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Two genomic regions associated 
with fiber quality traits in Chinese 
upland cotton under apparent 
breeding selection
Junji Su1,2, Libei Li1, Chaoyou Pang1, Hengling Wei1, Caixiang Wang1, Meizhen Song1, 
Hantao Wang1, Shuqi Zhao1, Chi Zhang1, Guangzhi Mao1, Long Huang3, Chengshe Wang2, 
Shuli Fan1 & Shuxun Yu1,2

Fiber quality is one of the most important agronomic traits of cotton, and understanding the genetic 
basis of its target traits will accelerate improvements to cotton fiber quality. In this study, a panel 
comprising 355 upland cotton accessions was used to perform genome-wide association studies 
(GWASs) of five fiber quality traits in four environments. A total of 16, 10 and 7 SNPs were associated 
with fiber length (FL), fiber strength (FS) and fiber uniformity (FU), respectively, based on the mixed 
linear model (MLM). Most importantly, two major genomic regions (MGR1 and MGR2) on chromosome 
Dt7 and four potential candidate genes for FL were identified. Analyzing the geographical distribution of 
favorable haplotypes (FHs) among these lines revealed that two favorable haplotype frequencies (FHFs) 
were higher in accessions from low-latitude regions than in accessions from high-latitude regions. 
However, the genetic diversity of lines from the low-latitude regions was lower than the diversity of 
lines from the high-latitude regions in China. Furthermore, the FHFs differed among cultivars developed 
during different breeding periods. These results indicate that FHs have undergone artificial selection 
during upland cotton breeding in recent decades in China and provide a foundation for the further 
improvement of fiber quality traits.

Cotton (Gossypium spp.) is an important crop that provides natural textile fiber and oilseed for human consump-
tion. The cultivated types of cotton include two diploids, G. herbaceum L. (2n =  2x =  26) and G. arboreum L. 
(2n =  2x =  26), and two tetraploids, G. hirsutum L. (2n =  4x =  52) and G. barbadense L. (2n =  4x =  52). G. hirsutum  
is the most widely cultivated tetraploid cotton species and accounts for 90% of annual worldwide cotton pro-
duction. G. hirsutum (upland cotton) is thought to have originated by hybridization between a maternal Old 
World “A” genome taxon resembling G. herbaceum or G. arboreum and paternal New World “D” genome taxon 
resembling G. raimondii1. Consequently, the chromosomes of upland cotton are often numbered in two sets of 
13, A1 through A13 and D1 through D13; alternatively, the chromosomes may be numbered as 1 through 26, 
of which numbers 1 through 13 correspond to A1 through A13 and numbers 14 through 26 correspond to D1 
through D13. Upland cotton is characterized by its high yield, wide adaptability, and acceptable fiber quality. With 
increases in global human consumption levels and spinning machine speeds, the need to improve fiber quality is 
increasing rapidly. Fiber quality traits have been found to be governed by many quantitative trait loci (QTLs) in 
upland cotton2,3, and these traits are negatively correlated with yield4 and early maturity traits5. However, yield 
and earliness are also important traits that increase the attractiveness of cotton varieties to growers in China. 
However, it is extremely challenging to improve fiber quality traits without compromising other important char-
acteristics. To overcome these limitations and further improve the fiber quality of cotton, the major QTL alleles 
associated with the target traits of upland cotton must be identified.

The identification of QTLs governing complex traits has traditionally been facilitated by a linkage analysis 
approach using segregating biparental populations. Many QTLs related to fiber quality traits have been tagged 

1State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, 455000, Anyang, China. 2College of 
Agronomy, Northwest A&F University, 712100 Yangling, China. 3Bioinformatics Division, Biomarker Technologies 
Corporation, 101300 Beijing, China. Correspondence and requests for materials should be addressed to S.F. (email: 
fsl427@126.com) or S.Y. (email: ysx195311@163.com)

received: 16 May 2016

accepted: 11 November 2016

Published: 07 December 2016

OPEN

mailto:fsl427@126.com
mailto:ysx195311@163.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:38496 | DOI: 10.1038/srep38496

using molecular markers in intraspecific segregating populations of upland cotton6–10. A total of 721 QTLs that 
control fiber quality traits in tetraploid cotton have been reported and are distributed across all 26 chromosomes3. 
Despite numerous studies that have conducted QTL mapping, the gene(s) underlying fiber quality are poorly 
understood because the roughly estimated QTL intervals extend over several centimorgans, which is a genetic 
distance that translates into large genomic regions of dozens of megabases. Fortunately, this intrinsic limitation 
of the QTL mapping approach can be overcome by association mapping panels, which are composed of unrelated 
lines that have accumulated a far greater number of crossing-over events over the history of breeding. Association 
mapping of fiber quality traits with simple sequence repeat (SSR) markers has been employed widely for upland 
cotton, and some SSR markers associated with fiber quality have been detected in succession11–14. However, these 
studies were limited by the number of polymorphic SSR markers utilized, and candidate gene(s) underlying fiber 
quality traits have not been identified by this mapping method. In recent years, the rapid development of genome 
sequencing technology has allowed genome-wide association studies (GWASs) to overcome the aforementioned 
limitations of QTL mapping and association analyses, and loci associated with many important target traits in 
plant species have been identified15. In addition, the identification of candidate genes has been achieved using the 
GWAS approach in several plant species, including Arabidopsis16, rice17 and soybean18. Recently, high throughput 
next-generation sequencing technologies such as genotyping-by-sequencing (GBS)10, restriction site associated 
DNA sequencing (RAD-seq)19 and specific-locus amplified fragment sequencing (SLAF-seq)20,21 have provided 
an opportunity to obtain the required marker coverage in upland cotton cultivars/accessions.

A high-density single-nucleotide polymorphism (SNP) marker map not only provides a resource for QTL 
linkage mapping and GWASs in cotton but also facilitates the detection of genetic changes associated with cotton 
domestication and improvement. Domesticated crops have undergone strong human-mediated selection aimed 
at developing high-yield, superior-quality and stress-tolerant cultivars that are adapted to diverse environmental 
conditions and agricultural practices22,23. To improve genomic selection models, the detection of target loci under 
selection during crop improvement is critical24. Patterns of genetic differentiation based on genome sequence 
comparisons between populations have recently been applied to detect targets of selection in rice25, wheat23, 
maize26 and sorghum27–29. However, the impact of selection on the patterns of genetic variation underlying fiber 
quality improvement in cotton remains largely unknown.

Despite being the largest cotton-growing nation, China does not domesticate upland cotton. Most upland cot-
ton cultivars planted in China were derived from several germplasm sources, such as Deltapine (DPL), Stoneville 
(STV), Foster and King, all of which were introduced from the USA13. These cultivars represent the founda-
tion of the Chinese cotton breeding program and have played an important role in the development of Chinese 
upland cotton cultivars13. To meet the demands of spinning speeds, the fiber quality traits of Chinese cultivars 
have been improved to an extent in upland cotton breeding. This practice raises a number of questions, such as 
which genetic loci or genomic regions control fiber quality traits; when and where these genetic changes occurred 
during Chinese upland cotton breeding; and whether these loci or genomic regions were selected artificially. 
Uncovering the underlying pattern of genetic change and the targets of fiber quality trait selection during cotton 
breeding over the past several decades would answer these questions. In our study, over 81,000 SNP markers were 
identified and genotyped using an SLAF-seq approach in a diversity panel consisting of 355 upland cotton acces-
sions. In addition, a GWAS approach was used to identify SNP loci or the major genomic regions associated with 
fiber quality traits in upland cotton. Furthermore, to detect the associated loci or regions subject to selection dur-
ing breeding, the favorable haplotype frequency (FHF) and genetic diversity were compared among cultivars of 
different geographical areas and breeding periods. These results will not only lay the foundation for fiber quality 
trait improvement through marker-assisted breeding but also help us understand the impact of targeted selection 
on cotton fiber quality improvement and domestication.

Results
Phenotypic characteristics of fiber quality. A panel comprising 355 upland cotton accessions was estab-
lished, and phenotype identification was conducted to study the distribution of five fiber quality traits: fiber 
length (FL), fiber uniformity (FU), fiber micronaire (FM), fiber elongation (FE) and fiber strength (FS). The dia-
grams revealed broad variation and a normal distribution without any significant skewness and kurtosis for the 
five fiber quality traits under four different conditions (Fig. 1). Among the 355 upland cotton lines, the FL ranged 
from 23.25 to 34.59 mm and had an average value of 28.63 mm and the FU ranged from 79.40% to 87.15% and 
had an average value of 84.32%. The FU showed continuous variation and ranged from 2.52 to 6.00, with a mean 
value of 4.77, and the FE ranged from 6.03% to 7.10%, with a mean value of 6.65%. The FS presented a wide range 
of 22.70–40.65 cN/tex, with a mean value of 29.33 cN/tex. The coefficients of variation (CV) of the FL, FU, FM, FE 
and FS were 5.01%, 1.44%, 9.07%, 1.60% and 8.83%, respectively (Table S1). Several significant correlations were 
observed between these five traits. The FL exhibited a highly significant positive correlation with the FS (0.86**), 
FU (0.76**) and FE (0.74**), whereas several negative correlations were observed between the FM and the other 
four traits (Table S2).

Genetic diversity and population structure. The SLAF-seq approach was used to genotype the natural 
population as described in a previous study30, and 691,978 SNPs were identified with call success. A total of 81,675 
SNPs were selected for further analyses after excluding the SNPs with more than 10% missing data, a minor allele 
frequency (MAF) < 5%, and an average marker density of 1 SNP per 24.85 kb30. To estimate the genetic diver-
sity of natural populations, these SNPs were divided into 26 groups according to chromosome, and the genetic 
diversity values were calculated for each group. The A subgenome of genetic diversity values ranged from 0.3485 
to 0.3897 and had an average value of 0.3656, whereas the D subgenome of genetic diversity values ranged from 
0.3465 to 0.4056 and had a mean of 0.3796 (Table S3). The results showed that there is low genetic diversity among 
Chinese upland cotton.
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To represent the genetic, geographic and morphological diversity of Chinese upland cotton, the population 
included 331 cultivars and new strains gathered from multiple geographic regions across China (Fig. 2a). The 
pairwise genetic distances among the 355 upland cotton genotypes were determined using SNP markers. A phy-
logenetic tree based on these genetic distances showed that the genotypes could be classified into two divergent 
groups (Fig. 2b). Furthermore, a principal component analysis (PCA) was conducted with all selected SNP mark-
ers, and two major subpopulations were identified by principal components 1–3 (PC1-3), although certain acces-
sion genotypes overlapped (Fig. 2c). PC1 explained 18.09% of the variation in the genotypic data, whereas PC2 
and PC3 explained 13.21% and 7.66% of the variation, respectively. The accessions in each group were further 
classified into several subpopulations, which did not exhibit evident geographic distribution patterns. We also 
found that the upland cotton accessions were derived from a mixed ancestry, indicating that these lines might 
have experienced introgression or gene flow during breeding in China.

Genome-wide association studies (GWASs). GWASs were conducted for five fiber quality traits using 
the best linear unbiased predictions (BLUPs) of individual performance over four environments in an MLM, 
which accounts for both population structure and familial relatedness (PCA +  K). A total of 16, 10 and 7 SNPs 
were associated with FL, FS and FU, respectively, whereas no SNPs were associated with FM and FE. For FL, three 
genomic regions (Dt7:25767969-25768030, Dt7:25931988-25999761 and Dt7:27425475-27437213) on chromo-
some Dt7 and a single region (At9:31687000-31778023) on chromosome At9 showed marker-trait associations. 
Four SNP loci within these associations (rsDt7:25931988, rsDt7:25932026, rsDt7:27437213 and rsDt7:25964783) 
reached genome-wide significance after a Bonferroni correction for multiple testing (− log10 (p) ≥  6.21), and these 
loci explained 10.10%, 9.31%, 9.18% and 8.95% of the phenotypic variation in FL, respectively (Fig. 3a, Table 1). 
For FS, five regions of association were identified. In these regions, ten SNP loci exhibiting associations with 
FS were distributed on chromosomes At4, At5, Dt1, Dt4 and Dt7. For example, a SNP locus (rsDt7:27437213) 
on chromosome Dt7 showed significant marker-trait associations with − log10 (p) values as high as 6.24, which 
explained 8.60% of the total observed variation in FS (Fig. 3b, Table 1). Moreover, five regions of association with 
FU were detected; however, they exhibited lower − log10 (p) values. Synthetically, the SNP locus Dt7: 27437213 
was significantly associated with FL and FS. Most importantly, all nine called SNP markers of the 66.77 kb region 
(Dt7:25931988-25999761) demonstrated associations with FL.

Two major genomic regions (MGR1 and MGR2) on chromosome Dt7 and candidate genes 
potentially underlying FL and FS. To identify putative candidate genes in the neighboring regions 
of the SNP loci associated with FL and FS, we further determined LD blocks harboring four significant SNPs 
(− log10 (p) >  6.21). The four SNPs were distributed in two LD blocks. Although the four significantly associ-
ated SNPs were contained in a smaller region of 1.51 megabase pairs (Mbp), they were distributed in two sep-
arate genomic regions distinguished by LD block analysis (Fig. 4). The first major genomic region of 66.77 kb 
(MGR1, Dt7:25931988-25999761) consisted of nine SNP loci associated with FL on chromosome Dt7 and 
was detected by GWAS. The nine SNP alleles were A/G, C/T, C/T, A/C, A/G, C/T, C/G, C/T and A/G, respec-
tively. We observed a close linkage relation among the nine SNP loci associated with FL. The haplotype 
(AA-TT-CC-AA-AA-TT-GG-TT-AA) that included 188 lines was deemed the favorable haplotype (FH) because 
the mean FL (28.99 mm) of the haplotype was significantly higher than the mean FL (27.86 mm) of the other cor-
responding haplotype (GG-CC-TT-CC-GG-CC-CC-CC-GG; the unfavorable haplotype, UFH), which included 
74 lines. The mean FL of the remaining 93 lines was 28.53 mm; in these lines, the number of lines containing 
1–8 copies of the favored alleles was 6, 7, 9, 4, 4, 3, 8 and 12, respectively, and 40 lines included the haplotype 

Figure 1. Frequency of the five fiber quality traits of 355 upland cotton accessions. FL: fiber length; FU: fiber 
uniformity; FM: fiber micronaire; FE: fiber elongation; and FS: fiber strength.
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(AG-CT-CT-AC-AG-CT-CG-CT-AG) (Fig. 5a). In addition, FH accounted for a large proportion of the upland 
cotton accessions with longer fibers, whereas UFH accounted for a larger proportion of the upland cotton lines 
with shorter fibers. For example, UFH was not observed in the lines with high fiber length (> 31.50 mm), and 
FH was not observed in the lines with short fiber length (< 25.50 mm) (Fig. 5b). The aforementioned results 
indicated that there might be a major gene controlling FL in MGR1 or an adjacent region. To search for putative 
candidate genes in MGR1 with the nine SNP loci associated with FL, three genes (CotAD_22823, CotAD_22824 
and CotAD_22825) have been annotated within the 66.77 kbp region of MGR1. CotAD_22823 and CotAD_22825 
lack a definite annotation concerning their biological function. CotAD_22823 contains two conserved domains of 
unknown function (DUF4013 and DUF3816), whereas CotAD_22824 has a B3 binding domain, suggesting that 
it could be a member of the AP2/B3-like transcription factor family. Interestingly, the first and the second peak 
SNPs (rsDt7:25931998 and rsDt7:25932026) that were significantly associated with FL were positioned within one 
of the introns of CotAD_22823.

The second major genomic region of 11.74 kb (MGR2, Dt7: 27425475-27437213) on chromosome Dt7 includes 
three SNP alleles. Of the three SNPs, two (rsDt7:27436981 and rsDt7:27437213) had significant associations with 
both FL and FS, and their alleles were A/G and C/T, respectively. The FL and FS value of accessions with FH 
(GG-CC) in MGR2 were higher on average than those of accessions with UFH (AA-TT) (Fig. 5a). Similarly, FH 
accounted for a large proportion of the upland cotton accessions with longer fibers, whereas UFH accounted for a 
larger proportion of the upland cotton lines with shorter fibers (Fig. 5b). Interestingly, in MGR2, a peak SNP locus 
(Dt7:27437213) associated with FS and its adjacent SNP locus (Dt7:27436981) was distributed in the internal 
sequence of the gene CotAD_35088, and these results suggest that CotAD_35088 is a candidate gene controlling 
FL and FS. CotAD_35088 possesses a domain called a pentatricopeptide repeat (PPR) motif. The PPR protein 
gene family is distributed widely among terrestrial plants and has been shown to play an important role in plant 
development, organelle biogenesis, and cytoplasmic male sterility restoration.

Figure 2. Genetic diversity and population structure of 355 upland cotton genotypes. (a) Geographic origin 
of 331 Chinese upland cotton accessions for which source locations are known; the map of geographic positions 
of these accessions was generated using the R software package ‘maptools’ (http://r-forge.r-project.org/projects/
maptools/), and the source locations are labeled by the color-coded dots. (b) Phylogenetic tree constructed 
by the neighbor-joining method. (c) PCA plots of the first three components of population structure, color-
coded by geographical origin. YR: 162 accessions from the Yellow River region in China; YZR: 51 accessions 
from the Yangtze River region in China; NW: 98 accessions from the Northwest Inland region in China; LN: 20 
accessions from Liaoning province in China; and USA: 20 accessions from the Texas cotton region in the United 
States of America.

http://r-forge.r-project.org/projects/maptools/
http://r-forge.r-project.org/projects/maptools/
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Geographic distribution and selection sweeps of favorable haplotypes for MGR1 and MGR2.  
To gain insight into the geographic distribution of two FHs in MGR1 and MGR2, a total of 355 upland cotton 
accessions from different ecological areas were divided into five groups: the YR group (162 accessions from the 
Yellow River region in China); YZR group (51 accessions from the Yangtze River region in China); NW group 
(98 accessions from the northwest inland region in China); LN group (20 accessions from Liaoning province in 
China); and USA group (20 accessions from the Texas cotton region of the United States of America). We ana-
lyzed the geographical distribution of two FHs among these upland cotton accessions, and heterozygous acces-
sions were excluded from further analyses. Although the YR, YZR and USA lines had nearly the same level of 
FHF and showed little genetic differentiation, distinct FH distributions among the five different-source groups 
were found in MGR1 and MGR2 (Fig. 6a). For instance, there was a high FHF (> 65%) in the lines obtained from 
YR, YZR and USA and a low FHF (< 45%) in the accessions from NW and LN. Furthermore, we also found that 
the FHF of varieties from South Xinjiang (SXJ) were higher than those of varieties from North Xinjiang (NXJ) 
(Supplementary Fig. S2). This result suggests that the two FHFs were higher in accessions from low-latitude 
regions than in those from high-latitude regions in China. Surprisingly, the highest FL and FS were found in 
ecological areas, although the FHFs were lower in accessions from NW (Fig. 6b,c). We speculate that there might 
be other more important loci or genes controlling FL and FS in the accessions in the NW group. To identify the 
associated SNP loci in the NW accessions, another association analysis was conducted for the FL and FS traits 
using 98 NW upland cotton accessions. A towering distribution of SNP loci associated with FL and FS was found 
on chromosome At4, and two SNP loci associated with target traits were detected (Supplementary Fig. S2). The 
results of the association analysis of upland cotton accessions from the NW region confirmed our tentative infer-
ence. In addition, a comparison of fiber quality between the FH and UFH groups indicated that the FL and FS of 
the FHs in the lines from YR, YZR, NW and USA were dramatically higher than those of the UFHs, whereas the 
FL and FS of the FHs in the lines from LN were not strikingly higher than those of the UFHs (Fig. 6d,e).

Because of the FHF differences among the five geographic populations, the SNPs within the MGR1 and MGR2 
regions may represent targets of artificial selection. To identify further potential selective sweeps of two FHs, a 
total of 77 (YR) and 79 (NW) source-identified and incubation-time-clear varieties were selected, and the FHF 
differentiation between MGR1 and MGR2 was scanned among varieties during six different breeding periods. We 
found that the FHFs of MGR1 and MGR2 differed among cultivars developed during different breeding periods. 
For cultivars developed before 2000, the FHFs did not exhibit obvious differences between YR and NW. However, 
the YR FHFs were much higher than those of NW for cultivars developed after 2000 because the FHFs resulted 
in a significant increase in YR and an evident reduction in NW between 2001 and 2005 (Fig. 7a). Afterwards, the 
FHFs of YR and NW exhibited a gradual decline. Interestingly, the coincidence of change trends in the FHFs and 
the FL and FS phenotypes were characterized, especially for YR lines (Fig. 7a–c). These results not only offer proof 
of target of selection within the MGR1 and MGR2 but also provide additional evidence of MGR1 and MGR2 
control of FL and FS. Furthermore, we deduced that the FHs have strengthened the progress of artificial selection 
in upland cotton breeding over recent decades in the YR region of China.

To seek further evidence that the FHs have undergone selection, we analyzed the nucleotide diversity of the 
upland cotton population and found that the average genetic diversity values of the whole genome and chro-
mosome Dt7 were as high as 0.3730 and 0.3927, respectively, for all lines. However, the SNPs located within the 
MGR1 and MGR2 presented lower genetic diversity (Table S4). In MGR1, the genetic diversity of the germplasms 

Figure 3. Genome-wide association studies (GWASs) of 355 upland cotton accessions. Manhattan and 
quantile-quantile plots of GWASs using the mixed linear model (MLM) for fiber length (a) and fiber strength 
(b), respectively. The SNP loci of the red lines (− log10(p) ≥  5.21) were considered suggestive association 
markers; The SNP loci of the blue lines (− log10(p) ≥  6.21) were considered significant association markers.
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containing FH ranged from 0 to 0.1095 and had an average of 0.0769, whereas the diversity of the germplasms 
containing UFH ranged from 0.1327 to 0.1984 and had a mean of 0.1448. However, when we analyzed the genetic 
diversity of the whole Dt7 chromosome, we found that diversity was not significantly different between the FHs 
(0.3834) and UFHs (0.3890). In the MGR2, the genetic diversity of the accessions that included FHs exhibited an 
average value of 0.0966, and the diversity of accessions that included UFHs had a mean of 0.1407. Furthermore, 
we analyzed the difference in genetic diversity among eleven SNPs within the MGR1 and MGR2 for the five 
geographical areas and found that the genetic diversity of the YR and YZR lines were lower than that of the NW 
accessions (Fig. 7d). Therefore, we concluded that the low genetic diversity of FHs in HY and HZY is likely to be 
the result of selection pressure.

Discussion
Major genomic regions and QTL control FL and FS. QTL mapping is an important tool used by breed-
ers to combine economically important traits to create a superior cultivar. A meta-QTL analysis of cotton based 
on 42 different studies was performed, and a total of 728 QTLs for fiber quality traits were mapped3. Over the 
past 15 years, a large number of QTL mapping studies have clearly indicated that a greater number of QTLs 
that control fiber quality traits are located on the D subgenome than on the A subgenome31–35. In this study, 
25/33 (75.76%) SNP loci associated with fiber quality traits were distributed on the D subgenome, and two major 
genomic regions (MGR1 and MGR2) associated with FL were located on chromosome Dt7. Therefore, our results 
are consistent with the opinion that the D subgenome provides a greater contribution to the genetic control of 
fiber quality traits than the A subgenome.

In previous studies, a large number of association analyses of fiber quality traits and SSR markers in upland 
cotton have been reported13–14,36,37. However, these studies were limited by the number of the polymorphic SSR 

Traits Regions SNP loci Chromosome Position (Mbp) −log10(p) R2 (%) Genesa

FL

1
rsAt9:31687000 At9 31.69 5.21 6.95

rsAt9:31778023 At9 31.78 5.23 6.91

2
rsDt7:25767969 Dt7 25.77 5.26 6.94

rsDt7:25768030 Dt7 25.77 5.36 7.07

3 (MGR1)

rsDt7:25931988 Dt7 25.93 7.5 10.10 CotAD_22823

rsDt7:2593026 Dt7 25.93 7.05 9.31 CotAD_22823

rsDt7:25953791 Dt7 25.95 5.32 7.30

rsDt7:25954012 Dt7 25.95 5.28 7.25

rsDt7:25954030 Dt7 25.95 5.22 7.04

rsDt7:25964783 Dt7 25.96 6.59 8.95

rsDt7:25971388 Dt7 25.97 5.22 7.12

rsDt7:25971594 Dt7 25.97 5.21 6.74

rsDt7:25999761 Dt7 26.00 5.89 8.00

4 (MGR2)

rsDt7:27425475 Dt7 27.43 5.42 7.49

rsDt7:27436981 Dt7 27.44 5.88 7.12 CotAD_35088

rsDt7:27437213 Dt7 27.44 6.95 9.18 CotAD_35088

FS

1
rsAt4:69980131 Dt7 69.98 5.43 7.49

rsAt4:69980135 Dt7 69.98 5.65 7.74

2 rsAt5:17565858 At5 17.57 5.26 7.09

rsDt1:101881672 Dt1 101.88 5.33 6.93

rsDt1:101881897 Dt1 101.88 5.44 7.07

4
rsDt1:102969462 Dt1 102.97 5.20 86

rsDt1:102969650 Dt1 102.97 5.35 6.10

5 rsDt4:8362683 Dt4 8.36 5.21 6.75

6 (MGR2)
rsDt7:27436981 Dt7 27.44 5.22 6.02 CotAD_35088

rsDt7:27437213 Dt7 27.44 6.24 8.60 CotAD_35088

FU 

1 rsAt6:10202790 At6 10.20 5.46 7.33

2
rsAt91687000 At9 31.69 5.06 6.96

rsAt9:31778023 At9 31.78 5.22 6.53

3
rsDt3:4260283 Dt3 4.26 5.23 6.72

rsDt3:4706150 Dt3 4.71 5.39 6.33

4
rsDt5:40993634 Dt5 40.99 5.24 7.03

rsDt5:4093882 Dt5 40.99 5.25 7.01

Table 1.  Details of loci associated with fiber quality traits identified via genome-wide association studies  
(GWASs) in upland cotton. aGenes are annotated according to Li et al.38; the associated SNP loci were 
positioned within the gene sequence of genes. MGR1: first major genomic region; MGR2: second major 
genomic region.
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markers and the size of the natural populations. Currently, a major concern is the requirement of high throughput 
genotyping and reliable phenotype identification. With the rapid development of sequencing technologies and 
computational methods, GWASs have become a powerful tool for detecting natural variation, genomic regions 
or candidate genes underlying elite traits in crops38. In the present study, two major genomic regions (MGR1 
and MGR2) were found to be associated with FL; in particular, MGR1 contains nine SNP loci that are signifi-
cantly associated with FL. Manhattan plots for FL typically indicated a towering distribution of many SNPs in 
one region of the genome, which indicated the dependability of the GWAS results. However, because of the low 
coverage of SLAF-sequencing, a towering distribution was found only for chromosome Dt7, and a small num-
ber of SNP loci associated with target traits was detected. Thus, to increase the density of molecular markers, 
it is necessary to perform high-coverage whole genome sequencing for GWAS using large-scale populations. 
Despite these difficulties, we achieved the desired result. For example, four SNP loci associated with target traits 
(rsDt7:25931988, rsDt7:25932026, rsDt7:27436981 and rsDt7:27437213) were distributed within the sequences 
of two genes (CotAD_22823 and CotAD_35088). These findings suggest that two major genomic regions and 
candidate genes for targeted traits represent effective targets for improving fiber quality in future cotton breeding.

Figure 4. LD blocks of two major genomic regions (MGR1 and MGR2) on Dt7 (a) and (b). Association signals 
of FL and FS in the region (24.00–29.00 Mb) on chromosome Dt7. The red and blue dots represent SNPs 
contained in MGR1 and MGR2 in (a) and (b), respectively. (c) The distribution of LD blocks of two major 
genomic regions (MGR1 and MGR2) on Dt7. The pair-wise LDs between the SNP markers are indicated as  
D’ values, where dark red indicates a value of 1 and gray indicates 0. The black triangles indicate LD blocks that 
contain significant SNPs.
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To fully understand the behavior of complex traits, the new GWAS must be compared with previous linkage 
and association studies. In previous QTL mapping studies, 557 SSR markers (Tables S5–S6) containing QTLs 
of FL and FS from 34 reports of QTL mapping were selected (Table S7), and 268 primer sequences correspond-
ing to these markers (Table S5) were gained from the CottonGen Database (http://www.cottongen.org). The 
physical locations of these SSR primer sequences were mapped to the reference genome sequence39 by elec-
tronic PCR (e-PCR). In previous studies, at least 11 SSR markers were mapped to chromosome Dt7 (Fig. 8). 
One SSR marker, NAU1043, mapped to Dt7 has been reported in many studies. For example, Yu et al.40, Shen 
et al.34, Wang et al.41 and Cai et al.14 reported FL or FS QTLs linked to the NAU1043 marker. Interestingly, 
MGR1, including the nine SNP loci in our study, is distributed in QTLs identified in previous studies, such as 
qFL-7-1a (NAU1043-NAU474)34 and qFS-LG05-1 (NAU1043-NAU3654)41. Wu et al.42 also identified a QTL 
(JESPR211-CM029) for FL in an adjacent region of MGR1 and MGR2. These findings validate the GWAS results 
and increase confidence in the identity of some SNP loci of MGR1. To determine the LD extent between our 
GWAS results and the QTL intervals or loci from previous studies, LD blocks harboring significantly associ-
ated SNPs and their neighboring SNPs on chromosome Dt7 were defined. The results indicated low levels of 
LD between NAU1043 and MGR1, between d and MGR1 and between d and MGR2 (Fig. 8). These findings 
indicated that there were different genome regions between the GWAS results (MGR1 and MGR2) and the QTL 
intervals from previous studies. In addition, SNP markers near the physical locations of the 268 SSR primers and 
their corresponding p values were screened out, and a total of eleven SSR markers near the SNP loci with − log10 
(p) >  2.0 were detected (Tables S8 and S9). For example, NAU474 was closest to the SNP locus rsDt7:26072147, 
with a larger − log10 (p) value of 3.05 associated with FL. Although a comparison of the new GWAS with QTLs 
identified in previous studies was performed, it is very difficult to compare different QTLs for FL and FS in var-
ious populations, particularly in a changing environment. The vast majority of QTLs based on SSR markers for 
fiber quality traits have been mapped by crossing populations between G. hirsutum and G. barbadense, whereas 

Figure 5. Phenotypic distributions for the haplotypes of the two major genomic regions (MGR1 and 
MGR2). (a) Box plots for phenotypic values of lines containing favorable haplotypes (FHs), unfavorable 
haplotypes (UFHs) and other haplotypes (Others). (b) Charts of the proportions of several types of haplotypes.

http://www.cottongen.org
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the SNP loci associated with FL and FS were identified via GWAS in a natural population of G. hirsutum in the 
present study. Furthermore, only a rough draft of the upland cotton reference genome sequence is available, hin-
dering highly accurate physical location of each marker. Hence, it was not possible to precisely integrate all the 
SSR and SNP markers into the reference genome sequence, and many of the QTLs differed between our study 
and previous studies.

Two sets of upland cotton (TM-1) reference genome sequences39,43 have been completed, and the chromo-
some numbering of these genome sequences differs. To correspond to the chromosomal location of the SNP loci 
associated with the target traits, the genome sequences of MGR1 and MGR2 were extracted from the upland 
cotton reference genome39 and aligned with the other upland cotton reference genome43. The chromosome corre-
sponding to Dt7 in the other upland cotton reference genome is D11, and Dt7 corresponds to C21 in the linkage 
groups. The chromosomal position of each associated SNP locus was also determined for a second reference 
genome (Table 2). A meta-QTL analysis showed that C21 contains six and five QTLs for FL and FS, respectively3. 
Moreover, several QTLs for FL and FS mapped to C21 (Dt7)10,35. The QTL cluster for FL and FS on C16 has been 

Figure 6. Geographic distribution and phenotypic values of the favorable haplotypes (FHs). (a) The favorable  
haplotype frequencies (FHFs) in the five geographic areas. (b and c) Phenotypic values of FL and FS in the 
five geographic areas. (d) Distribution of box plots for FL of the five geographic areas between the favorable 
haplotypes (FHs) and the unfavorable haplotypes (UFHs) in MGR1 and MGR2. (e) Distribution of box plots for 
FL of the five geographic areas between the favorable haplotype (FH) and the unfavorable haplotype (UFH) in 
MGR2.
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observed in previous studies3,35,44. However, the SNP loci that were significantly associated with FL and FS were 
not detected for C16 in this study, most likely for the following reasons: (1) fewer SNP markers with low cover-
age were distributed on C16; or (2) a large number of QTLs for fiber quality were mapped using linkage map-
ping methods and interspecific-crossing populations between G. hirsutum and G. barbadense in recent decades. 
Therefore, it is important to develop additional markers for use in future studies.

Geographic distribution and selection sweeps of FHs. To identify and access the allelic variations 
affecting crop phenotypes, it is important to comprehensively evaluate and characterize large-scale representative 
genetic resources. In recent years, numerous studies have used a large number of germplasms and performed 
selective sweeps related to the domestication and improvement of crop traits. For example, the coincidence 
of salt-affected soils and salt-tolerant haplotypes in soybean indicates that these alleles are likely to be a major 
selection factor determining the distribution and utilization of soybean, particularly in saline soils45. In maize, 
thousands of genomic regions have been associated with artificial selection targets during modern breeding and 
domestication26,46, with certain genes in these regions representing key factors that control traits that have been 
improved in recent decades46. Similar studies have also been conducted for wheat23, soybean28, rice25, tomato47 
and rapeseed48. In this study, a GWAS of large-scale upland cotton populations was able to successfully authen-
ticate the selective signals related to domestication and fiber quality trait improvements for two major genomic 
regions (MGR1 and MGR2), which will aid future improvement of fiber quality and the identification of new 
domestication genes.

Composite likelihood ratios (CLRs) and FST values are commonly used in the identification of genomic targets 
of artificial selection49,50, and genomic regions with extreme allele frequency differentiation have been detected. 
The strength and duration of selection can impact the frequency and distribution of the selected alleles among 
individual populations23. Geographic patterns of genetic differentiation have long been used to determine the 
population history and the biological mechanisms of adaptation for different organisms51. For example, an exam-
ination of the genomic patterns of differentiation between northern and southern populations of Australian and 
North American Drosophila simulans has provided insight into common selective pressures and responses51. In 
our study, selective sweeps of two major genomic regions were examined by a conventional statistical approach 
that compared FHF, and we found that the FHFs of MGR1 and MGR2 had distinct haplotype distributions in 

Figure 7. Differentiation of breeding period and genetic diversity in the two favorable haplotype 
frequencies (FHFs). (a) Breeding period differentiation of the two favorable haplotype frequencies (FHFs). 
(b and c) Breeding period differentiation of FL and FS. (d) Differentiation of genetic diversity of the five 
geographic areas in the two major genomic regions (MGR1 and MGR2).
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varieties obtained from different eco-regions in China. Further investigation indicated that the FHFs of the 
low-latitude regions were strikingly higher than that of the high-latitude regions in China. Moreover, these results 
showed that the FHFs and fiber length in NXJ were lower than the FHFs and fiber length in SXJ. These distinct 
patterns of geographic distribution among haplotypes subjected to selection could be associated with adaptations 
to local environmental conditions. Because the high-latitude regions (e.g., NW and LN) experience a shorter 
growth duration and lower accumulated temperature in China, the prematurity of upland cotton was consid-
ered the most important breeding objective. Breeders seeking to achieve early maturation have ascribed little 
importance to the FHs for fiber quality because of the negative genetic correlation between fiber quality and 
earliness. However, in YR and YZR, which experience a later harvest time, the FHs for fiber quality have been 

Figure 8. Comparison of the GWAS with QTLs identified in previous studies. The left-hand chart represents 
the LD blocks of two major genomic regions (MGR1 and MGR2) on Dt7; the right-hand chart represents a 
physical map of chromosome Dt7 containing molecular markers from our GWAS and QTL and association 
mapping from previous studies. a1 and a2 represent MGR1 and MGR2, respectively, including the SNP loci in 
our GWAS. b, c and d represent QTL mapping from previous studies; the intervals b, c, and d represent qFL-7-1a 
(NAU1043-NAU474)34, qFS-LG05-1 (NAU1043-NAU3654)41 and a QTL (JESPR211-CM029)42; e represents an 
SSR marker associated with FL from association mapping of previous studies.

Major regions Traits Chromosomea Sitea Chromosomeb Siteb Linkage group

MGR1

FL Dt7 25931988 D11 24034609 C21

Dt7 25932026 D11 2403460 C21

Dt7 25953791 D11 24056372 C21

Dt7 25954012 / / C21

Dt7 25954030 D11 4056611 C21

Dt7 25964783 D11 24067326 C21

Dt7 25971388 D11 24073931 C21

Dt7 25971594 D11 24074137 C21

Dt7 25999761 D1 24102240 C21

MGR2
FL Dt7 7436981 scaffold4548_D11 25364 C21

FS Dt7 27437213 scaffold4548_D11 25132 C21

Table 2. Comparison of the chromosomal positions of the SNP loci and candidate genes potentially 
underlying fiber length and strength between the two upland cotton reference genomes. aUpland cotton 
reference genome according to Li et al.38. bUpland cotton reference genome according to Zhang et al.42.
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selected artificially by many breeders, and the target traits were improved in these cultivars. The FH distributions 
of MGR1 and MGR2 among different populations constitute a valuable resource that can be used to design future 
breeding strategies. In addition, the frequency differentiation of favorable alleles for cotton lint yield components 
in historically released cultivar groups has been reported in a previous study52. Another study reported that elite 
QTL alleles for fiber quality traits in the three breeding periods were passed down from the four core cultivars, 
whereas other QTL alleles detected in the core cultivars were not selected by breeders in the development of 
modern Chinese cotton cultivars13. In this study, a considerable difference in FHFs was observed between YR and 
NW cultivars developed after 2000, which was most likely because the FHs with high strength were selected and 
passed down from early-period to late-period cultivars in YR. These results also indicate that FHs have experi-
enced artificial selection during upland cotton breeding in China.

The detection of genome-wide genetic diversity and the identification of candidate genes that contribute to 
the domestication and improvement of target traits are essential for breeding superior varieties46,53. Prior studies 
of upland cotton found that the genetic diversity in varieties from the YZR and YR regions was higher than that 
of NW varieties14. However, we observed that the genetic diversity of YR, YZR and USA lines was lower than that 
of NW and LN accessions for two major genomic regions (MGR1 and MGR2). In summary, the high FHF and 
the low genetic diversity of plants obtained from lower latitude areas in China are hallmarks that signal strongly 
favored haplotypes during natural and artificial selection.

Methods
Plant materials and phenotyping. A total of 355 upland cotton accessions (Table S10) obtained from the 
cotton germplasm collections in our laboratory and the low-temperature germplasm gene bank of the Cotton 
Research Institute of the Chinese Academy of Agricultural Sciences (CRI-CAAS), were planted in a randomized 
complete block design with three replications at two locations in Anyang (AY), Henan (36°08′N, 114°48′E) and 
Shihezi (SHZ), Xinjiang (44°31′N, 86°01′E) over two years (2014 and 2015). Twenty normally opened bolls from 
middle fruiting branches of each replicate were sampled annually in September. Fiber samples weighing 10–15 g 
were measured using an HVI-MF 100 instrument (User Technologies, Inc., USTER, Switzerland) at the Cotton 
Fiber Quality Inspection and Testing Center of the Ministry of Agriculture, Anyang, China. The following fiber 
quality traits were evaluated: 50% fiber span length (FL, mm), fiber strength (FS, cN/tex), fiber uniformity (FU, %),  
fiber micronaire (FM) and fiber elongation (FE, %).

Genotyping by SLAF-sequencing. A total of 81,675 SNP markers were used for the subsequent analysis. 
SNP genotyping was performed using an SLAF-seq approach54. Two restriction enzymes (Rsa I and Hae III, New 
England Biolabs, NE, USA) were used for library preparation. Paired-end sequencing (80 bp at each end) was per-
formed on an Illumina HiSeq 2500 system (Illumina, Inc., San Diego, CA, USA) according to the manufacturer’s 
recommendations. The GATK and SAMtools packages were used for SNP calling, and BWA software was used to 
map the raw paired-end reads onto the reference genome (Gossypium hirsutum v 1.0)39.

Genetic diversity and population structure analysis. The geographic location of each upland cotton 
accession was obtained from the CRI-CAAS database. A map of the geographic positions of 331 accessions gath-
ered from China was generated using the R software package ‘maptools’ (http://r-forge.r-project.org/projects/
maptools/) and is shown in Fig. 2a. Power-Marker v 3.2553 software was used to estimate the genetic diversity 
of SNP markers for the tested cotton accessions. The genetic diversity values of each of group were calculated 
according to the chromosome. Nei’s55 genetic distances among the 355 upland cotton accessions were calculated, 
and a neighbor-joining dendrogram was constructed with Power-Marker V 3.25 software.

The structure of the natural upland cotton population was analyzed using a PCA approach with the GAPIT 
software package56.

Genome-wide association studies. The best linear unbiased prediction (BLUP) values of five fiber qual-
ity traits in four environments were estimated using the R software package ‘lme4’57. PCA was superior to the 
Q model in controlling false positives for the estimation of population structure58,59. Therefore, a mixed linear 
model (MLM) was used to calculate the associations in all analyses by incorporating PCA and kinship data56. The 
suggestive and significant p thresholds were 6.12E–06 and 6.12E–07 for the entire population, respectively60,61. 
Manhattan plots were generated using the R software package ‘CMplot’.

Haplotype analysis. The phenotypic value of each haplotype was estimated through the average phenotypic 
value over accessions for each type of SNP locus associated with the target trait. The FHs were subsequently 
identified according to the breeding objective of each target trait. Box plots of the relative phenotypic values were 
generated using R software. The FHFs of the SNP loci associated with FL and FS were calculated via statistical 
methods using R software.
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