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A reconstruction algorithm for 
compressive quantum tomography 
using various measurement sets
Kai Zheng1, Kezhi Li2 & Shuang Cong1

Compressed sensing (CS) has been verified that it offers a significant performance improvement for 
large quantum systems comparing with the conventional quantum tomography approaches, because it 
reduces the number of measurements from O(d2) to O(rd log(d)) in particular for quantum states that are 
fairly pure. Yet few algorithms have been proposed for quantum state tomography using CS specifically, 
let alone basis analysis for various measurement sets in quantum CS. To fill this gap, in this paper an 
efficient and robust state reconstruction algorithm based on compressive sensing is developed. By 
leveraging the fixed point equation approach to avoid the matrix inverse operation, we propose a 
fixed-point alternating direction method algorithm for compressive quantum state estimation that can 
handle both normal errors and large outliers in the optimization process. In addition, properties of five 
practical measurement bases (including the Pauli basis) are analyzed in terms of their coherences and 
reconstruction performances, which provides theoretical instructions for the selection of measurement 
settings in the quantum state estimation. The numerical experiments show that the proposed 
algorithm has much less calculating time, higher reconstruction accuracy and is more robust to outlier 
noises than many existing state reconstruction algorithms.

In quantum information science, quantum state tomography (QST) is one of the essential tasks to many quantum 
mechanics problems, such as measuring gains of optical signals, and determining actual states of qubits in quan-
tum computing1. Generally speaking, for an n-qubit quantum system, the state estimation process is equivalent 
to recovering a density matrix ρ of size d ×  d in a Hermitian space from M projected measurements, where the 
standard method needs M~O(d2), and O(d4) experimental configurations to fully characterize the state property2. 
Here each measurement is actually an estimate of the expectation value by averaging measurement outcomes cor-
responding to certain measurement basis. This large number of measurements makes measuring a quantum state 
with even a few qubits costly. As a result, efficient and robust methods that need fewer number of measurements 
in QST are desperately needed, as well as the related optimal measurement sets along with the algorithm.

To estimate the quantum state accurately with less colored effort, many estimation methods have been well 
studied. The most widely used ones are least-squares (LS)3, maximum-likelihood estimation (MSL)4–6 and some 
others7–9. In practice, quantum states in which people are interested are often in pure, or nearly pure, states such 
as ground states of a local Hamiltonian10, or states with low entropy11. In this case, the state or dynamics can be 
represented by low-rank or sparse process matrices approximately12–15, meaning the density matrix ρ is close to a 
matrix of rank r (due to local noise process), where r~O(1). Given this property as prior information, O(rdlogd) 
measurement settings could possibly suffice in the implementation of tomography to reconstruct ρ thanks to the 
theory of compressed sensing13–21. By leveraging this technique, the number of measurements can be signifi-
cantly reduced, and this has been verified successfully by real experiments2,11,22–25. In contrast to various methods 
for conventional QST though, there exist few algorithms proposed for CS based QST specifically14,18,26. Liu18 
adopted the Dantzig algorithm to estimate the state. Li26 applied the Alternating Direction Method of Multipliers 
(ADMM) algorithm to quantum state estimation, and achieved a solution with good accuracy. Yet the high com-
putational complexity of the methods limits their applications.

In this paper, we make two-fold contributions on reconstruction algorithm and measurement sets. We develop 
an improved algorithm specifically for compressive quantum state tomography to further accelerate the process 
of recovering ρ. Firstly the state estimation is converted to an optimization problem with quantum constraints. 
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By leveraging the fixed point equation approach to avoid the matrix inverse operation, we propose a fixed-point 
alternating direction method of multipliers (FP-ADMM) algorithm for compressive quantum state estimation 
that can handle both normal errors and large outliers in the density matrix (for which LS and MSL can fail easily). 
Comparisons with other quantum estimation approaches in numerical experiment shows the advantage of the 
proposed method. In addition, besides the Pauli basis, other bases such as the Platonic Solid set and the Stokes set 
have also been claimed to be practical measurement sets in QST. Thus we analyze the performances of these three 
bases along with other two bases in the compressive QST model in terms of their matrix coherences/RIP constant, 
and establish a correspondence between the bound of bases and its reconstruction performance.

Results
We have done a study in both using quantum state estimation via CS to reduce the number of measurement 
settings and fast optimization algorithm. 1) We analyzed five most popular measurement sets in quantum state 
estimation and adopt them to quantum state estimation via CS. The lower bound of the measurement rate was 
explored by numerical experiment. It shows that the required minimal measurement rate of the Pauli meas-
urement set is less than the Platonic Solid measurement set and the Stokes measurement set, which makes the 
Pauli measurement set a preferred measurement set for quantum state estimation via CS. Though the Gaussian 
measurement set and Bernoulli measurement set’s required minimal measurement rate is even less, they are not 
implementable in practice to date. 2) Combining the fixed point equation and ADMM algorithm, we propose an 
algorithm for quantum state estimation via CS, the FP_ADMM algorithm. The FP_ADMM algorithm can greatly 
improve the time efficiency of the quantum state estimation (about 150 +  faster for n =  7) and achieve a much 
higher reconstruction accuracy than ADMM algorithm (about 140 +  %, n =  5, η =  0.2) and LS algorithm (about 
420 +  %, n =  5, η =  0.2).

Quantum state estimation via CS Model. Quantum tomography or quantum state estimation is the 
process of reconstructing the density matrix ρ of size d ×  d for a source of quantum systems by measurements. Here, 
the measurements can be represented by a set of positive semidefinite matrices Π  =  {Π i, i ∈  Ω|Π  ≥  0, ∑ i(Π i) =  1},  
where Ω = − N{0, 1, , 1}, and an element of this set can be the possible outcome of one measurement. In the 
QST process, one measurement obtains one outcome, and the probability of obtaining outcome Π i (or the prob-
ability of projecting ρ to the pure state φi ) is given by the Born rule φ ρ φ ρ= = Πy Tr( )i i i i , where 

φ φΠ = i i  denotes a matrix projection operator in the equation. If we use = y y yy ( , , , )M
T

1 2  as the normal-
ized probability vector of outcomes,  denotes the set of matrix projection operator Π , then ρ=y ( ) . If the 
prior information is given that the rank of the density matrix is low, the quantum state estimation can be viewed 
as a process of CS reconstruction of solving a convex optimization problem13:

ρ σ σ= . . = ⋅
σ

ˆ ⁎ s t y Aarg min , vec( ) (1)

where || ⋅  ||* is the nuclear norm, which equals to the sum of singular values, vec(⋅ ) represents the transformation 
from a matrix to a vector by stacking the matrix’s columns, and A is the matrix format of . When the number of 
the outcomes of a measurement set is equal to the number of parameters to be estimated (which is d2 for a 
d-dimensional Hilbert space), meaning any two density matrices are distinguishable, the measurement set is 
known as informationally-complete; if it’s greater than the number of the parameters, the measurement set is 
referenced as over-complete.

In QST via CS, an incomplete measurement set is leveraged to reduce the number of measurement settings, 
which leads to a reduction of necessary number of the outcomes14. Considering the implement of quantum state 
estimation via CS, it is preferred to use a partial informationally-complete or partial over-complete measurement 
set

Π = Π Π Π ⊆ Π ∈ Ω{ } i, , , { , } (2)i i i iM1 2

where M ≪  N, N ≥  d2, M is the number of outcomes. A is the matrix form of the incomplete measurement set of (2):

= Π Π Π ∈ .×
A C(vec( ), vec( ), , vec( )) (3)i i i

T M d
M1 2

2

A reduces the dimension of values from d ×  d to M ×  1. This is known as the measurement matrix or sampling 
operator. In quantum state estimation, every ith measurement is performed on a large number of identical copies. 
Quantum state estimation is an effective approach of using the outcomes of measurement set {yi, i ∈  Ω} and the 
measurement set Π i, i ∈  Ω to calculate the best-fit density matrix.

Compressive Quantum State Estimation Algorithm using FP_ADMM. During the measuring pro-
cess of quantum state estimation in practical application, noise exists due to the system or measurement errors. 
Normally the noise is assumed to satisfy certain distribution (like Gaussian). However there exist abnormal cir-
cumstances in the measuring process that may cause the perturbation in the density matrix, and of course the 
perturbation does not satisfy the Gaussian distribution. The perturbation can be reflected by sparse outlier entries 
in ρ and these outlier entries can be formulate as a sparse matrix S. Conversional QST algorithms (such as LS) 
can barely handle S, because the low-rank property will be significantly affected by these small portion of outliers. 
Taking S into consideration, optimization problem (1) becomes26:
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ρ λ ρ ρ+ + . . = ⋅ +
ρ ⁎ I s tS y A Smin ( ) vec( )

(4)C
S, 1

where λ is a compromise factor (λ >  0). ⋅ 1 is the (1, 1) norm, = ∑ ∑ | |= = xX i
m

j
n

ij1 1 1 . IC(ρ) denotes the indictor 

function on a convex set C, ρ ρ ρ ρ=





= ≥
∞

†
I ( ) 0 if , 0

otherwise
C . The function of IC(ρ) is projecting ρ into a Hermitian 

matrix, for the reason that ρ has to satisfy ρ =  ρ†, ρ† represents the conjugate transpose of ρ. The optimization 
problem (4) can be solved by different estimators. In this paper, we use the estimator of matrix LASSO27, and the 
solution of (4) is the solution of the minimization of the augmented Lagrangian function:

ρ ρ ρ ρ λ µ ρ= = + + + ⋅ + − +
ρ ρ

ˆ ⁎
^ L Y u I Y

u
S S S A S y( , ) argmin ( , , , ) argmin ( )

2
vec( )

(5)
C

FS S, ,
1

2

where μ >  0.
We find the solution of (5) by leveraging a so-called FP_ADMM algorithm we have proposed, which is based 

on ADMM and the fixed point equation28. The solution is represented as follows:
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Sλ(X) is the soft threshold defined as 
λ λ

λ λ=










− >

+ < −λS
x x
x xX[ ( )]

, if
, if

0, otherwise
ij

ij ij

ij ij , Dλ(X) is the singular value contraction 

operator defined as Dλ(X) =  USλ(S)VT, where USVT is the singular value decomposition of X. The FP_ADMM 
solutions can be calculated in a recursive way (see the Methods section). The FP_ADMM algorithm can search 
for the global optimal solution for (6) and (8), and avoid computing the pseudo inverse of an extremely large 
matrix compared to ADMM. Hence, the FP_ADMM can improve the algorithm’s efficiency and reduce the com-
putational complexity significantly.

Choice of Measurement sets and Reconstruction Quality. The choice of measurement set is very 
important, because if the measurement set is not chosen properly, the density matrix can never be reconstructed 
accurately. There are several informationally-complete measurement sets which can provide excellent perfor-
mance for quantum state estimation. An informationally-complete measurement set of an n-qubit system can be 
represented as:

µ µ µΠ = ⊗ ⊗ = = 

{ }d i k n/ , 0, 1, 2, 3 and 1, 2, (9)i i i i i i k, n n1 2 1 2

where μ0, μ1, μ2 and μ3 are four projection operators for a single qubit system. One of the most popular measure-
ment sets was proposed by D. F. V. James29 in 2001, and we refer this measurement set as Stokes measurements. 
For the Stokes measurement set ,  µ = +H H V V0 ,  µ = H H1 ,  µ = D D2 ,  µ = R R3 . 
≡ = ( )H 0 1

0
 is horizontal polarization, ≡ = ( )V 1 0

1
 is vertical polarization, ≡ +D H V( )/ 2  is 

diagonal polarization, and ≡ +R H i V( )/ 2  is right-circular polarization. One of the most used measure-
ment set is Pauli measurements13,30. For the Pauli measurement set, μ0 =  I is a two order unit matrix, and μ1 =  σx, 
μ2 =  σy, μ3 =  σz are the Pauli matrices. Another measurement set proposed recently is Platonic solid measure-
ments31. In this paper, we use tetrahedron Platonic solid measurement set whose µ = σ+ ⋅

� �� ��

i
I m

2
i , and ���mi is a real 

three dimensional unit Bloch vector which matches the centers of the faces of a tetrahedron. σ�� is a vector of the 
Pauli matrices (σx, σy, σz).

In this paper, the incomplete measurement set (2) is a random subset of the informationally-complete meas-
urement set. The measurement rate is defined as

η = .M d/ (10)2

The smaller the η is, he smaller the number of measurement settings is. The reduction of M is the reduction of η 
for η is proportional to M. When η =  1, the measurement set is an informationally-complete measurement set. η 
is also called the compression ratio in CS. Liu18 proved that if the measurement rate of partial Pauli measurement 
set satisfies η ≥ ⋅C r d

d
log6

, the Pauli satisfies rank RIP32 with very high probability. Here satisfying rank RIP 
implies the solution of the convex optimization problem (1) is unique and equal to the density matrix. It should 
be noted that satisfying rank RIP is a sufficient but not necessary condition for measurement matrix to guarantee 
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the density matrix is reconstructed exactly. Even if a measurement matrix does not satisfies rank RIP, the density 
matrix may still be reconstructed accurately. We hope to explore the lower bound of the measurement rate. 
According to Dual Certification theory33, the Pauli measurement set is an ortho-normal set, and it can be calcu-
lated coherence v =  1. This implies that for Pauli measurement set, if η satisfies33

η β
≥

⋅ +C r d
d

(1 ) log
(11)

the solution of (1) is unique and equal to ρ with probability at least 1 −  d−β for any β >  0, where C is some absolute 
constant. This guarantees that when the number of measurement settings is O(rd log d), the measurement matrix 
constructed by the incomplete Pauli measurement set may not satisfy RIP according to Liu18, but it can still be 
used in quantum state estimation via CS and guarantee the density matrix be reconstructed exactly.

In CS, there are several types of measurement matrices that can reduce the required measurement rate dra-
matically. These matrices include matrices whose entries sampled from an i.i.d. symmetric Bernoulli distribu-
tion32, Gaussian measurement ensemble34 etc. The measurement matrix A in (3) of Bernoulli measurement can 

be written as: =









−

A
with probability

with probability
ij

M

M

1 1
2

1 1
2

 and the form of Gaussian Measurement matrix is ~ ( )A N 0,ij M
1 . 

It has been proved that about O(rd log d) measurement settings for Bernoulli measurement and about O(rd) 
measurement settings for Gaussian measurement can be used to reconstruct the density matrix exactly32,34. But 
these matrices have yet to be applied to the physical implement of quantum state estimation and will not be con-
sidered in this paper. As for the Stokes measurement set and Platonic Solid measurement set, neither of these 
measurement sets is ortho-normal29,31, so the dual certification theory cannot be applied. Whether these two 
partial measurement sets satisfy rank RIP has been unexplored in the literature. We will explore the lower bound 
of measurement rate of Stokes measurements and Platonic Solid measurements by numerical simulation(see the 
Numerical Simulation subsection).

To evaluate the reconstruction quality, the normalized error is defined as

ρ ρ
ρ

=
− ˆerror

(12)
F

F

2

2

where ρ is the true state. We also notice that the trace norm distance is preferred in some quantum state estima-
tion applications and the Frobenius norm distance is somehow more popular in compressive sensing application. 
As a matter of fact, Frobenius norm distance and trace norm distance are both suitable metrics in quantum state 
estimation as presented in refs 18,35 and the numerical simulation result shows that the normalized estimate 
error’s numerical value of Frobenius norm and trace norm are very close. As our research adopts compressive 
sensing, we decided to use Frobenius norm distance in this paper. In numerical simulations, ρ is generated from 
normalized Wishart random matrices with form as36:

ρ =
Ψ ⋅ Ψ

Ψ ⋅ Ψ

†

†tr( ) (13)
r r

r r

where Ψ r is a complex d ×  r matrix with i.i.d. complex random Gaussian entries. The density matrix constructed 
by (13) satisfies the constraint that the trace of density matrix equals 1.

Numerical Simulation. We carry out three experiments. The first experiment validates the Pauli measure-
ment set’s lower bound of the measurement rate described in (11). The Platonic Solid measurement set and the 
Stokes measurement set’s lower bounds of measurement rate are also explored. Furthermore, we answer the ques-
tion: in order to get a fixed estimation accuracy of 95% in practice, how many measurement settings exactly are 
required? The other two experiments demonstrate FP_ADMM’s superiority of accuracy and efficiency compared 
with LS and ADMM.

Exploration of the lower bound of measurement settings of five different measurement sets. Figure 1 depicts the 
normalized estimation errors with different measurement rates under 5 different measurement sets. In this exper-
iment, we recover the density matrix without outlier noise S, for the outlier does not affect the lower bound of 
measurement settings due to (11). The specific experimental method exploits the FP_ADMM algorithm at n =  6, 
to describe the relationship between the normalized estimation error and the measurement rate η. The measure-
ment sets we choose are: 1) Pauli measurement set; 2) Tetrahedron Platonic Solid measurement set; 3) Stokes 
measurement set; 4) Gaussian measurement ensemble34; 5) Entries sampled from an i.i.d. symmetric Bernoulli 
distribution32.

Accuracy Comparison of FP_ADMM and ADMM and LS. To validate the superiority of FP_ADMM algorithm 
in terms of reconstruction accuracy, we use FP_ADMM, LS and ADMM to reconstruct the density matrix ρ by 
using the same measurement matrix A (Here we use the measurement matrix constructed by the Pauli measure-
ment set) and the same outcomes y. Meanwhile, to validate the robustness of FP_ADMM, the outlier noise is 
added in the density matrix. The outlier noise S is setted with 0.01d2 nonzero values located uniformly randomly 
and the magnitudes satisfying the Gaussian distribution ρ.N(0, 0 1 )F . We record the normalized estimation 
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errors of FP_ADMM and LS and ADMM under the different measurement rates at corresponding qubits n =  5, 
n =  6 and n =  7. The normalized estimation errors with increasing η and various qubits n =  5, n =  6, and n =  7 are 
shown in Fig. 2.

Efficiency Comparison between FP_ADMM and ADMM. In order to investigate the superiority of the FP_ADMM  
algorithm in the time efficiency of the quantum state estimation via CS, we record the single iteration time of the 
FP_ADMM algorithm and ADMM algorithm when the measurement rates are 0.1, 0.25, and 0.4 and n =  5, n =  6, 
and n =  7. The results of the FP_ADMM and ADMM under different measurement rates are shown in Table 1.

Figure 1. Normalized estimation error with different measurement rates under 5 measurement sets. 
The red star line, blue cross line, black circle line, magenta plus sign line and green dot line represent Pauli 
measurements, Tetrahedron Platonic Solid measurements, Stokes measurements, Gaussian measurement and 
Bernoulli measurement respectively. The blue dotted line represents the normalized estimation error is 0.05. 
If the normalized estimation error is greater than 1, we record it as 1. The measurement rate increases from 
η =  0.02 to η =  0.4, and the incremental step is Δ η =  0.02. Under each measurement rate, the algorithm runs 
the measurement and reconstruction 3 times and the estimation error is the mean value of the 3 normalized 
estimation errors, and the max number of iterations in every reconstruction is set as 100.

Figure 2. Comparison experimental results of FP_ADMM and ADMM and LS. The realization of ADMM 
and LS used the iterative method in ref. 26 and in ref. 3 respectively. The solid lines, dashed lines and dot dash 
lines represent the FP_ADMM and ADMM and LS respectively, and the circle lines represent n =  5, the cross 
lines represent n =  6, the star lines represent n =  7. The measurement rate increases from η =  0.05 to η =  0.5 
and the incremental step is Δ η =  0.05. Under each measurement rate, the algorithms run the measurement 
and reconstruction 3 times, and the errors are the mean value of the 3 normalized estimation errors. In each 
reconstruction, the max number of iterations is 30.
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Discussion
It can be observed from Fig. 1 that: 1) In the case of n =  6 for the Pauli measurement set and the Tetrahedron 
Platonic Solid measurement set, the measurement rate η needs to be at least 0.08 and 0.32 respectively to recon-
struct the density matrix almost exactly. Here exact reconstruction implies error =  0. As for the Stokes measure-
ment set, the incomplete measurement set cannot reconstruct the density matrix exactly. 2) The Partial Pauli 
measurement set, partial Tetra Platonic Solid measurement set, Gaussian measurement set and Bernoulli meas-
urement set can reconstruct the density matrix exactly. However, the Gaussian measurement set and Bernoulli 
measurement set cannot be applied to the quantum estimation via CS in practice to date. To reconstruct the 
density matrix exactly, the required minimal measurement rate of the Pauli measurement set is less than the 
Platonic Solid measurement set, which makes the Pauli measurement set a preferred measurement set for quan-
tum state estimation via CS. 3) According to (11), for the Pauli measurement set, when n =  6, the lower bound of 
measurement rate is η β= = . ⋅ +β⋅ +

=
C0 065 (1 )C r d

d n

(1 ) log

6
 which equals 0.08 according to Fig. 1, implying 

that the factor C(1 +  β) ≈  1.23. Similarly, it can be calculated that η needs to be at least 0.13 to reconstruct the 
density matrix exactly for n =  5 and 0.05 for n =  7. 4) In practical application, the density matrix is usually consid-
ered to be reconstructed correctly when the normalized estimation error is very small. Here if estimation accu-
racy is 95% or more, that means error ≤  0.05, and we take this as the density matrix being reconstructed correctly. 
It can be observed from Fig. 1 that: for FP_AADMM algorithm with 100 iterations, the density matrix can be 
reconstructed correctly with the η about 0.07 for the Pauli measurement set and about 0.2 for the Tetrahedron 
Platonic Solid measurement set, implying that it requires at least 287 and 820 measurement settings respectively 
for these two measurement sets to achieve 95% accuracy.

It can be observed from Fig. 2 that: 1)With the increase of measurement rate, the normalized estimation error 
is reduced, that is, more measurement settings can achieve better estimation accuracy, which is consistent with 
the Compressive Sensing theory. 2) From the solid lines representing FP_ADMM, even with outliers, the algo-
rithm can still reconstruct the density matrix almost exactly, which corroborates the robustness of FP_ADMM 
algorithm. 3) For the same number of qubits, FP_ADMM algorithm compared to ADMM or LS algorithm signif-
icantly reduces the estimation error. For example, when n =  5, and the measurement rate is 0.2, the normalized 
estimation error of ADMM algorithm is 0.5981, that is, the reconstruction accuracy is 40.19%. The error of LS 
is 0.8109, and the accuracy of LS is 18.91%. The normalized estimation error of FP_ADMM algorithm is 0.004 
under the same measurement rate, and the reconstruction accuracy is 99.60%. Reconstruction accuracy increased 
by 147.82% compared to ADMM and 426.7% compared to LS. Clearly, the FP_ADMM algorithm significantly 
improves the reconstruction accuracy of the quantum state estimation via CS.

It can be observed from Table 1 that: 1) For the quantum system having the same number of qubits, with the 
increase of the measurement rate, the time of the two algorithms’ single iteration goes up. This is because, with the 
increase in the measurement rate η, the number of measurement settings M will increase, and the measurement 
matrix A will become a larger matrix ( ∈ ×CA M d2

), leading to more computation, and the single iteration time 
increasing. 2) For the same measurement rate, with the increase of the qubit, the single iteration time of the two 
algorithms increases dramatically. This is due to the increase of qubits leading to an exponential increase in the 
elements of the density matrix (d =  2n). Even under the same measurement rate, the number of measurement 
settings grows dramatically, resulting in the increase of the single iteration time. 3) With the same number of qubits 
and the same measurement rate, the single iteration time of the FP_ADMM algorithm is significantly reduced com-
pared to the ADMM algorithm. With the increase of the qubit, the magnitude of the decrease is increased. When the 
measurement rate is 0.25, and n =  5, for example, the FP_ADMM algorithm is (0.558–0.052) /0.052 =  9.7  
times faster than the ADMM algorithm. In addition single iteration the time is 14.3 times faster when n =  6, and 
155.8 times faster when n =  7. It can be concluded that the FP_ADMM algorithm has a higher time efficiency 
than the ADMM algorithm in the quantum state estimation via CS. With the increase of the system qubit, the 
time efficiency is more obvious.

Methods
Compressive Quantum State Estimation Algorithm using ADMM. Li26 is the first to use the ADMM 
algorithm into quantum state estimation via CS, and achieved better results than the previous algorithms. The 
ADMM algorithm is an optimization algorithm and has strong robustness. Using the ADMM algorithm to solve (5),  
the steps in each iteration can be described as follows:

•	 Fix S, Y, update ρ

ρ ρ ρ µ ρ
µ

= + + ⋅ + − +
ρ

+
⁎ I YA S yargmin ( )

2
vec( )

(14)

k
C

k
k

F

1
2

n 5 6 7

η 0.1 0.25 0.4 0.1 0.25 0.4 0.1 0.25 0.4

FP_ADMM 0.046 0.052 0.058 0.666 0.845 1.018 1.825 1.924 2.241

ADMM 0.500 0.558 0.637 10.59 12.89 15.134 255.831 301.592 326.936

Table 1.  The Comparison of single iteration time between FP_ADMM and ADMM. All Timing were 
performed in MATLAB on a computer with 2 cores of 2.4 GHz Intel Xeon E5-2407 CPUs.
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•	 Fix ρ, Y, update S

λ µ ρ
µ

= + ⋅ + − ++ + YS S A S yargmin
2

vec( )
(15)

k k
k

F
S

1
1

1
2

•	 Fix ρ, S, update Y

µ ρ= + ⋅ + −+ + +Y Y A S y( vec( ) ) (16)k k k k1 1 1

The key of the ADMM algorithm is how to solve (14) and (15). In Li’s algorithm, to solve (14), the process is 
divided into three steps: the first step is finding a ρ that minimizes the Frobenius norm term in (14); the second 
step, projecting the ρ of the first step to a Hermitian matrix; the third step is projecting the result of the second 
step into a low rank matrix. Similarly, to solve (15), two steps are divided. This involves first minimizing the 
Frobenius norm term, and then projecting the result of the first step into a sparse matrix. However, in the first 
step, to minimize the Frobenius norm term, it is necessary to compute the pseudo inverse of a matrix with size 
d2 ×  d2, which is a large amount of computation.

ADMM algorithm based on fixed point equation. The fixed point equation28 was proposed by 
Combettes et al. in 2005 which can be used to solve optimization problem with certain characteristics. The fixed 
point equation can describe the solution of an optimization problem as an implicit equation, which is the reason 
it called fixed point equation.

For an optimization problem with the objective function is +
∈ ×

f fX Xmin ( ( ) ( ))
X R 1 2n n1 2

, if →×f f R R, : n n
1 2

1 2  are 
two proper lower semi-continuous convex functions, and f2 is differentiable with a −

β
Lipschitz1  continuous 

gradient for some β >  0, then the solution of the optimization problem satisfies an implicit equation, which is 
called fixed point equation15:

δ= − ∇δ fX X Xprox ( ( )) (17)f 21

where δ ∈  [0, +  ∞ ], and 
δprox f 1

 represents the proximity operator of δf1. The definition of proximity operator of 
a convex function φ is ϕ= − + ∈ϕ

×{ }RX Z X Z Zprox : argmin ( ):F
n n1

2
2 1 2 . In this paper, we need to use the 

proximity operator of the nuclear norm and (1, 1) norm37,38:

=λ λ⋅ SX Xprox ( ) ( ) (18)1

=λ λ⋅ ⁎
DX Xprox ( ) (19)

where Sλ(X) is the soft threshold defined as 
λ λ

λ λ=










− >

+ < −λS
x x
x xX[ ( )]

, if
, if

0, otherwise
ij

ij ij

ij ij , Dλ(X) is the singular value con-

traction operator defined as Dλ(X) =  USλ(S)VT, where USVT is the singular value decomposition of X.
Using the fixed point equation (17) to solve the problem (14), it can be divided into two steps:

•	 First step, find the solution of ρ ρ ρ= + ⋅ + − +
ρ

µ
µ

+
⁎ A ec S yargmin v ( )k k Y

F
1

1
2

2k
, set ρ=

µ ⁎f X( )1
1 , 

ρ= ⋅ + − +
µ

f A ec yX S( ) v ( )k Y

F
2

1
2

2k
, it can be derived from (17) and (19):

ρ δ ρ δ
µ

=











− +





− ⋅ −

















δµ

† †D YI A A A y A Smat ( )vec( ) vec( )
(20)

k
k

1

where mat (·) is the operator to convert a vector to a matrix. Deriving from (20), for ρ satisfies the implicit 

equation, the ρ +k
1

1 can be solved by iterations as:

ρ δ ρ δ
µ

=











− +





− ⋅ −

















δµ

+ + +† †D YI A A A y A Smat ( )vec( ) vec( )
(21)

k j k j k
k

1
1, 1 1 1

1,

•	 Second step, project ρ +k
1

1 to a Hermitian matrix, and the result denoted as ρ +k
2

1. Here we use the method 
from26:
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ρ ρ ρ ρ= Π = ++ + + + †( ) 1
2

( ( ) ) (22)
k

C
k k k

2
1

1
1

1
1

1
1

Us ing  t he  f ixe d  p oint  e qu at ion   (17)  to  s o lve  t he  problem (15) ,  l e t  = λ
µ

f X S( )1 1
, 

ρ= ⋅ + − +
µ

+f X A S y( ) vec( )k Y

F
2

1
2

1
2k
, it can be derived from (17) and (18):

δ δ ρ
µ

=











− +





− ⋅ −

















δλµ

+† †S S YS I A A A y Amat ( )vec( ) vec( )
(23)

k
k

1

S satisfies the implicit equation (23), Sk+1 can be updated as follow:

δ δ ρ
µ

=











− +





− ⋅ −

















δλµ

+ + + +† †S YS I A A S A y Amat ( )vec( ) vec( )
(24)

k j k j k
k

1, 1 1, 1

In the iterative procedures to get ρk, Sk in (21) and (24), a lot of iterations are needed, and the computation 
takes a lot of time. Inspired by Lin14 et al.‘s work, we do not have to solve ρk, Sk exactly. Rather, it turns out 
updating ρk, Sk once is sufficient to converge to the optimal solution of problem (14) and (15), which derives the 
FP_ADMM algorithm. The details are described as follow:

ρ δ ρ δ
µ

=











− +





− ⋅ −

















δµ

+ † †D YI A A A y A Smat ( )vec( ) vec( )k k k
k

1
1 1 1

δ δ ρ
µ

=











− +





− ⋅ −

















δλµ

+ +† †S YS I A A S A y Amat ( )vec( ) vec( )k k k
k

1
2

1

ρ ρ= Π+ +( )k
C

k
2

1
1

1

µ ρ= + ⋅ + −+ + +Y Y yA S( vec( ) )k k k k1
2

1 1

In (14), the use of the fixed point equation can solve ρ ρ+ ⋅ + − +
ρ

µ
µ⁎ A S yarg min vec( )k

Y

F
2

2k
 directly. 

Then, projecting it into a Hermitian matrix can simplify the calculation to two steps. In (15), the fixed point equa-
tion can solve it directly which reduces it to one step. Moreover, using the fixed point equation to solve (14) and 
(15) does not require computing the pseudo inverse of matrices, which can significantly reduce the computational 
complexity, so that the time efficiency of the algorithm is greatly improved. At the same time, by using the fixed 
point equation we can solve (14) as a whole optimal solution for the first and third terms, and find (15) the overall 
optimal solution. So compared with Li’s ADMM algorithm which solves each term of (14) and (15) separately, the 
reconstruction results of FP_ADMM algorithm achieve higher accuracy.

In the procedure of FP_ADMM algorithm, the selection of the parameters is very important. For the simula-
tion in this paper, we set the compromise factor λ as d1/ 39, and µ = . y0 5/ F. For the algorithm, the stopping 
criterion is ρ ε− ⋅ + <y A S yvec( ) /k k

F F 1 or >k kmax, where e1 =  10−7 and kmax is the maximum number 
of iterations. For the initialization of FP_ADMM, the initial values of ρ, S and Y are taken as zero matrix, and set 
δ =  1, and r =  1.

Error Analysis. It has been proved that if measurement rate of the partial Pauli measurement set 
η ≥ Cr d dlog /6 , the measurement matrix satisfies RIP with probability approaching 1, and if 

⋅ ≤
µ

†A A Svec( ) 1
2

, then the following holds with the same probability14:

µ
ρ

ρ ρ

ρ
≤






⋅
+

⋅ − 




⁎C r C

error
(25)F

r

F

0 1
2

where C0 and C1 are positive constant factors. ρr is the matrix of rank r that best approximates ρ in the nuclear 
norm. That is, ρr is the optimal solution of the problem: ρ ρ−

ρ
min r

r

 s.t. rank (ρr) ≤  r. There are two items in the 

brackets of (25), the first item depends on the noise S, and the second item is the rank-r approximation error. 
However, when η≤ ≤r d d Cr d d2 log / log /6  corresponding to (11) (here we set β =  1), the the normalized 
error described in (25) is very difficult to analyze. In quantum state estimation via CS by using Pauli measurement 
set, the dual certification theory is usually used to explore the lower bound of the number of measurement set-
tings, and the rank RIP theory is used to analyze the upper bound of error.
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