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Coupling the normal incident light 
into waveguide modes of DBR 
mirrors via a diffraction grating
Wenhong Yang1,*, Shang Sun1,*, Chen Zhang1,*, Jiankai Li2, Zonghui Duan1, Qinghai Song2 & 
Shumin Xiao1

Here we numerically and experimentally demonstrate the conversion of normally incident light into the 
guiding modes of distributed Bragg reflector (DBRs) mirror. By fabricating a gold grating onto a 7.5 pairs 
TiO2/SiO2 DBR mirror, a series of asymmetrical resonances have been formed at the bandgap range of 
the DBR mirror. The detailed numerical calculations show that these Fano resonances are attributed 
to the coupling of incident waves into guiding modes of the DBR mirror. Compared with the other 
resonances, this coupling mechanism can be simply realized and it has also been revealed to be quite 
robust to the environmental changes, making the conversion between propagating waves and guiding 
waves to be practically interesting for many applications.

It has been well recognized that a photonic band gap (PBG) could be generated by the interference of Bragg 
scattering in a periodic dielectric structures1. The simplest examples are the one-dimensional photonic crystals2, 
which are formed by stacking periodic pairs of thin films with different refractive indices. In past decades, the 
TiO2/SiO2

3, AlN/GaN4, and porous silicon5 based one-dimensional photonic crystals have been realized and a 
number of practical applications have been developed, e.g. band-pass filters, beam splitters, and polarizers. By 
introducing the defect layers, one-dimensional photonic crystals have also been utilized to control the spontane-
ous emission3 and the light-matter strong coupling6–8. In additional to the PBG, the one-dimensional photonics 
crystals can also support the in-plane guiding modes. Such kind of guiding modes can trap the light well to 
form a new type of waveguide and has triggered many novel applications such as the generation of entangled 
photon pairs9,10. Once the material absorption has been considered, the in-plane guiding modes can overcome 
the limitation of extremely short absorption length (thickness) and thus significantly improve the performances 
of photovoltaic devices. While the guiding modes have so many advantages, they are actually quite difficult to be 
directly excited in experiments. Several groups have successfully coupled light into the guiding modes via a prism 
coupler11, which is too complicated and thus hinders the practical applications. Herein, by using a Au grating, we 
experimentally and numerically demonstrate that the normally incident light can be simply converted into the 
guiding modes of one-dimensional photonic crystals.

Results
Figure 1(a) shows the schematic picture of the DBR mirror. It consists of 7.5 pairs of TiO2/SiO2 thin films on 
a glass substrate. In this research, the thicknesses of TiO2 and SiO2 thin films were 52 nm and 80 nm. And the 
refractive indices were around 2.41 and 1.47 at the designed wavelength (~500 nm)12, respectively. The fabrication 
detailed can be found in Methods. Then the transmission and reflection spectra have been recorded by using a 
home-made optical setup. The results are shown in Fig. 1(b), where a clear transmission gap can be found within 
the wavelength range from 420 nm to 560 nm. By using a transfer matrix3, the transmission spectrum has also 
been simulated. As the dashed line in Fig. 1(b), it matched to the experimental results very well. From the sim-
ulation, we know that the transmission gap was the conventional PBG and it could be simply explained by the 
interference between the reflected waves from the series interface between TiO2 and SiO2.

The situation drastically changed after Au nanostructures had been fabricated on the top of DBR mirror 
(see the schematic picture in Fig. 2(a)). The Au nanostructures were fabricated with electron beam lithography 
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technique followed by liftoff process. In general, a 300 nm PMMA film (A4, Microchem) was spin-coated onto 
the DBR mirror and baked at 160 °C for an hour. As the substrate and the DBR mirror were both insulators, the 
sample was coated with 10 nm Al film and exposed to electron beam in E-beam writer (Raith E-line, 20 kV). The 
grating structure was obtained by removing Al film with HCl (18.5%) and developing the PMMA in MIBK/IPA  
(1:3) solution for 40 seconds and rinsed in IPA for 20 seconds. After that, the sample was placed into the E-beam 
evaporator and directly coated with 35 nm gold films (deposition rate 0.1 A/s, base vacuum pressure 5 ×​ 10−7 
torr). By immersing the sample in remover PG for 8 hours, the PMMA was removed and the grating was 

Figure 1.  (a) The schematic picture of the DBR mirror. (b) The transmission (solid line) and reflection (dashed 
line) spectra of DBR mirror with normal incident. The dash-dotted line is the simulated transmission spectrum.

Figure 2.  (a) The schematic picture of the DBR mirror with a Au grating. (b) The top-view SEM image of the 
grating. The scale bar is 400 nm. (c) The normalized reflection spectrum of TE modes of the DBR mirror with 
a grating. (d) The numerically calculated reflection spectrum with 7.5 pairs DBR (blue) and 6.5 pairs DBR 
(orange), respectively.
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transferred to a reverse Au grating. Figure 2(b) shows the top-view scanning electron microscope image of the 
Au grating. Similar to the design, the width of Au ridge was 150 nm and the period of Au grating was 292 nm.

Then the optical properties of DBR mirror with grating have also been examined. The recorded reflection 
spectrum is shown in Fig. 2(c). Here the incident light was transverse electric (TE, with electric field along the 
directions of Au strips) polarized. While a broad reflection band at 420 nm–560 nm were very similar to Fig. 1(b), 
a number of resonant dips have been clearly observed at 524.5 nm, 507.9 nm, 487.0 nm, 467.5 nm, 452.3 nm, and 
442.2 nm. The corresponding full width at half maximum (FWHMs) were 5.1 nm, 5.0 nm, 6.0 nm, 5.4 nm, 6.4 nm 
and 4.4 nm, respectively. The highest quality (Q) factor was even around 102. These dips are intrinsically differ-
ent from the bare DBR mirror and thus it is interesting to reveal the underlying mechanisms. Intuitively, similar 
dips have been observed and were considered as the Fabry-Perot resonances, which formed by the interference 
between the reflections from the grating and the DBR mirror. This kind of resonances has been studied before to 
achieve surface emitting lasers13,14. However, these Fabry-Perot resonances usually require a defect gap between 
grating and DBR mirror. This gap, however, is absent in our study. And the reflection of gold grating was only 
around 30%, which is too low to form high Q resonances. Moreover, the Fabry-Perot resonances can also be 
excluded by the resonant wavelengths. In Fig. 2(c), the resonant frequencies are quit random and far away from 
equal spacing of conventional Fabry-Perot resonances.

To well understand these resonances, we have numerically studied the experimental structures with a finite 
element method based software (Comsol multiphysics)15. The refractive indices of TiO2, SiO2, and the permit-
tivity of gold were taken from the experimental results12. Figure 2(d) shows the numerically calculated results 
with TE polarization. We can also see the resonant dips at the positons around 527 nm, 508 nm, 487 nm, 467 nm, 
and 451 nm. All these resonant wavelengths match the experimental results well. Figure 3(a–g) shows the field 
patterns of dips at 553 nm, 542 nm, 527 nm, 508 nm, 487 nm, 467 nm, and 451 nm, respectively. We can see that 
the incident waves are well localized within the DBR mirror. Interestingly, the fields out of the DBR mirror show 
obviously evanescent decays, clearly indicating the confinements along the guiding modes. The different dips in 
the spectrum just related to the different order of guiding modes, which is confirmed by the field pattern shown 
in Fig. 3(a–g). While the field distributions are segmented by the multilayers, the maximal field can still be cat-
egorized into 1–7 groups in Fig. 3(a–g). Consequently, these modes correspond to the fundamental to 6th order 
waveguide modes inside the multilayers.

In order to further distinguish the Fabry-Perot resonances and guiding modes, we have also calculated the 
reflection spectrum by changing the DBR from 7.5 pairs to 6.5 pairs. For the Fabry-Perot resonances, this chang-
ing can only form the changes in FWHMs, which are dependent on the reflectance of DBR mirror. In case of 
guiding modes, the waveguide modes are dependent on the waveguide total thickness. Thus the dip positions 
shall be changed when the total width of waveguide was changed. The results are also plotted in Fig. 2(d). From 
the changes in resonant wavelengths, we can also know that the resonances are formed by the transition between 
propagating waves into guiding modes.

In additional to the TE polarization, similar phenomena also hold true for the transverse magnetic (TM, with 
E perpendicular to the ridges) polarized light. As shown in Fig. 4(a), a number of resonant dips have also been 
observed at around 492.0 nm, 477.3 nm, 459.2 nm, and 440.7 nm, respectively. Due to the symmetry of Au grating, 
these resonant dips were different from the ones of TE polarization (see Fig. 2(c)). The TM polarized reflection 
has also been numerically studied. Similar to the TE polarization, all the resonant dips match the experimental 
results well. Figure 4(b) show the field patterns of the TM polarized modes at 501 nm (left), 491 nm (middle), and 
476 nm (right). They were also the fundamental, first order, and second order TM waveguide modes, respectively. 
Figure 5(b) shows the TE polarized reflection spectra of the same DBR mirror with different grating period  
(see the SEM images in Fig. 5(a)). With the period of grating changed from 340 nm to 290 nm (the width of Au 
strip was always half of the period), there were always resonant dips could be clearly observed. In this sense, we 
know that the normally incident propagating waves could be simply converted to guiding modes by applying a 
grating on top of the DBR mirror, with no dependent on the width of grating and polarizations of incident wave.

Figure 3.  The numerically calculated field patterns of TE polarized waves at 553 nm, 542 nm, 527 nm, 
508 nm, 487 nm, 467 nm, and 451 nm, respectively. The modes are the fundamental waveguide mode to 6th 
order waveguide mode, respectively.



www.nature.com/scientificreports/

4Scientific Reports | 6:38964 | DOI: 10.1038/srep38964

For most of the resonant devices, the operating wavelengths are usually dependent on the environmental 
refractive index16–18. While it can be applied as environmental or biological sensor, these devices are quite difficult 
to be practically applied. Here we note that the wave conversion in this study is quite robust. As shown in Fig. 6, 
even though the environmental materials have been changed from air (see Fig. 2(c)), water, ethanol, to carbon 
tetrachloride, the resonant dips were well kept at the same positions, making the developed mechanism to be 
suitable for various conditions. This kind of robustness is also consistent with the field distributions. As shown 
in Fig. 4, the incident waves are confined within the waveguide modes and far away from the top surface. In this 
sense, the resonant positions are independent on the coating materials and are less affected by the environmental 
changes.

Discussion
In summary, we have studied a simple method to convert propagating waves into guiding waves of DBR mirrors. 
This coupling mechanism was found to be suitable for both TE and TM polarization and was very robust to the 
environmental changes. This method has the potential to significantly enhance the light absorption lengths of 
photovoltaic thin films. In addition, this method is not limited in the DBR mirrors, it can also be used to couple 
light into the guiding modes within the defect layers of photonic crystals.

Figure 4.  (a) The normalized reflection spectrum of TM polarization. (b) The corresponding numerically 
calculated field patterns of resonances at 501 nm (left), 491 nm (middle), and 476 nm (right).

Figure 5.  (a) Top, middle, and bottom panels are the top-view SEM images of the grating with period 340 nm, 
312 nm, and 290 nm. The scale bar is 400 nm. (b) The dependence of normalized reflection spectra with different 
grating period.
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Methods
The TiO2 and SiO2 thin films were deposited on glass substrate by electron beam (E-beam) evaporator (Syskey 
Co., Ltd)12. The deposition rates of TiO2 and SiO2 films were fixed at 1 angstrom/s and 5 angstrom/s, respectively. 
The electron gun operating voltage was 5.2 kv, and the current of beam was 4.5 mA. The vacuum of deposition 
was below 5.0 ×​ 10−7 torr. The substrate temperature during deposition was kept at 200 °С. The refractive indices 
of TiO2 and SiO2 thin films were measured by ellipsometry.
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Figure 6.  The wavelengths of resonant dips as a function of environmental refractive index. 



www.nature.com/scientificreports/

6Scientific Reports | 6:38964 | DOI: 10.1038/srep38964

How to cite this article: Yang, W. et al. Coupling the normal incident light into waveguide modes of DBR 
mirrors via a diffraction grating. Sci. Rep. 6, 38964; doi: 10.1038/srep38964 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Coupling the normal incident light into waveguide modes of DBR mirrors via a diffraction grating
	Introduction
	Results
	Discussion
	Methods
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Coupling the normal incident light into waveguide modes of DBR mirrors via a diffraction grating
            
         
          
             
                srep ,  (2016). doi:10.1038/srep38964
            
         
          
             
                Wenhong Yang
                Shang Sun
                Chen Zhang
                Jiankai Li
                Zonghui Duan
                Qinghai Song
                Shumin Xiao
            
         
          doi:10.1038/srep38964
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep38964
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep38964
            
         
      
       
          
          
          
             
                doi:10.1038/srep38964
            
         
          
             
                srep ,  (2016). doi:10.1038/srep38964
            
         
          
          
      
       
       
          True
      
   




