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Ringing phenomenon in chaotic 
microcavity for high-speed ultra-
sensitive sensing
Lei Chen1,2, Qian Liu2, Wei-Gang Zhang1 & Keng C. Chou2

The ringing phenomenon in whispering-gallery-mode (WGM) microcavities has demonstrated its 
great potential for highly-sensitive and high-speed sensing. However, traditional symmetric WGM 
microcavities have suffered from an extremely low coupling efficiency via free-space coupling because 
the emission of symmetric WGMs is non-directional. Here we report a new approach for high-speed 
ultra-sensitive sensing using the ringing phenomenon in a chaotic regime. By breaking the rotational 
symmetry of a WGM microcavity and introducing chaotic behaviors, we show that the ringing 
phenomenon in chaotic WGM microcavities extends over both the positive and the negative frequency 
detune, allowing the ringing phenomenon to interact with analytes over a much broader bandwidth 
with a reduced dead time. Because the coupling of the chaotic microcavity is directional, it produces a 
significantly higher signal output, which improves its sensitivity without the need of a fiber coupler.

Whispering-gallery-modes (WGMs) are specific modes (or resonances) of a wave that are confined inside a 
concave cavity because of total internal reflection1. Many unique properties of optical WGMs, e.g. ultra-high 
quality (Q) factors and small cavity sizes, make them suitable for a variety of applications, such as all-optical 
switches1, laser sources2,3, filters4,5, sensors4,6,7, and quantum computing8. WGM-based highly-sensitive sensing 
has drawn great attention because WGM cavities are able to confine the optical field in a very small space for an 
extended time period, which greatly enhances the interaction between the optical field and the analyte4,6,9,10. For 
highly-sensitive sensing, a frequency (wavelength)-variable laser sweeps the output frequency over the resonance 
of a WGM microcavity, and the resonant frequency is measured11. In the presence of electromagnetic fields4, nan-
oparticles6, or molecules9,12, which interact with the evanescent field of the microcavity, the resonant frequency 
may shift, broaden, or split6,9. Because of the ultra-high Q factor of WGMs, the detection is highly sensitive.

When the frequency chirp rate of the laser is increased for high-speed sensing, a ringing phenomenon (RP) 
in the mapped WGM spectrum occurs3. Traditionally, the RP in a symmetric WGM microcavity is used to 
measure the Q-factor and the mode-coupling strength4,13. Recently it was reported that sensing based on the 
RP could achieve a very high speed and was not sensitive to the wavelength drift of the laser14. However, tradi-
tional symmetric WGM microcavities have suffered from their extremely low coupling and collection efficien-
cies because the emission of symmetric WGM microcavities is non-directional15. To enhance the coupling and 
collection efficiencies, several evanescent wave couplers, such as tapered fibers11, prisms16, or waveguides17, have 
been employed but the size and the special requirements of these auxiliary couplers have greatly hindered their 
applications10,18.

The RP in chaotic WGM microcavities reported in this study provides a feasible approach to overcome the 
coupling and collection deficiencies for high-speed ultra-sensitive sensing. It has been reported that the emission 
of a WGM microcavity becomes directional if the rotational symmetry of the microcavity is broken19,20. However, 
breaking the symmetry introduces chaotic behaviors into the microcavity21,22, and a detailed study on the RP in a 
chaotic WGM microcavity has not yet been reported.

In this study, we theoretically investigate the RP in a chaotic WGM microcavity and its advantages for 
high-speed ultra-sensitive sensing over a symmetric WGM microcavity. The chaotic behaviors of the micro-
cavity were introduced by breaking the rotational symmetry of the WGM microcavity20. Beside the advantage 
of directional output and high coupling efficiency for a higher sensitivity, we found that the RP spectra of the 
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chaotic WGM microcavity had a much broader spectral bandwidth, which significantly reduced the dead time 
for high-speed sensing. The RP in the chaotic WGM microcavity extends over both the positive and the neg-
ative frequency detuning while the RP in a symmetric WGM microcavity occurs only at the positive detune 
frequency2,11,23,24.

Results
Theoretical Background. The chaotic microcavity investigated in the current study is a deformed WGM 
microcavity as shown in Fig. 1. The geometry of the cavity is described as follows21
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with R0 =  45 μm, a2 =  − 0.1329, a3 =  0.0948, b2 =  − 0.0642, and b3 =  − 0.0224.
Previous studies on the RP of symmetric WGM microcavities were described by a simple harmonic oscillator 

model established by Haus2–4,6,25. However, this approach is only suitable for a linear periodic system, such as a 
WGM microcavity with a rotational symmetry. Chaotic systems are known for their non-periodic and nonlinear 
characteristics26. Therefore, the simple harmonic oscillator model is not valid for a chaotic system.

For a more general discussion, a WGM microcavity can be regarded as a frequency filter described by a trans-
fer function h(t), which relates the input electric field x(t) and the output electric field y(t) as follows.

= ⊗y t h t x t( ) ( ) ( ) (2)

where ⊗  denotes a convolution in the time domain. By using the convolution theorem, it can be shown that

ω
π
ω ω= ×Y T X( ) 1

2
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where Y(ω), T(ω), and X(ω) are the Fourier transformations of y(t), h(t), and x(t), respectively. The output inten-
sity in the time domain is

=i t y t( ) ( ) (4)2

which is the inverse Fourier transformation of

ω ω=I Y( ) ( ) (5)2

For a linear system, h(t) and T(ω) are independent of the input27, but h(t) and T(ω) in the current chaotic 
system depend on the amplitude and the phase of the input field. When an electric field with a linear chirp is 
coupled to the chaotic WGM microcavity shown in Fig. 1 21,22, the system can be described by the stationary 
Schrodinger equation with =1  22

ψ ω ψ=ω ωH (6)

where H is the Hamiltonian of the chaotic microcavity, and ψω  are the eigenstates. ψω  can be written in two 
components

∫ψ ω ω= + ′ ′ω ω ω ω′a WGM d b C( ) (7)

where WGM  are the eigenstates of a WGM microcavity with a rotational symmetry, ωC  are the chaotic WGM 
modes in the asymmetric microcavity, and ωa  and ω′ωb ( ) are the coefficients of the symmetric and the chaotic 
WGM modes, respectively. The chaotic WGM modes ωC  are continuous within the input bandwidth because the 
chaotic WGM modes originate from the irregular reflection of the asymmetric cavity22,28. In this system, the cha-
otic WGM modes may couple to the conventional WGM modes via dynamic tunneling28. Therefore the 
Hamiltonian satisfies21,22,29

Figure 1. Schematic illustration of the deformed chaotic microcavity (yellow). The dashed line indicates a 
perfect circle. The red beams are the input (Ein) and output beams (Eout).



www.nature.com/scientificreports/

3Scientific RepoRts | 6:38922 | DOI: 10.1038/srep38922

ω γ= −WGM H WGM i /2 (8)0

ωδ ω ω= ′ −ω ω′C H C ( ) (9)

=ω ω′C H WGM V (10)

where ω0 is the WGM resonant frequency, γ is the decay rate describing the intrinsic loss and the chaotically-assisted  
tunneling loss, Vω describes the coupling between ωC  and WGM . It can be shown that the coefficient in Eq. (7) 
can be written as =ω π

∆

ω
a

V
sin  and ω δ ω ω′ = − ∆ − ′ω π ω ω

∆
− ′

ω

ω

′b ( ) cos ( )V
V

sin  with ∆ = − π

ω ω γ− +
ωarctan V

i /2

2

0

29. For sim-
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1 . The transmission 

function can be expressed as21,29
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where r and θ are the amplitude factor and the phase difference of the forward-emitted fields between the chaotic 
and symmetric WGM microscavities, respectively. The values of r and θ are determined by the experimental 
geometry.

Discussion
To numerically simulate the RP in a chaotic WGM microcavity, we let κ π= × MHz2 2 , γ π= × . MHz2 0 2 , 
and r/t =  2 which are within typical experimental values. Since the term ωC S in  in Eq. (14) is a complex number 
without any particular features, for simplicity, our discussions focus on F(ω). Two characteristics of the chaotic 
WGM modes are distinguishably different from those of symmetric WGM modes. First, the coefficient F(ω) 
exhibits a Fano-like profile21,28, as shown in Fig. 2a, while the symmetric WGM modes are known to have Lorentz 
profiles3,11. Secondly, the chaotic WGM modes have a normal dispersion ( θ ω >d d/ 0), as shown in Fig. 2b, in 
contrast to the anomalous dispersion of symmetric WGM modes3,11.

Figure 2. Amplitude (a) and phase (b) profiles of F(ω) in Eq. (13).
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Assume the input field has a linear frequency chirp30
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where E0 is the amplitude of the chirped laser, ωs is the starting angular frequency, and k is the chirp rate (df/dt). 
By substituting Eq. (16) into Eq. (3), the mapped spectrum as a function of the frequency detuning can be 
obtained using the output intensity i(t) described in Eq. (4).

In general, the mapped spectrum of the chaotic WGM microcavity is a function of θ given in Eqs (14)–(15), 
which can be adjusted by the experimental geometry. Figure 3a shows that the Fano-like profile in Fig. 2a is 
mostly preserved when the input field has a low chirp rate. When the chirp rate is high, the Fano-like profile dis-
appears, and the RP appears, as shown in Fig. 3b.

To better demonstrate the difference between the chaotic and symmetric microcavities, the mapped RP spec-
tra were compared. Figure 4 shows the mapped spectra of the chaotic WGM microcavity (red curves) with θ =  0 
and the symmetric WGM microcavity (blue curves). At θ =  0, the Fano-like profile of the chaotic WGM modes 
is similar to the Lorentz profile of the symmetric WGM modes3,11. The comparison was carried out with similar 
coupling and collection efficiencies for both microcavities so that the transmitted power spectra are similar, as 
shown in Fig. 4a. Since the coupling and emission of the chaotic WGM microcavity is directional, its coupling 
and collection efficiencies is much higher than those of a symmetric WGM microcavity. The similar transmitted 
power spectrum, shown in Fig. 4a, is only possible for a symmetric WGM with an evanescent wave coupler, such 
as tapered fibers11, prisms16 or waveguides17. Therefore, the following is a comparison between a chaotic WGM 
microscavity with free-space coupling and a symmetric WGM microcavity with a high-efficiency evanescent 
wave coupler.

Figure 4b shows that there is only a small difference between the chaotic and symmetric WGM outputs with a 
chirp rate of 2 MHz/μs. Figure 4c and d show that the ringing ripples in the chaotic and symmetric WGM spectra 
significantly deviate from each other as the chirp rate increases. There are two advantages of the chaotic WGM 
microcavity for high-speed ultra-sensitive sensing. First, the RP of the chaotic WGM microcavity extends over 
both the positive and negative detuning, while those of the symmetric WGM microcavity only appear in the 
positive detuning. This allows the RP to interact with the analytes over a much broader bandwidth. The frequency 
detune presented in Fig. 4 is calculated with respect to the resonant frequency of the symmetric WGM mode. The 
broader RP spectrum of the chaotic WGM microcavity can be understood by the lower Q factor (broader band-
width) of the chaotic microcavity. A symmetric WGM microcavity has a higher Q factor; therefore, its intensity 
buildup time is longer for a detuned input frequency. At a high chirp rate, the symmetric WGM microcavity has 
little response to a negative detune frequency. On the other hand, the chaotic WGM microcavity has a relatively 
quick response time for a negative detune frequency. Secondly, the chaotic microcavity produces a higher output 
at a higher chirp rate, which will improve the signal-to-noise ratio for high-speed sensing.

A numerical simulation was carried out to demonstrate the improved sensitivity and time resolution of the 
chaotic WGM modes. It has been previously shown that the adsorption of an interleukin-2 protein on a symmet-
ric microcavity shifted the WGM resonant wavelength by roughly 0.01 picometer31. Figure 5 shows the simulated 
RP spectra changes with an adsorbate-induced resonant wavelength shift of 0.01 picometer for both the chaotic 
and symmetric WGM modes. In this simulation, a laser frequency chirp rate of 50 MHz/μs was used, and a 
Gaussian white noise of − 20 dB was added. The green and orange curves represent a single scan without any 
adsorbate for the chaotic and symmetric WGM microcavities, respectively. The red and blue curves are the spec-
tra for the chaotic and symmetric WGM microcavities, respectively, with a single molecule adsorbed at − 5 MHz, 
as indicated by the arrow in Fig. 5. The frequency shift of the RP spectrum induced by the adsorbate is clearly 
visible in the chaotic RP spectrum (red curve). However, the event happens in the dead zone of the symmetric 

Figure 3. Mapped RP spectra as functions of θ with the chirp rate k =  2 MHz/μs (a) and 50 MHz/μs (b).
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WGM, and the frequency shift is visible later only in the positive frequency detune. With a frequency chirp rate 
of 50 MHz/μs, this corresponds to a 0.2 μs delay. Because of the larger amplitude of the chaotic WGM mode, the 
frequency-shifted spectrum is well-separated from the original spectrum. In contrast, the spectral difference in 
the symmetric WGM spectrum is much smaller.

In summary, we investigated the RP in chaotic WGM microcavities by treating it as a passive optical filter. 
The RP spectra in the chaotic and the symmetric microcavities significantly deviate from each other as the 
chirp rate increases. While the RP in the symmetric WGM microcavities appears only in the positive frequency 
detune, the RP of the chaotic WGM microcavity extends over both the positive and the negative frequency 

Figure 4. (a) Power spectra of the chaotic (red) and symmetric (blue) WGM microcavities. The mapped RP 
spectra of the chaotic (red) and the symmetric (blue) WGM microcavities with the chirp rate at 2 MHz/μs (b), 
10 MHz/μs (c), and 50 MHz/μs (d).

Figure 5. Green and orange curves show the mapped RP spectra of the chaotic and the symmetric WGM 
microcavities, respectively, without adsorbates. Red and blue curves show the simulated RP spectra with a 
molecule adsorbed on the microcavities when the frequency detune equals to − 5 MHz, as indicated by the black 
arrow.
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detune, which reduces the dead time for high-speed sensing. The chaotic WGM microcavity also produces a 
significantly higher RP output, which increases the signal-to-noise ratio for ultra-sensitive sensing without the 
need of a fiber coupler.

Methods
The numerical simulation was carried out by using Matlab 2012a. 1,000,001 data points were used in the inverse 
Fourier transformation.
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