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Contributions of rational soil tillage 
to compaction stress in main 
peanut producing areas of China
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Xuewu Sun1, Xiushan Sun1, Caibin Wang1 & Xinhua He3

Tillage intensities largely affect soil compaction dynamics in agro-ecosystems. However, the 
contribution of tillage intensities on compaction changes in underground peanut (Arachis hypogaea) 
fields has not been quantified. We thus aimed to better understand the role of soil tillage intensities 
in mitigation of compaction stress for peanuts. Using three field tillage experiments in major Chinese 
peanut producing areas, we quantified the effects of (1) no tillage, (2) shallow (20 cm) plowing, (3) deep 
(30 cm) plowing and (4) deep (30 cm) loosening on changes in soil bulk density at 0–10 cm, 10–20 cm 
and 20–30 cm depths, roots and pods growth, and nutrient accumulation. Results showed that tillage 
management effectively mitigated soil compaction stress for peanut growth and production. Greater 
beneficial improvement for the underground growth of roots and pods, and N accumulation ranked 
as deep plowing > shallow plowing and deep loosening. Respective increases of 7.5% and 4.6% in 
root biomass productions and peanut yields were obtained when soil bulk density was decreased by 
0.1 g cm−3. Our results suggest that the mitigation of soil compaction stress by deep plowing could be a 
key tillage strategy for increasing peanut yields in the field.

Soil compaction, one of the greatest challenges for crop production over the world, severely inhibits crop growth 
and thus decreases crop productivity1–3. With the occurrence of universal mechanical rolling, high cropping 
indexes and irrational usage of chemical fertilizers and water, global farmlands are facing serious problems of 
compaction stresses in agricultural ecosystems4–8. Thus, the compaction mitigation by field management is rec-
ognized as an effective strategy9–11. Soil compaction dynamics mainly depend on the degrees and patterns of soil 
disturbance. While soil disturbance always results in a decrease in compaction, the relationship between these 
two parameters is not straightforward12. For example, some disturbances could decrease top soil compaction, 
while others were even able to remove the compaction in deep soil. As a general rule, a higher tillage intensity to 
a deeper soil profile could significantly affect soil properties and hence plant growth, compared to lower tillage 
intensity or no tillage practice13–15.

The growth and distribution of roots were largely affected by soil compaction intensities, which enhanced the 
root resistance and deteriorated the soil physical characteristics (e.g., soil aeration and moisture content)16–19. 
Moreover, an arrested development of roots had substantial effects on the nutrient uptake and organic composi-
tion of crops20–23. Except for root disruption, other underground parts were directly inhibited by soil compaction 
for underground crops24,25. The peanut, one of the most important underground crops (annual yields of 40 mil-
lion tones globally and 50% of these are from China), also faces such a soil compaction issue, which has brought 
potential risks for edible oil security in China and worldwide9,26.

Recent studies have showed the important role of soil tillage in solving the compaction problem10,15. This 
could be attributed to the breakup of soil compaction, improvement of soil aeration and moisture, and activation 
of soil nutrients27,28. However, there has been limited quantification of appropriate tillage management strategies 
to mitigate soil compaction. For example, which tillage system or intensity is beneficial to coordinate the growth 
of the roots and pods of peanuts, and simultaneously improve nutrient accumulation and yield?

In this study, we reported on a comprehensive and quantitative analysis of data generated from three soil 
tillage treatments in the main peanut producing areas of China. We analyzed soil and plant samples from three 
field sites and determined the soil bulk density, root distribution, nutrient accumulation and peanut yield. The 
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objective of this study was to address different roles of three tillage intensities (NT: no tillage; SP: shallow plowing; 
DP deep plowing; DL: deep loosening) in mitigating soil compaction stress and then to relate soil compaction 
mitigation to root growth and peanut yield. The expected results could promote a better understanding of tillage 
management strategies to increase belowground crop yields under increasing soil compaction scenarios with 
large scale machinery tillage activities.

Results
Soil compaction.  Soil bulk density at the three sites at a depth of 0–10 cm was significantly higher under no 
tillage than under tillage intensities (Fig. 1). For example, the average values of soil bulk density under SP, DP and 
DL were decreased by 17.9%, 10.4% and 15.9%, respectively, compared with the NT treatment at Wangcheng, 
Xiadian and Qishan, respectively. For soil at a depth of 10–20 cm, the bulk density was 6.6–18.8% lower under DP 
than under NT at all three sites, though without significant differences at Xiadian. In contrast, soil bulk density 
was 4.8–8.3% higher under SP than under NT at Wangcheng and Xiadian. Soil bulk density under DP was lowest, 
ranging from 1.34 to 1.59 g cm−3 at a depth of 20–30 cm among the four treatments at the three sites.

Root distribution and morphological characteristics.  Root dry weight at 0–10 cm depth was the low-
est (1.1 g plant−1) under NT, while it was similar between the three tillage treatments (~1.5 g plant−1) (Fig. 2). 
Root weights were higher at 10–20 cm and 20–30 cm depth under DP than under NT, SP and DL at Wangcheng. 
The root weights accounted for 74.7%, 18.2% and 7.1% at 0–10 cm, 10–20 cm and 20–30 cm depths, respectively.

Root weights at 0–30 cm in Xiadian were the lowest under NT. Root weights at 0–10 cm were higher under SP 
than under DP, while they were highest under DP at both 10–20 cm and 20–30 cm. Higher proportions of root 

Figure 1.  Soil bulk densities with different soil layers (A1–A3: 0–10 cm, B1–B3: 10–20 cm, C1–C3: 
20–30 cm) at three peanut field sites. NT: no tillage; SP: shallow plowing; DP deep plowing; DL: deep 
loosening. Different letters above the bars indicate significant differences (P <​ 0.05) among treatments.
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biomass production at 10–20 cm were observed under DP (30.4%) and DL (28.4%) than under SP (18.8%) and 
NT (8.1%), although most of the roots (0.9–1.4 g plant−1) were distributed at a 0–10 cm depth.

Root growth was also decreased under NT at Qishan. The root weights were always highest under SP and DP 
and accounted for 63.4–66.6%, 25.2–26.4% and 8.2–10.2% at 0–10 cm, 10–20 cm and 20–30 cm, respectively. A 
lower root biomass was observed under DL than under DP at both 10–20 cm and 20–30 cm depths.

Correlation analyses indicated that root morphological characteristics were significantly affected by root 
weights (Fig. 3). Root length, surface area, volume and tips were positively correlated with root weights at 0–30 cm 
depth (P <​ 0.01). With an increase of 1.0 g in root weight, the number of root tips could be increased by 5,881, 
while root length, surface area and volume could be increased by 1,080 cm, 195 cm2 and 7.8 cm3, respectively. 
Obviously, root morphological characteristics (length, surface area, volume and tips) were lower under NT than 
under DP, SP and DL at the three sites.

Pod growth traits.  Four pod traits, including pod length, width, hundred pod weights, and pod numbers, 
varied largely under different tillage treatments (see Fig. S1). Significantly higher growth traits generally followed 
the order as DP >​ SP and DL >​ NT (Table 1). For instance, compared with the other tillage treatments, pod size 
was the smallest, while pod length and width were generally decreased by 8.9–11.9% under NT at these three 
sites. Compared with NT, the weight of one hundred pods was the highest under DP and increased by 44.7%, 
35.8% and 13.2% at Wangcheng, Xiadian and Qishan, respectively. The pod numbers were higher under DP at 
Qishan, while they were similar among tillage treatments at Wangcheng and Xiadian. In addition, the kernel rate 
was also similar under NT to other tillage treatments at three sites.

Figure 2.  Root dry weights within different soil layers (A1–A3: 0–10 cm, B1–B3: 10–20 cm, C1–C3: 
20–30 cm) at the three experimental sites. NT: no tillage; SP: shallow plowing; DP deep plowing; DL: deep 
loosening. Different letters above bars indicate significant differences (P <​ 0.05) among treatments for the same 
field site.
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N, P, K accumulations by plant.  Our data exhibited a profound positive relationship between nutrient 
accumulation and tillage treatments. Total N accumulation by pod and other tissues of the peanut were signifi-
cantly higher under tillage treatments (180–228 kg ha−1) than under no tillage (146–163 kg ha−1) at the three sites 
(Fig. 4). The N accumulation in pod under DP was the highest, which increased by 44.1%, 21.2% and 11.9% than 
those under NT, DL and SP, respectively. Compared with the no tillage control, tillage treatments also increased 
tissue P and K accumulations (Fig. 4). For instance, P and K accumulations in pods were 24.7% to 41.6% higher 
under SP, DP and DL than under NT. However, pod P and K accumulations were similar among the three tillage 
treatments.

Figure 3.  Linear correlations between root dry weight (0–30 cm soil depth) and root length, surface area 
or volume and tips. Values are Pearson correlation coefficients. Significant correlations are marked with two 
asterisks (P <​ 0.01).

Sites Treatments
Pod length.

(cm)
Pod width.

(cm)
Hundred pod 

weight (g)
Pod number 

(plant−1) Kernel rate (%)

Wangcheng

No tillage 3.7 ±​ 0.1b 1.5 ±​ 0b 165.6 ±​ 5.7c 20.4 ±​ 0.4a 71.6 ±​ 1.3ab

Shallow plowing 4.3 ±​ 0.1a 1.7 ±​ 0a 246.8 ±​ 4.8a 18.8 ±​ 0.2a 70.0 ±​ 0.5b

Deep plowing 4.4 ±​ 0.1a 1.7 ±​ 0a 239.6 ±​ 4.2a 18.3 ±​ 1.0a 73.5 ±​ 0.3a

Deep loosening 4.3 ±​ 0.1a 1.7 ±​ 0a 215.9 ±​ 5.9b 18.5 ±​ 1.3a 72.7 ±​ 0.6a

Xiadian

No tillage 3.8 ±​ 0.1b 1.5 ±​ 0c 153.3 ±​ 0.9c 16.1 ±​ 1.5a 69.8 ±​ 0.6ab

Shallow plowing 4.3 ±​ 0.1a 1.7 ±​ 0b 179.0 ±​ 7.6b 17.3 ±​ 0.5a 67.2 ±​ 0.6b

Deep plowing 4.2 ±​ 0.1a 1.8 ±​ 0a 208.3 ±​ 3.6a 17.0 ±​ 0.4a 70.0 ±​ 0.3a

Deep loosening 4.1 ±​ 0.1a 1.7 ±​ 0b 184.8 ±​ 4.3b 17.7 ±​ 0.3a 68.8 ±​ 1.0ab

Qishan

No tillage 4.0 ±​ 0.1b 1.6 ±​ 0a 167.3 ±​ 6.3b 17.0 ±​ 1.1bc 61.7 ±​ 1.3a

Shallow plowing 4.3 ±​ 0.1a 1.7 ±​ 0a 191.4 ±​ 2.5a 18.8 ±​ 0.7ab 64.9 ±​ 1.7a

Deep plowing 4.4 ±​ 0.1a 1.7 ±​ 0a 189.4 ±​ 0.6a 19.5 ±​ 0.7a 64.6 ±​ 0.8a

Deep loosening 4.3 ±​ 0.1a 1.7 ±​ 0a 185.1 ±​ 4.1a 16.3 ±​ 0.2c 61.0 ±​ 2.0a

Table 1.   Effects of soil tillage measurements on pod growth traits of peanut. Different letters indicate 
significant differences (P <​ 0.05) among treatments at the same field site.
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Peanut yields.  Yields for the three experimental sites were presented in Fig. 5. Compared with the three 
tillage treatments, the lowest peanut yields were under NT at all three sites. For instance, yields were 3,326–
3,533 kg ha−1 under NT at Xiadian and Qishan but 4,130–5,142 kg ha−1 under the other three tillage treatments. 
At Wangcheng, yields under DP, SP and DL ranged from 5,284 to 6,142 kg ha−1, which were higher than 4,521 kg 
ha−1 under NT. Meanwhile, yields at the three sites were the highest under DP while they were similar between SP 
and DP at Wangcheng and between DP and DL at Xiadian.

Discussion
Soil compaction stress exerts dominant effects on the plant growth, especially underground, all over the 
world5,29,30. Peanut, one of the most important oil crops, is always inhibited by compaction stress25,26. Soil tillage, 
as a major agricultural management, can effectively improve the soil structure and mitigate the growth of plants 
in plant-soil systems under soil compaction stress. Based on the response of peanut plants to various tillage 
intensities, the generated result is required for rational field management by taking into account the soil depths 
of tillage intensities.

Our data showed that soil compaction stress for peanut emerged under no tillage (Figs 1,2,3,4 and 5, Table 1), 
which was consistent with the typical trends observed in wheat, maize, etc.31–33. However, soil compaction stress 
could be eliminated under only two rounds (2014 and 2015) of various tillage intensities followed by several dec-
ades of peanut cropping or by rotation with maize and/or wheat under traditional SP tillage. Hence these results 
could provide a general idea for rational peanut field management. There was evidence that soil became loose and 
bulk density declined with the use of mechanical plows in field management, which would lead to the rational soil 
structure and physicochemical properties34–36. In the present study, large differences were found in the effects of 
various tillage intensities on soil bulk density (Fig. 1). At the three experimental sites, DP treatment resulted in 
the lowest soil bulk density at 0–30 cm depth, whereas SP and DL treatments decreased soil bulk density only at 

Figure 4.  Nitrogen (N), phosphorus (P) and potassium (K) accumulations by peanut pods and other 
parts of peanut at three field sites. NT: no tillage; SP: shallow plowing; DP deep plowing; DL: deep loosening. 
Different letters above or under the bars indicate significant differences (P <​ 0.05) among treatments.
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0–10 cm or 10–20 cm depths. This was obviously due to the plow depths of tillage intensities. In addition, a new 
plow hardpan had been formed under SP (Fig. 1), which could generate potential compaction risks at ~20 cm soil 
depth in the near future.

There have been a number of root change studies from numerous crops under soil tillage intensities19,32,37,38. 
However, detailed analyses of the responses of root and other underground parts (e.g., pod) to soil compaction are 
limited. Our study demonstrated that soil tillage improved the growth of root and pod compared with NT treat-
ment (Fig. 2, Table 1). Root dry weight and pod characteristics were always the highest under DP. These results 
were confirmed with the changes in soil bulk density, i.e., soil bulk density at 0–30 cm significantly negatively 
related with root biomass and yield of peanuts (Fig. 6). Given that soil bulk density was decreased by 0.1 g cm−3, 
peanut root biomass and yield would be increased by 7.5% and 4.6% (P <​ 0.05). These quantitative relationships 
further indicated the important role of tillage intensities, especially the deep plowing in peanut fields.

The accumulations of N, P and K were significantly lower under NT than under other three tillage treatments, 
with the highest accumulation under DP at the three sites (Fig. 4). This was mainly attributed to the decrease of 
soil bulk density and the accompanied improvement of aeration and moisture, which promoted root interception 
and nutrient uptake abilities by enlarging the root length, surface area, volume, and tip number (Fig. 3). On the 
other hand, the activities of nodule N2-fixing bacteria might be enhanced by better soil conditions under DP, and 
N availability to plant growth could then be improved12,24,39. However, there were almost no significant differences 
in P and K accumulations in pods among these three tillage intensities. For some mechanisms, the peanut pod 
itself could have the ability to absorb more nutrients and mitigate compaction stress at 0–10 cm soil depth under 
SP and DL (Fig. 4).

The DP tillage improved the physical structure at 0–30 cm depth, which resulted in a higher peanut yield 
through an enhanced root and pod growth and nutrient uptake, although the operation of the deep plowing cost 
more due to energy consumption. However, tillage activities could also generate potential compaction risks in the 
plow layer (either 20 cm or 30 cm in this study, see Fig. 1-B1, C2 and C3) in the long term. As a result, maintaining 
a critical point of soil compaction stress could be one of the key future peanut field management strategies.

Figure 5.  Yields of peanut at three field sites. NT: no tillage; SP: shallow plowing; DP deep plowing; DL: deep 
loosening. Different letters above the bars indicate significant differences (P <​ 0.05) among treatments.

Figure 6.  Linear correlations between averaged soil bulk density (0–30 cm depth) and relative yields and 
root biomass production (0–30 cm soil depth). Relative yields or root weight were obtained from the ratio of 
original values to maximum values. The data are Pearson correlation coefficients. Significant correlations are 
marked with one asterisk (P <​ 0.05) and two asterisks (P <​ 0.01).



www.nature.com/scientificreports/

7Scientific Reports | 6:38629 | DOI: 10.1038/srep38629

Materials and Methods
Experimental locations, climate and soil properties.  The three tillage experimental sites at 
Wangcheng (N 36°48′​, E120°29′​), Xiadian (N 37°13′​, E120°25′​), and Qishan (N 37°15′​, E120°22′​) are located 
in the major peanut producing area of Shandong, China. This area has a mean annual temperature and precip-
itation ranging from 11.5 °C to 11.7 °C and from 635.8 mm to 671.1 mm (mostly between May and September), 
respectively. The soil is a typical brown soil (Haplic Luvisol, FAO Soil Taxonomic System) that has been developed 
from the same parent material (i.e., an acid rock)40. This soil at the three sites had a range of pH from 4.8 to 5.8 
and bulk densities from 1.49 to 1.54 g cm−3. Other physicochemical properties varied among these sites (Table 2). 
The major cropping system has been a rotation of peanut with wheat and maize for several decades before this 
experiment.

Experimental design.  In a split field experiment design with three replicates for each tillage treatment or 
plot (110–130 m2), four tillage treatments, including the traditional 20 cm shallow plowing (several decades) at 
each of the three sites, had been established since 2014: (1) no tillage (NT), (2) shallow plowing at a 20 cm depth 
(SP), (3) deep plowing at a 30 cm depth (DP), and (4) deep loosening at a 30 cm depth (DL). The field tillage 
managements of SP and DP were performed by a plow machine (1LYF-435, Yucheng Dadi Machinery Co., Ltd., 
China), and the DL was by a subsoiler machine (1SL-300, Shandong Dahua Machinery Co., Ltd., China). The till-
age intensities were measured before winter in November 2014. On May 12–14, 2015 two seeds of peanut (Arachis 
hypogaea ‘Huayu 33’) were sown inside one seed hole on the peanut ridge (85 cm width ×​ 8.5 cm depth), and the 
distance between two holes were 20 cm. The fertilization and other field managements were consistent among 
these four tillage treatments. According to the local farming practice, the fertilization rates were 112.5 kg N ha−1, 
49.1 kg P ha−1 and 123.7 kg K ha−1, and the fertilizers applied were 750 kg tri-elements chemical fertilizer (15.0% 
N, 6.5% P and 12.5% K) and 60 kg potassium sulfate (50.0% K and 17.5% S) per hectare.

Plant and soil sampling and analyses.  Soil and plant sampling were conducted on peanut harvest days 
(September 23–25, 2015). An area of 400 cm (length) ×​ 85 cm (width) was sampled for determination of peanut 
yield and pod characteristics. Typically, four plants were randomly selected to determine nutrient contents of 
tissues (seeds and other plant parts). Plant tissues were dried (70 °C), ground (<​0.15 mm), and digested with 
H2SO4-H2O2 for the determination of N, P and K41. Soil bulk density was determined by the cutting ring method 
at 0–10 cm, 10–20 cm and 20–30 cm depths. Root samples were also collected at 0–10 cm, 10–20 cm and 20–30 cm 
depths during the maximum root growth period (12–14 August, 2015). Root length, surface area, volume and 
tip number on fresh roots were determined by an Optical Scanner STD 4800 (Epson, Japan) and WinRHIZO®​ 
Regular 2009 (Regent Instruments Inc., Canada). The root biomass was recorded after being oven-dried to a 
consistent weight.

Calculation and statistical analyses.  Relative yield or root weight at each site was calculated according to 
Bai et al.42, where data were obtained from the ratio of original values to maximum values. Differences in soil bulk 
density, root weight, pod characteristics, nutrient content and yield among treatments were subjected to analyses 
of variance (ANOVA) by using SAS 8.0 (SAS, Inc., Cary NC). The least significant difference (LSD) test was used 
to separate the differences between treatments at P <​ 0.05. The significances of correlations across root weight 
and root morphological characteristics, soil bulk density and root weight or yield were shown at P <​ 0.05 or 0.01.
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