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Extreme ultraviolet resonant 
inelastic X-ray scattering (RIXS) at a 
seeded free-electron laser
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W. Wurth3,4 & F. Parmigiani1,7,10

In the past few years, we have been witnessing an increased interest for studying materials properties 
under non-equilibrium conditions. Several well established spectroscopies for experiments in the 
energy domain have been successfully adapted to the time domain with sub-picosecond time 
resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) 
with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have 
designed and constructed a RIXS experimental endstation that allowed us to successfully measure 
the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone 
Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the 
same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source 
storage ring (Berkeley, USA). We established experimental protocols for performing time resolved 
RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable 
acquisition time to the synchrotron based measurements. Finally, we measured and modelled the 
influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the 
beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.

High resolution resonant inelastic X-ray scattering (RIXS) is a powerful X-ray spectroscopy for studying the 
low-energy charge, spin, orbital and lattice excitations in solids. In the two-step model describing the RIXS pro-
cess, these elementary excitations are created by the inelastically scattered X-rays from the sample1. The system is 
resonantly excited by X-ray photons from the ground state to a core-excited intermediate state and then relaxes 
back to a low-energy excited final state. By measuring the energy difference between incoming and outgoing pho-
tons from the sample, a detailed map of low energy excitations can be obtained. At present, RIXS measurements 
are routinely performed at high brilliance synchrotron radiation facilities. The most advanced RIXS spectrome-
ters allow the detection of elementary excitations with an energy resolution of few tens of meVs2–4.

With the advent of free electron lasers (FELs) providing high brightness sub-picosecond X-ray pulses, one can 
envision to employ RIXS in ultrafast time resolved experiments. Traditionally pump-probe optical experiments 
use an optical pulse to excite the samples (pump) and a time delayed optical pulse (probe) serves as a stroboscopic 
device to observe the sample relaxation back to equilibrium. In this respect, RIXS can be employed to map out 
the temporal evolution of low-energy excitations in the sub-picosecond timescale. For this, suitable sub-ps X-ray 
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pulses are required as a probe. Several time-resolved resonant X-ray emission (RXES) or RIXS experiments have 
been carried out at FEL facilities with very low to moderate energy resolution, making use of only the resonant 
enhancement and the element specificity in the RIXS process5–7. To our knowledge, there is only one publication 
on FEL-based high resolution RIXS experiment to study the low energy excitations in correlated materials8. This 
experiment by Rusydi et al. was performed at the PG1 beamline of FLASH FEL (DESY, Hamburg), with the typ-
ical SASE (self amplified spontaneous emission)-FEL pulses that have an energy bandwidth on the order of 10−1 
(Δ E/E). This bandwidth dramatically limits the overall RIXS energy resolution. In order to achieve high energy 
resolution for RIXS measurements with SASE FEL, a monochromator like that of PG1 beamline at FLASH is 
required to narrow the energy bandwidth. However, energy filtering SASE pulses leads to strong shot-to-shot 
intensity fluctuations (up to 100% rms) where the low intensity X-ray shots do not provide useful information9. 
Hence, extended data acquisition times are needed to achieve a suitable signal statistics to analyze RIXS spectra. 
To overcome this problem, an externally seeded FEL, like FERMI (Elettra, Trieste), can be used since it generates 
quasi-transform limited pulses with stable photon energy and extremely narrow bandwidth (on the order of 
~10−3) at pulse-to-pulse intensity fluctuation below 20% rms10. With such stable source, the as generated photons 
can be used for the experiments, i.e. the monochromator is no longer needed, and the averaged photon flux along 
with the pulse bandwidth are suitable for time resolved high resolution RIXS experiments.

RIXS is commonly performed in the soft X-ray regime, e.g. across the transition metal L-edges, and there is 
an undergoing continuous development of beamlines and advanced X-ray spectrometers to achieve high spectral 
resolution in this energy range1,11. Several soft X-ray RIXS instruments (or beamlines) under development at the 
LCLS (Stanford, USA) and European XFEL (Hamburg, Germany) will soon be operational. However, it has been 
shown recently that the extension of RIXS into the EUV energy range (10 eV <  hν  <  120 eV) is of great advantage 
for studying certain classes of materials12–14. At these photon energies, high energy resolution can be achieved 
even with commercial spectrometers. Since this energy range well matches the FERMI FEL-1, the aim of present 
work is to establish the high resolution EUV RIXS spectroscopy at the FERMI FEL. To attain this goal, we have 
built a novel experimental endstation that can be used at the TIMEX beamline operated with FERMI FEL.

In the following, we show that the ~1 eV d-d excitations in KCoF3 can be measured with RIXS at cobalt 
M2,3-edge. The FEL RIXS data are compared with very high resolution M-edge RIXS spectra measured on the 
same sample at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The comparison 
shows an excellent agreement between FEL- and synchrotron-RIXS spectra. We establish the experimental con-
ditions to mitigate the potential sample damage by the intense FEL pulses, while achieving signal statistics compa-
rable to that obtained from the synchrotron experiments. The final energy resolution achieved in our experiments 
was ~120 meV. Furthermore, we have shown that possible spurious FEL emission modes transported through the 
beamline can produce unwanted components around the elastic line, which can extend in the present case up to 
~500 meV in energy loss. However, by an in-depth analysis of RIXS spectra and EUV ray-tracing, we unraveled 
the origin of such spectral artifacts and managed to minimize their contribution to the RIXS signal. The results 
presented here are important steps on the road towards time-resolved EUV RIXS experiments at seeded FELs 
with high energy and time resolution.

Results
The RIXS setup at TIMEX beamline of FERMI FEL is schematically illustrated in Fig. 1. The setup installed after 
the last ellipsoidal mirror of TIMEX beamline comprises a back-reflecting multilayer mirror for x-ray focusing 

Figure 1. Scheme of the experimental setup. The FEL beam from the fixed focus ellipsoidal mirror is collected 
and refocused on the sample by a multilayer mirror in back-reflection geometry. The FEL photon pulse 
polarization is vertical, i.e. in the scattering plane. To simplify the scheme, the XES 355 has been rotated in the 
figure by 90 degrees around the vertical with respect to the real setup.
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and a commercially available X-ray emission spectrometer (XES 355). (More details can be found in the Methods 
section). Resonant elastic scattering (RXES) was used to determine the resonance conditions, i.e. the excitation 
photon energies for RIXS measurements. RXES is very strong in the EUV regimes and it yields intense and 
unavoidable off-specular reflectivity that produces an elastic line in the RIXS spectra normally several orders of 
magnitude stronger than the inelastic features. Such strong elastic line often obscures the signal in the few hun-
dred meV energy loss range12.

Figure 2A shows the cobalt M2,3-edge XAS spectrum from KCoF3, as measured at the ALS (solid line), and the 
RXES measured at FERMI FEL (markers). Both measurements clearly show the onset of cobalt M2,3-edge with 
the RXES signal shifted to higher photon energies with respect to the XAS. As in the case of NiO, this shift can be 
attributed to the strong Fano interference between resonant and non-resonant scattering channels, generating a 
dip at the leading edge of the resonant intensity and causing the energy shift in the elastic features15,16. Once the 
cobalt M2,3-edge has been identified, a prolonged data acquisition was performed to reveal the inelastic features 
(EUV RIXS spectra) at two resonant photon energies: 61 eV (red square, Fig. 2A) and 62.5 eV (black square, 
Fig. 2A). The FERMI RIXS spectra, shown in Fig. 2B as dotted lines, are compared with the high resolution RIXS 
spectra from MERIXS (solid lines). The d-d excitation at ~1 eV energy loss can be clearly seen in both data sets. In 
particular, the RIXS spectra from MERIXS resemble those measured on CoO with inelastic features at ~1 eV and 
~1.8 eV (solid arrows in Fig. 2B)17,18. The inelastic features at ~1.8 eV energy loss are below the background in the 
FERMI data. The FERMI spectra at 61 eV and 62.5 eV were obtained by integrating over 123600 and 36000 single 
shots, corresponding to 206 and 60 minutes acquisition time respectively in the 10 Hz operation mode of FERMI. 
The acquisition time for both sets of spectra at MERIXS was 90 minutes. The acquisition time at FERMI will be 
strongly reduced in the recently introduced 50 Hz operation mode. It can be further reduced with a dedicated 
X-ray spectrometer with larger acceptance angle designed for the specific FEL source characteristics.

The spectra in Fig. 2B were obtained by averaging the FEL shots with pulse energies up to 5 μ J/pulse. After tak-
ing into account the overall beamline transmission and the reflectivity of back-reflecting mirror shown in Fig. 2A, 
the average fluence on the sample was estimated to be 0.7 J/cm2. This value can be increased to reduce the acqui-
sition time. However for pulse energies higher than 6 μ J/pulse, the KCoF3 sample undergoes an irreversible struc-
tural change. Figure 3A shows that the number of detected counts per FEL shot proportional to the RXES signal at 
an average pulse energy of 6 μ J varies with the number of shots on the sample. We attribute this effect to radiation 
“damages”. Independent of the RXES intensity drop, the ~1 eV d-d excitations remain visible in the RIXS spectra 
obtained by summing the first 4000 shots (P1) and the last 32000 shots (P2) (Fig. 3B). However additional features 
appear on the energy loss side of elastic emission and the RIXS features are submerged in this background. For all 
further analysis, we considered only datasets where the total number of counts per pulse was not changing.
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Figure 2. (A) Solid Line: Cobalt M2,3-edge X-ray absorption (XAS) spectrum of KCoF3 measured in TEY mode 
at MERLIN beamline at the ALS. Line and markers: Intensity of the diffuse elastic line measured at FERMI as a 
function of incoming photon energy. Each point represents the total number of counts measured by the CCD 
detector averaged over 1000 FEL shots, while the FEL photon energy was varied via an automatized scanning 
procedure. The gap between 59 eV and 61 eV in the RXES curve is caused by the switching of seed harmonics 
where the automatized procedure for FEL tuning has not been optimized to deliver X-rays. The data have been 
normalized by the incoming photon flux, which is determined by measuring the shot-by-shot current on the 
last TIMEX beamline mirror (ellipsoidal), taking into account the energy-dependent reflectivity of the back-
reflecting mirror included in the RIXS setup. The red and black squares mark the two photon energies at which 
the RIXS signal has been measured. Dashed red curve: Reflectivity of back-reflecting refocusing multilayer 
mirror as a function of incoming photon energy. The reflectivity shown is from the center of the mirror but is 
uniform across the mirror. (B) RIXS spectra measured at MERIXS (solid lines) and at FERMI (lines and dots) 
at two excitation energies 61.0 eV (red) and 62.5 eV (black). The resonating d-d transition (solid arrow) at about 
1 eV can be identified in both measurements despite the different energy resolution of these two measurements.
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Discussion
We have demonstrated that high-resolution EUV RIXS experiments are feasible at seeded FELs. This challenging 
experiment was made possible only with the highly stable and quasi-transform limited light pulses from exter-
nally seeded FELs. Figure 4A shows that the energy resolution evaluated from the full width of the elastic line in 
the FERMI RIXS spectra is ~120 meV. Compared with the high resolution measurements performed at MERIXS, 
there is an additional 105 meV resolution broadening (Fig. 4A).

The commercial spectrometer (XES 355) employed at FERMI presents one order of magnitude worse resolu-
tion than the MERIXS custom spectrometer we used at ALS. Taking into account the spectrometer settings for 
the measurements, we actually expected an energy resolution of ~170 meV. We suppose the improved resolution 
observed at FERMI depends on the fact that the FEL spot on the sample dispersive direction was significantly 
smaller than the spectrometer entrance slit (~50 μ m)19. Contributions to the energy resolution broadening are 
due to the FEL pulse energy bandwidth, FEL beam mode mixing, and the XES 355 spectrometer resolution 
associated to the reduced FEL beam size with respect to the slit aperture. To study the FEL bandwidth contri-
butions, we considered the shot-by-shot energy distribution in the FEL measured by the on-line spectrometer 
PRESTO installed in front of the TIMEX beamline20. We carried out the shot-by-shot analysis of 36000 FEL 
shots recorded during the RIXS measurements. Figure 4A shows the average energy distribution of these 
36000 FEL shots. Interestingly, the FWHM of FEL pulses before the photon beam transport, is ~60 meV. This 
value is consistent with quasi-transform limited pulses and is found to be significantly smaller than the overall 
~120 meV experimental resolution in the RIXS spectra. Not all 36000 FEL shots are equivalent. Figure 4B and C 
show the histograms of FWHM and energy position obtained using the Gaussian fitting on the elastic line in the 
shot-by-shot analysis. The maximum broadening of the elastic line expected from the FEL bandwidth is less than 
~80 meV, while the photon energy shift is less than ~20 meV. Therefore we conclude that the major contribution 
to the overall experimental resolution is from the RIXS spectrometer.

Figure 4D shows the tails of the elastic line obtained by subtracting the MERIXS RIXS spectra (solid black 
line in Fig. 4A) from the FEL RIXS spectra (red line and markers in Fig. 4A). For this subtraction, a 105 meV 
broadening was applied to the elastic line of MERIXS RIXS spectra to attain a comparable resolution between 
two experiments. The difference signal highlights several side features around the elastic line and their spread to 
~500 meV energy loss. Interestingly, the intensity and shape of these features depend on the settings of the iris 
aperture in the beam path (Fig. 1). This suggests that the measured FEL RIXS spectra are also affected by artifacts 
from unwanted optical effects in the photon beam transport and/or from the transversal spatial intensity distri-
bution of FEL pulses. To clarify this statement, it is important to note that all FEL optical devices (beamline and 
endstation) are based on the assumption of Gaussian optics, i.e. TEM00 mode. Any deviation from this assump-
tion will influence the photon beam intensity distribution on the sample and finally the RIXS spectra and the 
achievable RIXS resolution.

We performed a ray-tracing simulation using the SHADOW code21,22. In the simulation, we included the 
TIMEX ellipsoidal mirror and the back-reflecting mirror of the RIXS endstation (see Fig. 1). We considered 
a mixed-modes operating condition with a light spot intensity distribution at the iris position as simulated in 
Fig. 5A, where the Gaussian mode is shown in blue and a hollow mode as shown in red. The hollow mode may 
be generated by diffraction along the beam transport or by the FEL itself20. The FEL may indeed generate mixed 
transverse modes characterized by the presence of a superimposed hollow mode. This is originated from the 
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Figure 3. (A) Number of counts detected per FEL shot, proportional to the RXES signal, as a function of 
number of shots with 6 μ J/pulse FEL. After the first few thousand shots, the count rate decreases indicating 
the sample damage. The RIXS signal at 1 eV (B) is still present when summing the first 4000 and the last 32000 
measurements. The elastic lines in the spectra are normalized to unity.
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off-axis resonant condition of the last FERMI undulators, when detuned, e.g. for efficiency enhancement. The 
chosen distribution is a simplification of the real X-ray beam profile, to reproduce intensity inhomogeneities that 
are crucial in the analysis. Figure 5B shows the focus at the sample location projected in the vertical plane. The 
focal size in the dispersive direction is assumed to be about 20 μ m, i.e. significantly smaller than the spectrometer 
slit aperture settings. However, propagating the FEL beam onto the sample, the annular mode component pro-
duces a structure with side maxima, as shown by the red spots in Fig. 5B. Finally, Fig. 5C reports the simulated 
effects of mixed-mode operating conditions on the RIXS spectrum. In the simulation, the X-ray beams have been 
propagated into the RIXS spectrometer for three photon energies, 61.3, 61.0 and 60.7 eV using an ideal Gaussian 
beam. The difference in the FEL photon energy gives rise to different positions for the elastically scattered beam 
on the detector. To simulate the hollow mode, i.e. the red spots in Fig. 5A, the 61 eV beam has been moved from 
the central position at the slit coordinate by ± 25 and ± 50 μ m. This leads to a significant displacement for the 
measured features on the XES detector as shown in Fig. 5C by the dashed lines. These additional structures can be 
responsible for the spurious elastic side contributions around the main Gaussian elastic emission. Their relative 
intensity with respect to the main line is determined by the relative intensities of different FEL modes and is not 
considered in the simulation. The RIXS spectra in Fig. 4D acquired with three different iris apertures of 22, 10 
and 7 mm diameter substantiate the simulation: the intensity and shape of the features around the elastic emission 
depend on the iris aperture settings. This indicates how the measured RIXS FEL spectra are affected by the trans-
versal intensity distribution of the pulses at the spectrometer entrance slit.

Notwithstanding the high energy resolution of the FEL pulses, the beam focal properties at the slit or intensity 
inhomogeneities due to a mode composition that deviate significantly from the Gaussian profile of the X-ray spot, 
can significantly affect the RIXS spectra. A good control over the FEL operating mode and transport is essential 
to maximize the RIXS spectra resolution and can be achieved in an iterative way by using RIXS measurements as 
a guide during the machine tuning.

Conclusions
We have measured for the first time the high resolution EUV RIXS at a seeded FEL on a KCoF3 single crystal. To 
achieve this goal, we developed an experimental endstation comprising a back-reflecting mirror and a commer-
cial XES 355 spectrometer used the TIMEX beamline of FERMI FEL. We were able to measure the d-d excitations 
from KCoF3 using EUV RIXS spectroscopy with ~120 meV resolution in an overall detection time comparable to 
the synchrotron measurements. These results have been made possible with the near-transform limited seeded 
FEL pulses that provide a very stable radiation source as compared to the SASE FELs, where the mandatory use of 
a monochromator for high energy resolution severely limits the throughput and introduces intensity fluctuations. 
The intensity fluctuation during the RIXS measurement was ~15% rms. In spite of the great advantages offered by 
the externally seeded FELs for non-linear spectroscopy experiments in the EUV and X-ray spectral regime, the 
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Figure 4. (A) Elastic line measured at FERMI (red line) and at MERIXS (solid black line with additional 105 meV 
Gaussian broadening) on KCoF3. The resolution of the FERMI setup was 120 meV, evaluated from the FWHM 
of the elastic line. The filled trace represents the energy distribution of FEL integrated over the full measurement 
obtained by means of the on-line spectrometer PRESTO for FEL diagnostics. This comparison shows that the 
resolution is limited by the spectrometer settings and not by the FEL energy distribution. (B and C) Histograms of 
the FWHM and relative shift of the FEL photon energy determined for each shot in the measurement. (D) Elastic 
line tails in the FERMI data for different settings of the diameter of the beamline iris aperture. The datapoints show 
the difference between the normalized FERMI RIXS spectrum and the broadened MERIXS spectrum in Fig. 4A.
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behaviors of FEL electromagnetic modes, the setup of the instrument and the transport of the light to the experi-
ment itself must be carefully considered to fully exploit the energy resolution allowed by the FERMI seeded FEL. 
The present experiment and data analysis have shown that the side peaks observed around the elastic emission 
in the FEL-RIXS spectra may be justified by a non-Gaussian mode distribution at the entrance of the instrument, 
which inevitably mask the genuine RIXS features within several hundred of meV around the elastic emission. This 
suggests, for high energy resolution measurements (< 100 meV for FEL-RIXS experiments), a careful analysis of 
the beam mode composition and stability at the entrance of the instrument to extract the spectral signal from the 
spurious background.

Methods
The sample was a 2000 μ m thick single-crystal KCoF3

23,24. KCoF3 has cubic perovskite structure where Co ions 
have a nominally 2+  oxidation state. KCoF3 is an antiferromagnet with the Neél temperature around 114 K. All 
measurements presented here were performed in the paramagnetic phase at room temperature. In this phase, the 
cobalt M2,3-edge RIXS spectra of KCoF3 resemble the ones from CoO17,18. Unlike CoO, KCoF3 sample is robust 
and does not require special surface preparation in UHV. In addition, the single crystal is more resilient to higher 
X-ray fluencies compared to CoO thin films18.

Co M2,3-edge RIXS measurements were performed at FERMI free-electron laser facility (Elettra, Italy) using 
the novel RIXS endstation. FERMI FEL 1 delivers vertically polarized X-rays at 20.3 nm (61 eV) and 19.84 nm 
(62.5 eV) wavelength. To explore the sample damage induced by high X-ray fluence pulses, the photon flux meas-
ured by the flux monitors at the entrance of beamline was varied up to 8 μ J per pulse using the combination of 
beamline Al filters and FERMI N2 gas attenuator. X-ray shots with energy up to 5 μ J per pulse did not introduce 
damage to the sample. The experimental setup is schematically illustrated in Fig. 1. The RIXS endstation was 
installed downstream from the TIMEX endstation. The X-ray beam, tightly focused at the TIMEX endstation 
(5 ×  5 μ m2) by the upstream ellipsoidal mirror, was refocused at the sample position by a broad-band multilayer 
mirror (20 cm focal length) operated at 3° incident angle in the back-reflecting configuration (Fig. 1).

The back-reflecting multilayer mirror was designed and coated at the X-ray multilayer laboratory at DESY 
(Hamburg, Germany) using magnetron sputtering technique. The multilayer design called for a large energy 
bandpass covering the range from 56 to 77 eV (16.1–22.1 nm) to be able to simultaneously reflect photons with 
energies across the M2,3-edges of Fe, Co and Ni. The multilayer consisted of 40 Mo and Si layers. A standard peri-
odic multilayer would only have a bandpass of a few eV. To obtain larger bandpass we used an aperiodic multi-
layer design25,26 based on the algorithm published in ref. 27. This multilayer was deposited on a 25.4 mm diameter 
silicon substrate with a radius of curvature of 40 cm prepared by Pilz-Optics. The high spatial frequency surface 
roughness of the substrate was 0.4 nm rms as measured with atomic force microscope. The final multilayer-coated 
mirror was measured at-wavelength in the final geometry (3° incident angle) at the Physikalisch Technische 
Bundesanstalt (PTB) reflectometry beamline at Bessy II in Berlin, Germany. Figure 2A is showing measured 
reflectivity curve of the mirror used in this experiment between 52 to 77 eV. The X-ray beam size on the sample 

Figure 5. (A and B) X-ray spot at the iris position (A) and at the sample position (B) obtained by a ray-tracing 
simulation with SHADOW. We considered a 61 eV X-ray beam with a spatial distribution comprising an inner 
core (blue area) and an annular mode (red area). (C) Ray-tracing of 61.0, 62.3 and 60.7 eV beams in the XES 
355 spectrometer from the ideal focus of the 300 lines/mm grating (filled curved) and from a source point 
displaced laterally with respect to the ideal focus by 25 and 50 μ m in both directions.
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was estimated to be 20 (H) ×  5 (V) μ m2 using SHADOW ray-tracing simulation. The vertical beam size was larger 
when projected on the sample at 20° grazing incidence. In order to better control the transverse shape of the beam 
throughout the beamline (see later discussion), an iris installed before the TIMEX ellipsoidal mirror was inserted 
during the measurements.

The X-rays scattered from the sample were energy dispersed and recorded using the XES 355 spectrometer 
(VG Scienta) mounted in the vertical geometry (π -polarization). The 300 lines/mm spectrometer grating oper-
ated at the 1st diffraction order was chosen for analyzing the low energy X-ray inelastic emission19. The spectrom-
eter detector unit consists of an MCP stack, a phosphor screen, and a CCD. The detector unit has single photon 
sensitivity and multi-hit capability. The countrate at the used attenuation settings for the X-rays, was in the range 
of 1–20 counts per pulse. The entrance slit width of the spectrometer was set to 50 μ m. With this slit setting, the 
theoretically determined spectrometer energy resolution is 170 meV. Note, that the slit width is larger than the 
estimated X-ray spot size on the sample, which increases the experimentally obtained resolution to 120 meV.

Reference XAS and RIXS measurements were carried out at beamline 4.0.3 (MERLIN) RIXS endstation 
(MERIXS) at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The energy resolution, 
determined from the FWHM of elastic peak in RIXS spectra was 30 meV. RIXS data were recorded using the 
slitless VLS based X-ray emission spectrometer equipped with a commercially available in vacuum CCD detec-
tor13,14. The experimental geometry was the same as that of the FEL measurements where the sample was placed 
at 20° grazing incidence angle relative to the incoming X-ray beam and the photon polarization was maintained 
in the scattering plane (Fig. 1). XAS measurements were recorded in the total fluorescent yield mode (TEY).
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