold composed of 12 transmembrane α  helices divided into two 6-helix bundles with the sub-
strate binding site in the middle of the bilayer at the domain interface. One of the best characterised MFS proteins 
is lactose permease (LacY), the H+/lactose transporter from E. coli.20. Its substrate specificity is well understood, 
binding and transporting a range of small sugar-based molecules that contain a galactosyl rather than a glucosyl 
ring21. It has been purified and reconstituted into liposomes and giant unilamellar vesicles5,22 and its mechanism 
has additionally been studied by molecular dynamics simulations as well as experiments23. Transport activity is 
known to be strongly influenced by the surrounding bilayer environment24–26, raising the possibility of tuning the 
protein’s properties depending on the lipids chosen to form the droplet monolayers. In this study we use LacY as 
a model protein for the incorporation of a secondary transporter into a Droplet Interface Bilayer system, using 
both exogenously expressed, reconstituted protein and in vitro transcription/translation to synthesise protein in 
the droplet.

Results
Active secondary transport in a DIB system. The basic components of a system for sugar transport in 
DIBs are shown in Fig. 1. Two individually formed aqueous droplets, in a hexadecane solvent background, are 
each surrounded by a monolayer of lipids, with the transporter protein inserted into the bilayer region between 
the compartments. The droplets and the bilayer region that forms are easily visualised by microscopy (Fig. 1a). 
In most MFS transporters active transport is driven by an electrochemical gradient, a proton gradient in the case 
of LacY. Therefore it is important that the bilayer can maintain a pH difference over time. To test this, droplets 
were made composed of the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), a commonly used lipid that 
forms fluid bilayers at room temperature and has been previously used to make DIBs15. Its physical properties 
are well-characterised and it has been used extensively in in vitro systems to study membrane protein folding and 
activity. The dye pyranine exhibits a pH-dependent absorption shift, resulting in increased fluorescence intensity 
at a lower pH when excited with ultraviolet light. Two droplets were prepared with 50 μ M pyranine, buffered with 
sodium phosphate to pH6 and pH8. When the droplets were imaged on a fluorescence microscope with a DAPI 
excitation and emission filter set (Fig. 1b), the pH difference could be observed by the increased fluorescence in 
the low pH droplet. After the DIB was formed, the difference in fluorescence between the two droplets was main-
tained over several hours, indicating no significant leakage of protons across the DIB, with any proton seepage 
being successfully buffered and the proton gradient maintained. DIB measurements were performed at 25 °C. In 
order to monitor transport across the bilayer, the fluorescent sugar 4-methylumbelliferyl-β -galactopyranoside 
(MUG) was used as a substrate of LacY27, allowing for the direct measurement of the movement of the molecule 
from one compartment to the other. To control for background leakage, two droplets were prepared from DOPC 
vesicles with MUG added to only one. After a DIB was formed (Fig. 1c) the fluorescence was confined entirely to 
the original droplet for > 2 hour, demonstrating no detectable level of transport in the absence of protein.

There are two principal methods for adding purified membrane proteins to a DIB system, both starting from 
protein isolated in detergent solution. The “lipid-out” method involves submerging droplets of aqueous buffer 
into lipids dissolved in solvent. To incorporate the protein, the detergent is diluted below the critical micellar 
concentration in the aqueous droplets, in order to promote protein insertion without disrupting the lipid mon-
olayer8. This proved an unreliable method for LacY, with either a lag time of up to an hour before any transport 
by LacY was observed, or a complete absence of transport, presumably due to protein aggregating in the droplet 
instead of incorporating in the bilayer. Therefore the alternative “lipid-in” method was used. Here the protein is 
pre-reconstituted into liposomes, then droplets are made directly from the liposome solution added to solvent, 
with the monolayer this time formed by fusion of the proteo-liposomes bilayers with the edge of the droplet. LacY 
was reconstituted into 100 nm vesicles composed of DOPC. DOPC proteo-liposomes were diluted into pH 7.5 
buffer and a 400 nL droplet added to a hexadecane filled dish. A second droplet was made from empty DOPC 
vesicles diluted into pH 6.5 buffer containing MUG. The droplets were joined to create the bilayer and images 
taken at five minute intervals using a fluorescence microscope. An example of LacY transport in the resulting DIB 
is shown in Fig. 2a. The MUG started entirely within the left droplet of Fig. 2a and was transported to the right 
over time. The fluorescence was quantified by integrating the density and plotting the increasing signal in the 
right-hand droplet as a percentage of the total fluorescence (Fig. 2b, open circles). The fluorescence continued to 
increase until an equilibrium point of just below 50% after 30–40 mins. Although LacY requires a proton gradient 
for active transport, substrates can still be transported down a concentration gradient in its absence by facili-
tated diffusion20. DIBs were formed from proteo-liposomes with both droplets at pH7.5 (Fig. 2b, closed circles). 
Although transport was still detected, the amount of substrate transported was significantly less, with only ca.  
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10% of total fluorescence transported after 45 mins. As an additional control, the LacY mutant C154G was 
purified and reconstituted into liposomes. C145G-LacY is an inactive mutant that binds but does not transport 
substrates of LacY28. DIBs assembled using this mutant showed no substantial transport of MUG, even in the 
presence of a pH gradient (Fig. 2b, open squares).

Manipulating the DIB lipid composition. The composition of the lipid bilayer environment has a pro-
found effect on membrane proteins in general29 and on the activity of LacY in particular24,30. Manipulating the 
lipids present in the DIBs is a potential route to modulating function, whilst maintaining the reproducibility and 
control of a fully synthetic system. Droplets were therefore made with different lipid mixes to establish the impact 
on both the DIBs themselves and protein activity. Although the DOPC used here is a neutral lipid, the native  
E. coli membrane of LacY contains phosphoglycerol headgroup lipids, as well as some cardiolipin, giving an 
overall negative charge to the membrane. Charge was introduced into the DIBs system by forming droplets with a 
mixture of DOPC and 1,2-dioleoyl-sn-glycero-3-phosph-(1’-rac-glycerol) (DOPG) lipids. High concentrations of 
DOPG were not suitable for this transport assay, as a 50 or higher mole percentage of DOPG resulted in bilayers 
that could not sustain the proton gradient for a sufficient length of time (data not shown). DIBs were made using 
a molar ratio of 80:20 DOPC:DOPG to give an overall charge close to that of the native membrane. This degree 
of charge resulted in stable DIBs that could hold a pH gradient for several hours. The transport of MUG by LacY 
was the same between these droplets as between those with only DOPC (Fig. 3).

The other key difference with the native membrane is that E. coli lipids contain a high percentage of 
non-lamellar lipids, predominantly with phosphoethanolamine headgroups. Substituting DOPC for 
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids increases the curvature of the bilayer and the 
lateral pressure within the central hydrophobic region, while decreasing the lateral pressure in the headgroup 
region31. Making DIBs with native-like concentrations (60–70% DOPE) resulted in rapid fusing of the drop-
lets and was therefore unsuitable. Instead LacY was reconstituted into vesicles composed of a molar ratio of 
40:40:20 DOPC:DOPE:DOPG. DIBs assembled using this lipid mixture were stable for at least an hour, although 
typically with a smaller interface area than observed with DOPC only, or 80:20 DOPC:DOPG. In spite of this, 

Figure 1. Assembling a Droplet Interface Bilayer system for the transport of small sugars through LacY.  
(a) Schematic of a DIB with LacY incorporated (left) with a brightfield image of two droplets forming the bilayer 
at the point of contact (right panel). (b) The pH sensitive dye pyranine (left) was loaded in two droplets at a 
concentration of 50 μ M dye in 50 mM sodium phosphate buffer of two different pH. The image shown on the 
right was taken after 1 hour using a fluorescent microscope. (c) The fluorescent sugar MUG (left) is a substrate 
of LacY. A DIB was formed from DOPC lipids (right panel). The left hand side droplet was loaded with 50 μ M 
MUG while the right hand side droplet contained only buffer. The image shown was taken after 1 hour.
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LacY-mediated transport was significantly improved with DOPE present, reaching 50% of total fluorescence 
transported in 15–20 mins (Fig. 3, closed circle), approximately twice as fast as in droplets without DOPE. 
Assuming all the protein from the droplet was integrated into the interface, this would equate to a transport rate 
for MUG of 6–8 nmol/min/mg. In practice, only a proportion of LacY is likely to be incorporated, so this figure 
will underestimate the true rate of transport. This increase in transport rates as the bilayer environment more 
closely resembles the E. coli membrane is consistent with the known properties of LacY32.

In the cell environment, the active transport stimulated by the proton gradient allows the substrate to be 
accumulated within the cell up its concentration gradient. Such active transport was also observed in the 40:40:20 
DOPC:DOPE:DOPG DIBs (Fig. 4). The fluorescence increase in the right-hand droplet (Fig. 4b, open circles) and 
decrease in the left-hand droplet (closed circles) crossed over after 20 mins, then continued with a reduced rate 
of change. Thus LacY in DIBs is capable not only of accelerated transport, where the proton gradient catalyses 
substrate transport, but further able to drive true uphill transport where substrate is accumulated against its con-
centration gradient, as is the case in vivo.

Cell-free expression in DIBS. Cell-free expression systems are being increasingly used for the production 
of proteins and to study their fold and function, including some membrane proteins. However, testing the activity 

Figure 2. Active transport of the fluorescent sugar 4-methylumbelliferyl-b-galactopyranoside (MUG) 
by LacY incorporated into in a DOPC DIB. (a) Images taken at 0 mins and 30 mins are shown, that visualise 
transport of MUG across the bilayer. (b) MUG transported across the DIB was measured by integrating the 
signal from each droplet and expressing the fluorescence within the acceptor droplet (on the right hand side  
in a) as a percentage of total fluorescence. Transport of MUG with wild-type LacY plus a pH gradient (open 
circle), wild-type LacY without a pH gradient (closed circle), C154G mutant with a pH gradient (open square). 
Errors are ±  SD of n ≥  3.

Figure 3. DIB lipid composition affects transport activity. MUG transported by LacY in DIBs composed 
of 100% DOPC (open circles), 80:20 DOPC:DOPG (open square) and 40:40:20 DOPC:DOPE:DOPG (closed 
circle), expressed as a percentage of the total fluorescence in the acceptor droplet. Errors are ±  SD of n ≥  3.
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of non-enzymatic proteins produced this way can be difficult, due to the difficulty and cost of scaling up from the 
relatively small amount of protein expressed. The very small volume used in DIB systems could allow for a new 
approach. In order to test the feasibility of such in vitro expression for secondary transporters in DIBs, droplets 
were prepared containing a commercially available (PURExpress) cell-free expression system that contains all 
the ribosomes, polymerases, NTPs, etc required for protein synthesis, the lacy plasmid DNA and liposomes, all 
buffered to pH 7.6. The PURExpress system has previously been used successfully in droplets, to express the Kcv 
potassium channel membrane protein, as well as water-soluble proteins and α -haemolysin33,34.

In order to assess cell-free synthesis of LacY, DIBs were formed with droplets containing liposomes and MUG 
buffered to pH 6.6 to form the pH gradient. Another MFS protein, GalP, has previously been shown to insert 
and fold poorly from an unfolded state into lipid bilayers containing high DOPC, therefore the lipid composi-
tion chosen for the cell-free expression was a molar ratio of 25:50:25 DOPC:DOPE:DOPG, intended to promote 
both transport activity and good insertion/folding of expressed protein. In order to form stable DIBs with these 
more complex aqueous solutions it was necessary to increase the lipid concentration from 1 to 5 mg/ml (w/v). 
DOPC:DOPE:DOPG DIBs are stable at room temperature but become unstable at higher temperatures. However, 
the PURExpress system only makes low amounts of protein at room temperature, with slower rates of expression 
than observed at 30 °C or above35. Thus, we followed the previous protocol of pre-incubating the cell-free reac-
tion at 37 0C in the presence of liposomes, prior to lowering the temperature to form first the droplet submerged 
in solvent, before assembling into a DIB34. In vitro cell-free expression systems produce protein at slower rates 
than in vivo, with the elongation rate of PURExpress at 37 °C being 0.5 amino acids per second36. For the earlier 
Kcv channel synthesis, PURExpress was pre-incubated at 37 °C for 1 hour, during which time the 94 amino acid 
subunit of Kcv will have been synthesised and inserted into the liposomes in the droplet, prior to forming a DIB. 
Here we pre-incubated PURExpress for 5 min at 37 °C to initiate transcription37 and then lowered the tempera-
ture for DIB formation which took a subsequent 5–10 mins at room temperature (5 mins for monolayer forma-
tion at room temperature and a maximum of 5 mins to bring the droplets together). This 5 min pre-incubation 
was sufficient to produce a significant increase in yield of LacY in a 2 hour room temperature cell-free reaction 
compared to a room temperature incubation alone (see SI Fig. 1). The 429 amino acid long LacY takes ~15 min-
utes to synthesise by PURExpress at 37 °C, and thus synthesis of full length LacY will not have occurred during 
the 10–15 min cell-free initiation/DIB formation time, especially since the temperature is lowered to 25 °C after 
5 mins which slows translation. LacY most likely inserts during translation, which occurs before, during and after 
DIB formaton, with LacY inserting into the liposomes within the droplet, or possibly directly into the DIB itself. 
Figure 5 shows that MUG was transported across the interface, demonstrating the successful expression and 
insertion of LacY. The rate of transport was both slower and more variable than with reconstituted protein with at 
least an hour passing post DIB assembly before 50% of the substrate was transported. Crucially, uphill transport 
was still observed, confirming protein in the interface was fully functional.

Figure 4. Uphill transport of MUG by LacY in a 40:40:20 (mole ratio) DOPC:DOPE:DOPG DIB. (a) 
Images taken of a DIB at 0 mins, 20 mins and 40 mins are shown, with fluorescence substrate, MUG, loaded into 
left hand droplet. (b) Relative fluorescence of donor (closed circle) and acceptor (open circle) droplets over time.
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Discussion
In this study we present the first example of a secondary transporter incorporated into a Droplet Interface Bilayer 
system resulting in active transport of a molecular substrate against a concentration gradient. The transport pro-
tein was incorporated either from pre-reconstituted proteoliposomes or expressed in the droplet using an in vitro 
cell-free expression system (Fig. 6). It has previously been reported that bacteriorhodopsin incorporated into a 
DIB can be used to produce uphill proton currents17. Here we show bulk transport and accumulation of a biomol-
ecule. Secondary transporters, including the Major Facilitator Superfamily, are a ubiquitous class of transporters, 
which import and export a wide range of metabolites, toxins and other compounds into and out of cells with a 
high degree of substrate specificity. LacY is an extensively studied member of this family of transporters, whose 
activity has been previously shown to be dependent on the membrane environment both in vivo and in liposomes 
in vitro. The fold and topology of the protein have been shown to be altered in cells with PE-depleted membranes 
and in liposomes made with high concentrations of PG and cardiolipin24,38. This misfolded structure can only 
facilitate downhill diffusion of substrate and can no longer catalyse uphill substrate concentration. Recombinant 
LacY, reconstituted here into a DIB retained its activity, with transport stimulated by a proton gradient and the 
presence of non-lamellar lipids, and importantly including the ability to transport substrate up a concentration 
gradient.

The choice of lipid in an artificial membrane system can be vital. To date, most work on DIBs have used 
the lipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine, a saturated and branched phospholipid that has been 
favoured especially in the field of electrophysiology for its properties of forming fluid, stable bilayers across a 
wide temperature range. However, many membrane proteins have specific lipid requirements for folding or 
function, for example the presence of charged or non-bilayer lipids. Thus, these lipids need to be successfully 
introduced, alongside transporter proteins, to expand the functionality of DIB networks. Here we used mix-
tures of synthetic lipids to strike a balance between forming stable DIBs and good protein function, by including 
non-lamellar DOPE as well as the charged DOPG, which also provides an environment more similar to the 
bacterial membrane.

The most favoured proteins used in DIB systems thus far have been various types of channel, commonly 
α -haemolysin, which allow for the passive diffusion of ions or small molecules across the bilayer. Transporters 
offer significant advantages over channels when using DIB systems for compartmentalised chemistry or synthetic 
biological applications. The ability to transport specific molecules in bulk across the bilayer and importantly to 
drive transport up a concentration gradient is an essential property of native membranes, and re-creating this 
in vitro will be a requirement for producing artificial cells. The cell-free synthesis of LacY in a droplet demon-
strates that these proteins can be made and successfully incorporated into a DIB. This on board synthesis gives 
another potential avenue of control over the trafficking of molecules around DIB networks, which is likely to be 
translatable to other MFS transporters, providing a method for the selective feeding in of substrate or removal 
of product in compartmentalised chemical reactions. Recently, a light-activated promotor was developed that 
provides a mechanism for switching on cell-free production of water soluble proteins and the toxin α -haemolysin 
post-assembly of the DIB network33. Combining these sorts of development with the broader functionalisation 

Figure 5. In situ cell-free expression and activity of LacY in 25:50:25 DOPC:DOPE:DOPG lipids. (a) Images 
taken of a DIB at 0 mins. 60 mins and 180 mins are shown. (b) MUG transported across the bilayer interface 
expressed as the percentage of fluorescence in the acceptor droplet. Errors are ±  SD of n ≥  3.
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of DIB membranes by a variety of transporters and lipids, together with the use of newer techniques for DIB 
network formation such as microfluidics and 3D printing provide promising paths for controlling the flow of 
metabolites in the next generation of artificial cell systems39–41.

Materials and Methods
Detergents dodecyl maltopyranoside (DDM) and octyl glucopyranoside (OG) were purchased from Anatrace. 
Lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine 
(DOPE) and 1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DOPG) were purchased from Avanti Polar 
Lipids. All other reagents were purchased from Sigma-Aldrich unless specified.

Protein purification and reconstitution. LacY was expressed and purified as detailed in ref. 42. 
Briefly, LacY with a C-terminal 10-His tag was overexpressed from the pET28a vector in BL21-AI E. coli (Life 
Technologies). Cultures were grown at 37 °C in LB media until an OD600 of 0.8 AU then induced with 1 mM IPTG 
and 0.1% (w/v) arabinose until growth became stationary. Cells were harvested, cracked using a microfluidiser 
(Constant Systems) and the membrane fraction isolated and solubilised in buffer containing 50 mM sodium 
phosphate pH7.4, 200 mM NaCl, 20 mM imidazole, 10 mM β -mercaptoethanol, 10% (v/v) glycerol and 2% 
(w/v) DDM. The solubilised protein was loaded onto a 1 ml HisTrap HP nickel affinity column (GE Healthcare), 
washed with buffer containing 75 mM imidazole and 0.05% (w/v) DDM, then eluted with 500 mM imidazole. 
Protein-containing fractions were exchanged into 50 mM sodium phosphate pH7.4, 1 mM β -mercaptoethanol, 
10% (v/v) glycerol and 0.05% (w/v) DDM using a 5 ml HiTrap desalting column (GE Healthcare).

LacY was reconstituted into large unilamellar vesicles (LUVs) as described in ref. 5. Lipids were dissolved in 
cyclohexane, combined in the required molar ratios then freeze-dried overnight under vacuum. The resulting 
lipid films were rehydrated at a concentration of 10 mg/ml (w/v) in 50 mM sodium phosphate buffer pH7.5, 
then passed a minimum of 11 times through a 100 nm filter using a Mini-Extruder (Avanti Polar Lipids) to 
create LUVs. The liposomes were pre-saturated with detergent by adding OG to a final concentration of 1.2% 
(w/v), before adding purified LacY at a 3000:1 lipid:protein molar ratio. After incubating at RT for 1 hour, excess 
detergent was removed by incubation with Biobeads (Biorad). Before use in forming droplets the liposomes and 
proteo-liposomes were diluted ten-fold in 50 mM sodium phosphate buffer at the required pH. For transport 
assays 50 μ M 4-methylumbelliferyl-β -galactopyranoside was included in the droplet buffer. For monitoring pH 
gradients, 50 μ M pyranine was included.

Figure 6. Assembling a Droplet Interface Bilayer transport system. 1. Mix aqueous phase together, 
comprising either A: MFS protein reconstituted into LUVs or B: cell-free reaction with added empty liposomes 
and template DNA. Prepare second droplet containing substrate and empty liposomes. 2. Submerge sub-
microlitre droplet of the aqueous phase in hexadecane solvent bath and incubate to allow monolayer formation 
around each individual droplet. 3. Manipulate two droplets together so that a bilayer interface is formed 
between them. 4. Use microscopy to take images of the DIB and to track the transport of fluorescent substrates.
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Droplet Interface Bilayer formation. Droplet Interface Bilayers were prepared by the “lipid-in” method, 
largely as described in refs 8,9. 400 nL droplets, containing either empty liposomes or proteoliposomes were 
pipetted into a glass dish containing hexadecane and equilibrated for 15 mins to allow for the formation of the 
lipid monolayer. The two droplets were then pushed together to form a bilayer between the droplets and imaged 
on an IX83 inverted microscope (Olympus) with a 4x objective lens. Fluorescent substrates were detected with a 
DAPI excitation and emission filter set, and quantified by integrating the fluorescent signal in each droplet using 
ImageJ software43. All experiments involving droplets and DIBs were performed at 25 °C (apart from initial 5 min 
incubation for PURE synthesis as below).

Cell-free expression in droplets. The PURExpress In Vitro Protein Synthesis Kit (New England Biolabs) 
contains all the proteins, ribosomes, amino acids and NTPs required for cell-free protein synthesis. A 12.5 μ l 
reaction was set up within a droplet, following the manufacturer’s instructions, supplemented with liposomes 
at a final concentration of 5 mg/ml (w/v), pH7.6. 100 ng of pET28-LacY-H10 plasmid was added and the reac-
tion incubated at 37 °C to initiate transcription. Droplets were then prepared by submerging 600 μ l of either the 
cell-free reaction or 5 mg/ml (w/v) liposomes in 50 mM HEPES pH6.6 in room temperature hexadecane and 
incubating for a further 5 mins to allow for monolayer formation. Bilayer interfaces were then formed between 
two droplets and imaged as described above.
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