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Spontaneous Isopeptide Bond 
Formation as a Powerful Tool for 
Engineering Site-Specific Antibody-
Drug Conjugates
Vanessa Siegmund1,2, Birgit Piater2, Bijan Zakeri3, Thomas Eichhorn2, Frank Fischer2, 
Carl Deutsch2, Stefan Becker2, Lars Toleikis2, Björn Hock2, Ulrich A. K. Betz2 & Harald Kolmar1

Spontaneous isopeptide bond formation, a stabilizing posttranslational modification that can be found 
in gram-positive bacterial cell surface proteins, has previously been used to develop a peptide-peptide 
ligation technology that enables the polymerization of tagged-proteins catalyzed by SpyLigase. Here 
we adapted this technology to establish a novel modular antibody labeling approach which is based on 
isopeptide bond formation between two recognition peptides, SpyTag and KTag. Our labeling strategy 
allows the attachment of a reporting cargo of interest to an antibody scaffold by fusing it chemically to 
KTag, available via semi-automated solid-phase peptide synthesis (SPPS), while equipping the antibody 
with SpyTag. This strategy was successfully used to engineer site-specific antibody-drug conjugates 
(ADCs) that exhibit cytotoxicities in the subnanomolar range. Our approach may lead to a new class of 
antibody conjugates based on peptide-tags that have minimal effects on protein structure and function, 
thus expanding the toolbox of site-specific antibody conjugation.

The conjugation of small molecule drugs to antibodies represents a promising strategy for the development of 
cancer therapeutics. By harnessing the capacity of antibodies to home in on specific targets and combining that 
with the cytotoxic capability of small molecule drugs, antibody-drug conjugates (ADCs) can be generated to 
deliver lethal payloads to cancer cells with precision, while minimizing the off-target effects of cytotoxic drugs to 
increase the therapeutic index1.

First generation ADCs employing statistic conjugation of cytotoxic payloads via reduced cysteines or lysines 
led to heterogenous populations with limited therapeutic index suffering from a low efficacy and inconsistent  
in vivo performance2,3. Initial attempts to generate homogenous ADCs with a defined stoichiometry relied on the 
mutation of selected interchain cysteines to serines and conjugation of the cytotoxic payload to the remaining 
accessible cysteines originating from reduction4. Since then, several elegant methods have been developed to 
conjugate drugs to antibodies in a site-specific manner5,6. Chemical methods include the site-specific chemical 
conjugation through engineered cysteines7 or selenocysteines8,9, cysteine containing tag with perfluoroaromatic 
reagents10 and conjugation to reduced intermolecular disulfides by re-bridging dibromomalemides11, bis-sulfone 
reagents12, and dibromopyridazinediones13. In addition, several enzymatic and chemoenzymatic conjugation 
approaches have been reported including the use of engineered galactosyl- and sialyltransferases14, formyl 
glycine generating enzyme (FGE)15, phosphopantetheinyl transferases (PPTases)16, sortase A17, and microbial  
transglutaminase18–20, an enzyme forming an isopeptide bond between a glutamine side-chain and an 
amine-donor substrate.

Here we sought to explore a new method for engineering ADCs. Spontaneously forming intramolecular iso-
peptide bonds—peptide bonds that form outside of the protein main chain—were first discovered a decade ago 
and were found to provide remarkable stability to outer-membrane proteins of Gram-positive bacteria21. Using 
these protein scaffolds, Zakeri et al. engineered a series of genetically programmable peptide-protein partners that 
are able to spontaneously reconstitute via covalent and irreversible isopeptide bond formation22,23. One of these 
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peptide-protein partners was obtained by engineering and splitting the C-terminal beta-strand of the CnaB2 
domain from the fibronectin adhesion protein FbaB of Streptococcus pyogenes that is able to reconstitute with the 
protein by forming an intramolecular isopeptide bond between an aspartate and a lysine residue catalyzed by an 
opposed glutamate22. Further engineering of the CnaB2 domain and splitting it into three parts generated the 
synthetic enzyme SpyLigase that is able to direct the formation of an isopeptide bond between the two peptides 
SpyTag and KTag (Fig. 1A)24. Since the tags can be genetically fused to various proteins, these protein super-
glues have emerged as useful tools to covalently and specifically assemble linear and branched protein structures, 
thereby enabling the generation of new protein architectures via modular assembly25.

Results
Expression of peptide-tagged IgG1 antibody Fc domains, SpyLigase and synthesis of labeled  
peptides. To test whether the SpyLigase-catalyzed peptide ligation approach could also be applied for the 
covalent attachment of small reporting molecules such as fluorescent dyes, biotin or cytotoxins to antibody scaf-
folds, we fused SpyTag (13aa) and KTag (10aa) genetically to the C-terminus of an Fc domain from an IgG1 anti-
body via a short GS-linker. In order to facilitate analysis of conjugates, an N297A mutation was introduced into 
the IgG1-Fc gene by site-directed mutagenesis to remove the natural glycosylation site. The peptide-tagged anti-
body fragments were transiently expressed in HEK293F cells and subsequently purified by protein A affinity chro-
matography. SpyTag and KTag-peptides with adjacent N-terminal GSG-spacer were synthesized on solid support 
by semi-automated SPPS using a Rink amide (RAM) resin yielding peptide carboxamides after cleavage. KTag was 
further extended with a GY-dipeptide at the carboxy terminus as described24. 5/6-Carboxytetramethylrhodamine 
(TAMRA), a fluorophore commonly used for the preparation of protein conjugates, and biotin were coupled to 
the resin-bound peptide amino terminus via standard amide coupling chemistry using 2-(1H-benzotriazol-1-
yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and N,N-Diisopropylethylamine (DIPEA). After 

Figure 1. Site-specific conjugation of Spy-tagged IgG1-Fc with 5/6-carboxytetramethylrhodamine 
(TAMRA)-KTag by SpyLigase-mediated isopeptide bond formation. (A) Cartoon illustrating the splitting 
strategy to form SpyLigase from the CnaB2 domain. The two peptide tags, KTag (orange) with the reactive 
lysine and SpyTag (blue) with the reactive aspartic acid, can be ligated by the remaining protein domain 
(SpyLigase, green) by isopeptide bond formation. Active-site residues involved in the reaction are indicated 
(PDB 2X5P). (B) SDS-PAGE, Coomassie staining (top), and in-gel fluorescence (bottom) of the reduced Fc-
fluorophore conjugates. Reactions were conducted with increasing concentration of SpyLigase (1, 3, and 10 mol 
eq. over Fc) and 10-fold excess of TAMRA-KTag. Control reactions (Ctrl) were performed by using 10 mol eq. of 
SpyLigase EQ. (C) Scheme of SpyLigase-mediated IgG1-Fc-SpyTag labeling using TAMRA-KTag.
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cleavage from the resin, labeled peptides were purified by semi-preparative RP-HPLC and analyzed by ESI-MS. 
SpyLigase and its inactive mutant SpyLigase EQ were obtained in yields of 20 mg per liter by expression in 
Escherichia coli and purification by affinity chromatography followed by size-exclusion chromatography (SEC)24. 
The purity of the proteins was > 95% as determined by denaturing SDS-PAGE gel electrophoresis (Fig. 1B, upper 
panel, and S1, lane 2–4).

Conjugation of labeled peptides to antibody Fc domains by SpyLigase-mediated isopeptide 
bond formation. We next performed conjugation reactions of labeled-peptides to the peptide-tagged Fc 
domains at pH 7.0 in the presence of the protein stabilizer trimethylamine N-oxide (TMAO) for 18–24 h at 4 °C. 
Each reaction contained peptide-tagged IgG1-Fc, labeled peptide counterpart (20 eq.), and SpyLigase (1–10 eq.). 
All possible combinations of SpyTag and KTag with the respective TAMRA or biotin labeled counterpart were 
assayed. Covalent ligation reactions were analyzed by boiling the samples for 5 min in SDS-loading buffer and 
subsequent SDS-PAGE analysis. Reaction products were visualized by Coomassie staining, fluorescence read-
out or western blotting (not shown). For all combinations the formation of a new product, stable to boiling in 
SDS, with a slightly slower migration behavior consistent with isopeptide bond formation between SpyTag and 
KTag was observed (Fig. 1B, upper panel, and S1, lane 5–7). This product was not observed when SpyLigase was 
replaced by its inactive Glu77 to Gln mutant (SpyLigase EQ). This mutant was not able to catalyze the sponta-
neous isopeptide bond formation due to the lack of the required glutamate residue (Fig. 1B, upper panel, and 
S1, lane 8). These results suggested that SpyLigase covalently links KTag and SpyTag in a site-specific manner. 
The conjugation efficiencies for Fc-SpyTag with TAMRA-KTag were estimated to be 40–60%. Here, reactions 
with three equivalents of SpyLigase seemed to be most efficient (Fig. 1B, upper panel, lane 6). Conjugation of the 
Fc-KTag with TAMRA-SpyTag was observed to be less efficient, which may be caused by a shorter GS-linker that 
was used to fuse KTag to the Fc (Figure S1 lane 5–7).

SpyLigase-mediated conjugation of labeled peptides to Spy-tagged antibodies. Having 
proven our site-specific labeling approach on antibody domains, we extended the application for the prepara-
tion of defined antibody conjugates of the anti-EGFR monoclonal antibody cetuximab (Erbitux® ). The cetux-
imab fusion proteins with SpyTag at the C-terminus of the heavy chains, the light chains, and at both chains 
were obtained by expression in HEK293F cells and purified by protein A affinity chromatography. The yields 
were comparable to those obtained for the unmodified antibody (40–60 mg per liter cell culture). SEC analy-
sis revealed no significant aggregation behavior of the peptide-tagged antibodies (Figure S2). Antibodies were 
then conjugated to TAMRA-KTag using SpyLigase under previously determined reaction conditions. Reaction 
products were analyzed by in-gel fluorescence and Coomassie staining following SDS-PAGE gel electrophoresis. 
Fluorescent bands corresponding to the conjugated antibody’s heavy and light chains and a mobility shift of the 
conjugated light chain confirmed that SpyLigase-promoted site-specific labeling can also be applied on full-length 
IgG1-antibodies (Figure S3, lane 2–4). These results indicated a chemically highly specific conjugation reaction 
due to the required assembling of SpyTag/KTag and SpyLigase to form an active complex mediating isopeptide 
bond formation.

Synthesis of cytotoxin-peptide payloads and conjugation to Spy-tagged antibodies. Next, 
we wanted to investigate whether SpyLigase-catalyzed conjugation could also be applied for the coupling 
of drug molecules to antibodies to generate site-specific ADCs. For this purpose, we designed and synthe-
sized a set of Monomethyl auristatin E (MMAE)-peptide payloads differing in the nature of the used linker 
and the chemistry used for peptide-coupling (Fig. 2, compound 5–7). MMAE was designed with either a 
non-cleavable (nc) maleimide-thiol linker (compound 5), without linker (compound 6), or with a cleava-
ble valine-citrulline-p-aminobenzylcarbamate (vc-PABC) linker7,26,27 (compound 7). In general, all payloads 
contained polyethylene glycol (PEG) spacer-units to increase the overall toxin solubility and to increase the 
toxin-peptide distance. To persue two different chemical strategies, toxins were either provided with an azide 
functionality for copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) or with an carboxyl group for amide 
coupling. For peptide-toxin coupling in solution by CuAAC, resin-bound KTag was first coupled to propargy-
lacetic acid to obtain an N-terminal alkyne moiety before it was cleaved from the resin and purified. The carboxy 
functionalized MMAE was coupled directly to the N-terminus of the resin-bound peptide, requiring an acidic 
cleavage step of the entire MMAE-payload. As a proof of principle, cetuximab fused to SpyTag at the heavy chains 
was used for conjugation. These reactions were carried out in phosphate-citrate buffer pH 7.0 in the presence of 
TMAO for 18–24 h at 4 °C. Each reaction contained Spy-tagged antibody, 15 eq. of the toxic payload, and 3 eq. 
of SpyLigase. Reactions were analyzed by hydrophobic interaction chromatography (HIC) and drug-to-antibody 
ratios (DAR) were determined. Using payload 5, the highest observable DAR was only 0.57 (Figure S4). With the 
payloads from peptide-coupling via click-chemistry, formation of about 80% of the desired species with two drug 
molecules was obtained, resulting in a DAR of 1.76 for payload 5 and a DAR of 1.66 for 7. Control reactions with 
either SpyLigase EQ, without SpyLigase, and without payload did not result in the formation of a new product. 
This was analyzed by HIC, confirming also the specificity of the reaction (Figure S5).

MS analysis of Spy-tagged ADCs. Next, we confirmed the identity of the peptide-tagged ADCs and the 
specificity of the conjugation reaction by mass spectrometry. Intact mass analysis of ADCs by MALDI-MS indi-
cated the attachment of two payload molecules per antibody by a mass shift of 5252 Da (calc. 5349 Da) for pay-
load 6 and 6202 Da (calc. 6159 Da) for payload 7 (Figure S7) compared to unmodified Spy-tagged cetuximab. 
This observation was verified by mass analysis of reduced ADCs showing a mass shift of 2735 Da (calc. 2675 Da) 
and 3116 Da (calc. 3080 Da) for payload 6 and 7, respectively (Figure S8). In order to confirm the identity of the 
ADCs, a more accurate mass determination was obtained by LC-ESI-MS showing a mass shift of 2677 Da for 



www.nature.com/scientificreports/

4Scientific RepoRts | 6:39291 | DOI: 10.1038/srep39291

compound 6 (calc. 2675 Da) (Figure S9). Tryptic digestion of the ADCs resulted in a peptide fragment com-
posed of amino acids derived from both SpyTag and KTag which are connected to each other via an isopeptide 
bond between Asp and Lys residues (Figure S13). This fragment was successfully identified in both ADC samples 
but not in the unconjugated antibody control. Further identification of the peptide was conducted by sequenc-
ing using Tandem-MS (Figures S14–S16). Unmodified SpyTag fragment, however, was only observed in minor 
amounts confirming the efficiency of our approach (Figure S17). No unspecific conjugation of the antibody light 
chain was observed (Figure S18).

In vitro cytotoxicity of Spy-tagged ADCs. To determine the cell killing activities of the Spy-tagged 
cetuximab-based ADCs in vitro, ligation reactions were scaled up and ADCs were purified by protein A chro-
matography in order to remove excess payload and SpyLigase. In vitro cytotoxicity was determined using two 
different breast cancer cell lines, MDA-MB-468 and MCF-7, the former one expressing high levels of EGFR (epi-
dermal grow factor receptor, EGFR+ ), the latter one without EGFR expression (EGFR-)28. ADCs with payloads 
that were synthesized by CuAAC with either non-cleavable linker (compound 6) or with cleavable linker (com-
pound 7) were compared to each other to investigate an effect of the different linkers on efficacy and potency. 
The ADCs were tested in a serial dilution with the highest concentration of 50 nM for three days. As expected, 
cetuximab-based ADCs effect on MDA-MB-468 cells in a dose dependent manner (Fig. 3, upper panels).  
For the ADC with a non-cleavable linker the half-maximal cytotoxic effect was in the subnanomolar range 
(IC50 =  0.2 nM) (Fig. 3A, ■ ). In contrast the ADC with a cleavable linker showed an even higher in vitro potency 
(IC50 =  0.1 nM) (Fig. 3B, □ ) which was probably due to the cathepsin B-mediated cleavage of the linker in the lys-
osome releasing the free toxin upon cellular uptake. No effect on cell viability was observed with the same ADCs 
on the EGFR-negative cell line MCF-7 (Figure 3, lower panels). To confirm the receptor-mediated internalization 
and cell killing of the anti-EGFR ADCs, anti HER2 (human epidermal grow factor receptor 2) Spy-tagged tras-
tuzumab ADCs were prepared with the same payloads under identical reaction conditions and tested as isotype 
controls. The free payload was also used as control. MDA-MB-468 cells do not express HER2 whereas MCF-7 
cells exhibit a low expression of HER228. The cell viability of both cell lines was not affected by the isotype control 
ADCs (Fig. 3, ○  and ● ), demonstrating that the anti-EGFR ADCs generated by using the catalytic activity of 

Figure 2. Overview of different cargoes of interest coupled to the N-terminus of KTag or SpyTag used in this 
study: (1) TAMRA-KTag, (2) Biotin-KTag, (3) TAMRA-SpyTag, (4) Biotin-SpyTag, (5) MMAE-nc-KTag (amide 
bond), (6) MMAE-nc-KTag (click chemistry), (7) MMAE-vc-KTag (click chemistry). Payloads 1–4 were 
subjected to SpyLigase-mediated IgG1-Fc conjugation whereas payloads 1 and 5–7 were used for conjugation to 
the antibody cetuximab as SpyTag fusion.
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SpyLigase selectively kill EGFR-overexpressing cells in a receptor-dependent manner. A cell killing effect of free 
payload 7 was observed at the highest concentration of 50 nM (Fig. 3B, ▲).

Conclusion
In conclusion, we have developed a modular bioconjugation approach based on isopeptide bond formation 
between two peptide tags catalyzed by SpyLigase. This approach was used as a tool for the site-specific conju-
gation of small reporting molecules like fluorescent TAMRA and biotin to antibodies and for the generation of 
homogenous ADCs. ADCs prepared by fusing SpyTag to the C-terminus of the anti-EGFR monoclonal antibody 
cetuximab and attaching a cytotoxic compound to the chemically synthesized KTag were characterized regarding 
their biophysical and cytotoxic properties in vitro. The obtained ADCs performed specifically and were observed 
to exhibit subnanomolar IC50 values. We assume that this technology can also be used for engineering ADCs 
with a higher payload density since it has been described that the used peptide tags were also reactive when 
placed at internal sites of a protein24. The feasibility of such a peptide-tagged ADC approach has recently been 
proven by the introduction of small substrate sequences for enzyme-promoted conjugation at different constant 
region loops positions of trastuzumab for efficient site-specific ADC preparation16. The possibility to place the 
peptide-tags at multiple sites within the antibody scaffold would clearly provide an advantage compared to cova-
lent peptide labeling via sortases that exclusively allow for C-terminal payload conjugation17,29–31. In addition to 
microbial transglutaminase our approach offers the opportunity for site-specific and efficient antibody conjuga-
tion based on a stable isopeptide bond.

Methods
Expression and purification of SpyLigase. The plasmid coding for SpyLigase (pDEST14-SpyLigase) 
was purchased from Addgene (Addgene ID 51722). The plasmid coding for the inactive form of SpyLigase 
(pDEST14-SpyLigase EQ) was generated by Quick Change Side-Directed Mutagenesis by introducing an E77Q 
mutation according to the literature22,24. SpyLigase expression in E. coli BL21 DE3 pLysS (Stratagene) and purifi-
cation via immobilized metal ion affinity chromatography (IMAC) was conducted according to the literature22,24.  
After dialyzing proteins in a 1,000-fold excess of PBS overnight at 4 °C, size-exclusion chromatography (SEC) was 

Figure 3. Cytotoxicity induced by Spy-tagged cetuximab ADCs using EGFR overexpressing MDA-MB-468 
and EGFR-negative MCF-7 breast cancer cell lines. (A) In vitro cell killing of ADCs with non-cleavable 
(nc) MMAE payload 6 (■ ). (B) In vitro cell killing of ADCs with cleavable (vc) MMAE payload 7 (□ ). 
Incubation times were 3 days. Trastuzumab ADCs were used as isotype controls (○  and ● ). Compound 6 
(▼) and compound 7 (▲ ) were also assayed as controls. IC50 values were calculated as mean values from two 
independent experiments.
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performed using a HiPrep (16/60) Sephacryl S-200 HR column (GE Healthcare) and PBS. Proteins were concen-
trated by centrifugation dialysis using Amicon Ultra-15 (Merck Millipore, NMWL 3000 Da) and protein concen-
trations determined at 280 nm using a nano spectrophotometer (MW =  11474.3 g/mol, ε280 =  15930 M−1m−1). 
A protein yield of about 20 mg per liter culture could be obtained. Proteins were supplemented with 10% (v/v) 
glycerol, aliquots frozen in liquid nitrogen, and stored at − 80 °C.

Expression and purification of IgG1 Fc and antibodies fused to peptide tags. IgG1 Fc 
(pEXPR-IgG1 Fc) was fused to either SpyTag (AHIVMVDAYKPTK) or KTag (ATHIKFSKRD) with additional 
GY-dipeptide at the C-terminus by using standard molecular cloning techniques. Native IgG1 glycosylation at 
position N297 was eliminated by introducing a N297A mutation by Quick Change Side-Directed Mutagenesis. 
Plasmids coding for chimeric cetuximab (C225, Erbitux® ) and trastuzumab (Herceptin® ) were kindly provided 
by Merck KGaA (Darmstadt). Cetuximab and trastuzumab variants containing SpyTag at the C-terminus of either 
the heavy chains, the light chains, or at both chains were prepared by standard molecular cloning techniques. A 
(GSG)2-linker was introduced between the C-terminus of the antibody and SpyTag. IgG1 Fc and full-length anti-
bodies were transiently expressed from HEK293F cells using the Expi293 Expression System (Life Technologies). 
Supernatants containing secreted proteins were conditioned and applied to spin columns with PROSEP-A Media 
(Montage, Merck Millipore). Columns were washed with 1.5 M Glycine/NaOH, 3 M NaCl, pH 9.0 and proteins 
eluted with 0.2 M Glycine/HCl pH 2.5 into 1 M Tris/HCl pH 9.0. Eluted proteins were dialyzed in 1 ×  DPBS (Life 
Technologies) using Amicon Ultra-15 (Merck Millipore, NMWL 10000 Da) and stored at 4 °C.

Conjugation of peptide-tagged IgG1 Fc. Antibody fragments (IgG1 Fc) fused to either SpyTag or KTag 
at the C-terminus were mixed at 5 μ M with 50 μ M of TAMRA-KTag or TAMRA-SpyTag, respectively, and incu-
bated in the presence of 5–50 μ M of SpyLigase (1–10 mol eq.) for 24 h in 40 mM Na2HPO4, 20 mM citric acid 
buffer, pH 5.0, with addition of 1.5 M trimethylamine N-oxide (Sigma-Aldrich) to give a final pH of 7.0 (PCT 
buffer) at 4 °C. Control reactions using 50 μ M of an inactive SpyLigase (EQ, E77Q) were performed simulta-
neously. Reactions were stopped by the addition of SDS loading buffer and samples heated at 95 °C for 5 min. 
SDS-PAGE was performed on 15% polyacrylamide gels at 40 mA for approximately 45 min. Gels were analyzed by 
fluorescence readout using a Versa Doc Imaging System 5000 (Bio-Rad) and afterwards stained with Coomassie 
Blue.

SpyLigase-mediated antibody conjugation. Cetuximab or trastuzumab fused to SpyTag at the 
C-terminus of the heavy chain, light chain, or at both chains was mixed at 6 μ M with 120 μ M of TAMRA-KTag 
and incubated in the presence of 18 μ M of SpyLigase for 24 h in 40 mM Na2HPO4, 20 mM citric acid buffer, pH 
5.0, with addition of 1.5 M trimethylamine N-oxide (Sigma-Aldrich) to give a final pH of 7.0 at 4 °C (PCT buffer). 
Antibodies conjugated to TAMRA-KTag were analyzed by SDS-PAGE on 15% polyacrylamide gels and fluores-
cently labeled heavy and/or light chains visualized by fluorescence readout using a Versa Doc Imaging System 
5000 (Bio-Rad). For toxin conjugations, cetuximab or trastuzumab fused to SpyTag at the C-terminus of the heavy 
chain was incubated at 6 μ M with 90 μ M of the respective MMAE-KTag payload and incubated in the presence 
of 18 μ M of SpyLigase under the above described reaction conditions. Antibody drug conjugates were evaluated 
by hydrophobic interaction chromatography (HIC) on a TSKgel Butyl-NPR column (Tosoh Bioscience, 4.6 mm x 
3.5 cm, 2.5 μ m) using an Agilent Infinity 1260 HPLC. The HIC method was applied using a mobile phase of 1.5 M 
(NH4)2SO2, 25 mM Tris-HCl pH 7.5 (Buffer A) and 25 mM Tris-HCl pH 7.5 (Buffer B). ADCs (45 μ g) in 0.75 M 
(NH4)2SO2 were loaded and eluted with a gradient consisting of 2.5 min 0% Buffer B followed by a linear gradient 
into 100% Buffer B over 35 min with a flow rate of 0.9 ml/min. For preparative ADC preparations, reactions were 
scaled up and ADCs purified by protein A magnetic beads (Promega) according to the manufacturers protocol. 
Excess payload and SpyLigase were removed by rigorous washing with PBS before eluting ADCs with 100 mM 
citrate buffer pH 3.0 into 1 M Tris-HCl pH 9.0 neutralization buffer. ADCs were buffered into PBS by using PD 
MiniTrap G-25 colums and concentrated by centrifugation dialysis (100 K Amicon Ultra 0.5 Centrifugal Filters).

In vitro cytotoxicity of peptide-tagged ADCs. In vitro cytotoxicity of peptide-tagged anti EGFR ADCs 
was determined by using MDA-MB-468 and MCF-7 breast cancer cells. MDA-MB-468 cells have a high EGFR 
expression level, but no HER2 expression28. MCF-7 cells show no EGFR expression, but a weak HER2 expression28.  
Cells were cultivated in appropriate culture media according to the manufacturer protocol. Cells were detached by 
trypsination, diluted and allowed to settle down in 96-well plates at a seeding density 12.5 ×  104 cells/ml (0.08 ml/
well) for 24 h at 37 °C (5% CO2). ADCs and free payloads were diluted in appropriate culture media and added to 
the cells in various concentrations (ranging from 50 nM to 7.6 pM) following a three-day incubation at 37 °C (5% 
CO2). All concentrations were assayed in duplicates. Cell proliferation was determined by adding CellTiter-Glo 
(Promega) and luminescence readout (Synergy 5, BioTek).

General for peptide chemistry. All chemicals and solvents for peptide synthesis, analysis, and isolation 
were purchased from Iris Biotech, Agilent Technologies, Sigma-Aldrich, or Roth and used without any further 
purification. MMAE-linker payloads were obtained from Syngene.

Peptide solid-phase synthesis. Peptides were synthesized at a 0.1 mmol scale on an AmphiSpheres 
40 RAM resin (Agilent, 0.37 mmol/g) by microwave-assisted Fmoc-SPPS using a Liberty BlueTM Microwave 
Peptide Synthesizer. Activation of the respective carboxyfunctional amino acid (0.2 M) was performed by 1 M 
Oxyma/0.5 M N,N′ -Diisopropylcarbodiimide (DIC). Deprotection of the aminoterminal Fmoc-group was 
achieved using 20% piperidine in DMF in the presence of 0.1 M Oxyma. During the synthesis cycles all amino 
acids were heated to 90 °C (histidine to 50 °C). Peptides were cleaved from the resin for analytical purposes by a 
standard cleavage cocktail of 94% TFA, 2% triethylsilane, 2% anisole, 2% H2O. Methionine containing peptide 2 
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was cleaved in the presence of dithiotreitol (DTT) to prevent oxidation. After 1 h of cleavage, peptides were pre-
cipitated in cold diethylether, washed with diethylether and dried in vacuo prior to LC-MS analysis.

RP-HPLC. Peptides were analyzed by chromatography using an analytical RP-HPLC from Agilent Technolgies 
(920-LC or 1260 Infinity) using either a Phenomenex Hypersil 5 u BDS C18 LC column (150 ×  4.6 mm, 5 μ m,  
130 Å) or a Phenomenex Luna 5 u C18 (2) column (150 ×  4.6 mm, 5 μ m, 100 Å). Peptides were isolated by 
semi-preparative RP-HPLC (Varian) using a Phenomenex Luna 5 u C18 LC column (250 ×  12.2 mm, 5 μ m, 
100 Å). Eluent A (water) and eluent B (90% aq. MeCN) each contained 0.1% trifluoroacetic acid (TFA).

ESI-MS analysis of peptides. ESI mass spectra were measured on a Shimadzu LCMS-2020 equipped with 
a Phenomenex Synergi 4 u Hydro-RP LC column (250 ×  4.6 mm, 4 μ m, 80 Å) by using an eluent system consisting 
of eluent A (0.1% aq. formic acid, LC-MS grade) and eluent B (100% acetonitrile containing 0.1% formic acid, 
LC-MS grade).

MALDI-TOF-MS analysis of intact masses. 20 μ g of protein was used for non-reduced and reduced 
(30 min at 60 °C with 5 mM Dithiothreitol) sample preparation. Prior MALDI analysis on an Ultraflex III (Bruker, 
Bremen), samples were desalted and concentrated with C4 ZipTips (Millipore, Cork) corresponding to the 
manufactures guide. The prepared samples were directly mixed in equal volumes with saturated alpha-Cyano-
4-hydroxy-cinnamic acid matrix (Bruker, Bremen) on a MTP AnchorChip 384 TF plate (Bruker, Bremen). The 
Ultraflex III was used in a linear positive mode and data acquisition was performed in a mass range between m/z 
10000 to 180000. Per sample, 4000 laser shot were accumulated and finally smoothed and baseline subtracted.

CapLC-ESI-MS analysis of intact masses. For intact mass analysis of heavy and light chain, 20 μ g of each 
sample was mixed with 1% mercaptoethanol final concentration and reduced for 30 min. at 37 °C. Reduced sam-
ples were loaded directly onto a CapLC-MS system (1100 series, Agilent Technologies) coupled to a Synapt G1 
HDMS (Waters, Milford, MA) operated in MS positive ion mode. 0.1% trifluoroacetic acid in water was used as 
solvent A and 0.1% trifluoroacetic acid in 70% n-propanol as solvent B. The samples were separated via a Zorbax 
SB300 C8 column (3.5 μ m, 150 ×  0.3 mm, Agilent Technologies), tempered at 75 °C. The gradient started with 3% 
B and a flow rate of 10 μ L/min followed by a linear gradient from 2 to 39 min from 10% B to 60% B. Protein signals 
were recorded with a DA-detector at 214 and 280 nm. MS spectra were acquired from m/z 500 to 3000. Finally, 
intact protein mass was calculated applying the MaxEnt1 deconvolution algorithm.

NanoLC-ESI-MSe analysis of tryptic peptides. Investigation of the payload conjugation site was per-
formed by peptide mapping analysis using a slightly modified RapiGest SF Surfactant care and use protocol 
(Waters, Milford, MA). Briefly, 10 μ g of each sample was mixed with RapiGest 0.1% final concentration and 
reduced for 30 min at 60 °C with 5 mM Dithiothreitol. Alkylation was performed with 15 mM iodoacetamide 
for 30 min at RT. Finally 1.5 μ L of a 1 μ g/μ l trypsin solution were added and incubated overnight at 37 °C. After 
digestion, the sample was acidified by addition of 0.5% trifluoroacetic acid and analyzed by Nano-LC-MSe using 
a nanoAcquity UPLC coupled to a Synapt G1 HDMS (Waters, Milford, MA) operated in MSe mode. 0.1% for-
mic acid in water was used as solvent A and 0.1% formic acid in acetonitrile as solvent B. Tryptic peptides were 
injected and trapped for 3 min on a Symmetry C18 pre-column (5 μ m, 180 μ m × 20 mm, Waters, Milford, MA) 
with a flow rate of 10 μ l/min. Separation was performed using an UPLC 1.7 μ m BEH130 column (C18, 75 μ 
m ×  100 mm, Waters) with a flow rate of 450 nl/min, starting with 2% B from 0 to 2 min followed by a linear 
gradient from 8–35% B for 67 min. The used MSe mode combines an alternating MS and MSe (full mass range 
fragmentation) function each second. Spectra were acquired from m/z 50 to 1600 and extracted ion chromato-
grams were analyzed manually.

Synthesis of peptide conjugates 1–4. Resin-bound peptides were functionalized with 
5/6-carboxytetramethylrhodamine (TAMRA, mixed isomers) or biotin at the free amino terminus by 
double-coupling using a preactivated carboxyl functionality. For activation, 2 eq. of TAMRA or biotin were incu-
bated with 1.95 eq. of 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) in the 
presence of 4 eq. of N,N-Diisopropylethylamine (DIPEA) in DMF for 10 min shaking. Afterwards, the mixture 
was added to the resin-bound peptides (preswelled in 1:1 DMF/DCM) and coupling allowed to proceed for 2 h, 
respectively. Peptides were cleaved from the resin by using a standard cleavage cocktail of 94% TFA, 2% triethyl-
silane, 2% anisole, 2% H2O. Methionine containing SpyTag-peptides were cleaved in the presence of dithiotreitol 
(DTT) to prevent oxidation. After 2 h of cleavage, peptides were precipitated in cold diethylether, washed twice 
with diethylether, dried in vacuo, and afterwards purified by semi-preparative RP-HPLC.

Synthesis of KTag with N-terminal alkyne functionality. KTag-peptide was equipped with an 
N-terminal alkyne functionality by coupling with propargylacetic acid (4-pentynoic acid) on resin. For this 
purpose, 4 eq. of the building block was preactivated for 10 min with 3.95 eq. of 2-(1H-benzotriazol-1-yl)-
1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and 8 eq. of N,N-Diisopropylethylamine (DIPEA) 
in DMF and afterwards added to the resin-bound peptide (preswelled in 1:1 DMF/DCM). Coupling was per-
formed for 1.5 h twice and the resin washed subsequently with DMF, DCM, and diethylether for drying. The 
alkyne-functionalized peptide was cleaved from the resin using a standard cleavage cocktail of 94% TFA, 2% 
triethylsilane, 2% anisole, 2% H2O. After 2 h of cleavage, the peptide was precipitated in cold diethylether, washed 
twice with diethylether and dried in vacuo. The product was analyzed by LC-MS and purified by semi-preparative 
RP-HPLC.
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Synthesis of peptide-toxin conjugate 5. Resin-bound KTag-peptide was incubated with 1.2 eq. MMAE 
bearing a carboxy group in the presence of 1.14 eq. 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hex-
afluorophosphate (HBTU) and 2.4 eq. of N,N-Diisopropylethylamine (DIPEA) in DMF for 5 h at room tempera-
ture. Afterwards, the resin was washed twice with DMF, DCM, and diethylether. The toxin-functionalized peptide 
was cleaved from the resin using a cleavage cocktail of 85% TFA, 5% triethylsilane, 5% anisole, and 5% H2O for 
1 h at room temperature. The peptide-toxin conjugate was precipitated in cold diethylether, washed twice with 
diethylether and dried in vacuo. Compound 5 was isolated by RP-HPLC.

Synthesis of peptide-toxin conjugates 6 and 7. KTag was coupled to monomethyl auristatin E 
(MMAE) via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). For this purpose, the peptide bearing an 
amino terminal alkyne functionality (1 mg/ml) was reacted with 1.5 eq. MMAE holding an azide functionality in 
the presence of 4 eq. of Cu(II)-TBTA complex, 4 eq. of N,N-Diisopropylethylamine (DIPEA), and 4 eq. of sodium 
ascorbate for 5 h at room temperature in water. The water was degassed by flushing it with argon prior to usage. 
TBTA was dissolved at a concentration of 10 mM in 1:4 DMSO/tBuOH and the complex formed by addition 
of Cu(II)SO4 5xH2O. The toxin was pre-dissolved in 50% MeCN. The reaction was monitored by HPLC-MS. 
Peptide-toxin conjugates 6 and 7 were isolated by semi-preparative RP-HPLC.
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