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Crescent shaped Fabry-Perot fiber 
cavity for ultra-sensitive strain 
measurement
Ye Liu, D. N. Wang & W. P. Chen

Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, 
good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The 
typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor 
axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging 
whereas the second one is converging. To increase the visibility of the output interference pattern, the 
length of major axis should be large for a given cavity length. However, the largest value of the major 
axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the 
robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin 
crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature 
cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which 
provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP 
cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, 
and hence is simple in structure and economic in cost.

Optical fiber strain sensors have been attractive in many industrial and engineering applications due to their features  
of compact size, flexible operation, resistant to corrosion, immunity to electromagnetic interference and suitability  
for monitoring harsh environment. Among various types of optical fiber strain sensors demonstrated, such as 
those based on fiber gratings1–3, photonics crystal fibers (PCFs)4–7 and tapered optical fibers or microfibers8–10,  
fiber in-line interferometers11–14 have been developed rapidly, owing to their high sensitivity, ease of construction 
and convenience in operation. The main configurations of optical fiber in-line interferometer strain sensors include 
Mach-Zehnder interferometer (MZI) and Fabry–Pérot interferometer (FPI), based on spheroidal cavity14, hollow 
tube or PCF5,15–17, open air-cavity18, fiber taper or microfiber9,10,19 or lateral-shifted fiber splicing12 respectively.  
These sensors have large size, complex structure, poor robustness, and/or low strain sensitivity.

An elegant way of constructing a compact size, simple structure, good robustness and high sensitivity opti-
cal fiber in-line interferometer strain sensor is to utilize a fiber inner air-cavity, especially that with small cavity 
length.

Here, we propose and demonstrate a crescent shaped fiber FP cavity fabricated by fusion splicing an etched 
multimode fiber (MMF) with a single mode fiber (SMF) for strain sensing. Such an FP cavity device is highly 
compact, robust, low cost, simple in structure and easy in fabrication, and exhibits ultra-high strain sensitivity.

Operating principle
The fiber devices with elliptic, D- and crescent shaped FP cavities respectively, are shown in Fig. 1, where L repre-
sents the cavity length, H denotes the height of the cavity and T is the thickness of the cavity wall.

In these FP cavities, the first reflection surfaces are diverging, flat and converging for the elliptic, D- and cres-
cent shaped cavities respectively, while the second reflection surfaces are all converging.

The incident light beam traveling along the fiber core of SMF is reflected by the two surfaces of the FP cavity 
respectively and recombined in the fiber core, resulting in an interference fringe pattern at the output.

Assuming that the light intensities of the reflected beams by the two surfaces of the FP cavity are I1 and I2, 
respectively, the interference signal intensity can be written as:
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where λ  is the wavelength of the incident light, n is the refractive index (RI) of the cavity medium, L is cavity 
length and ϕ 0 is the initial phase of the interference. At the output fringe dip positions, the phase difference of the 
two reflected light beams satisfies the condition,
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where m is an integer, λ m is the wavelength of the mth order interference dip. Assuming that ϕ 0 =  0, when the 
condition π= +π
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The free spectral range in the spectrum can then be expressed as,

λ
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For an air cavity, n =  1, the dip wavelength shift due to axial strain can be derived from Eq. (3) as
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where δL is the change of air cavity length.

Experimental Results and Discussion
The simple experimental set-up is demonstrated in Fig. 2. The incident light beam from a broadband (BBS) light 
source with wavelength range between 1452 to 1652 nm is launched into the fiber device via a circulator and the 

Figure 1. (a) Elliptic FP cavity; (b) D-shaped FP cavity; (c) Crescent shaped FP cavity.

Figure 2. Schematic diagram of the experimental set-up. 
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Figure 3. The microscope images of device samples. (a) Three device samples with crescent shaped FP cavity. 
(b) Three device samples with D-shaped FP cavity. (c) Two device samples with elliptic FP cavity.

Device 
sample

Cavity 
shape

Length 
(μm)

Height 
(μm)

Wall 
thickness 

(μm)

1 Crescent 9 65 48

2 Crescent 20 63 47

3 Crescent 58 72 17

4 D-shaped 12 60 43

5 D-shaped 24 63 48

6 D-shaped 48 70 26

7 Elliptic 48 68 38

8 Elliptic 24 38 44

Table 1.  FP cavity sample parameters.
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output is directed to an optical spectrum analyzer (OSA) (YOKOGAWA 6390) with the resolution of 0.01 nm to 
record its spectrum.

The microscope images of FP cavity device samples with different shapes and sizes are displayed in Fig. 3, 
where crescent, D-shaped and elliptic FP cavities can be clearly observed. The cavity length, height and wall 
thickness of the device samples are summarized in Table 1.

During the experiment implementation, the fiber device was mounted between a fixed stage and a moving 
stage, and the instant adhesive was used to fix the fiber. The axial strain was applied by adjusting the translation 
stage to introduce a displacement in the whole fiber device length, and the range of strain was between 0 and  
3000 μ ε .

The reflection spectra and the output dip wavelength versus axial strain for three device samples of crescent 
shaped FP cavities with cavity lengths of 58, 20 and 9 μ m, respectively, are displayed in Fig. 4. The dip wavelength 
shift exhibits a good linear relationship with axial strain applied and the sensitivities achieved are 1.63, 6.21 and 
9.67 pm/μ ε , respectively.

Figure 4. The reflection spectra and the output dip wavelength versus axial strain for device sample of crescent 
shaped FP cavity with (a) cavity length of 58 μ m; (b) cavity length of 20 μ m; and (c) cavity length of 9 μ m.
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Figure 5 demonstrate the reflection spectra and the output dip wavelength shift versus axial strain for three 
device samples of D-shaped FP cavities with cavity lengths of 48, 24 and 12 μ m, respectively. The dip wavelength 
shift exhibits a good linear relationship with the axial strain applied and the sensitivities obtained are 2.29, 3.38 
and 5 pm/μ ε , respectively.

For comparison, the transmission spectra and the output dip wavelength shift versus axial strain for the device 
samples with elliptic FP cavity are shown in Fig. 6. Such samples are fabricated by fusion splicing a section of 
MMF etched by hydrofluoric (HF) acid with a section of SMF. In Fig. 6(a), the cavity length is ~48 μ m, and the 
strain sensitivity obtained is 1.61 pm/μ ε . In Fig. 6(b), the cavity length becomes ~24 μ m, and the strain sensitivity 
obtained is ~3.1 pm/μ ε .

It can be seen from Fig. 4 to Fig. 6 that the strain sensitivity depends on both the FP cavity length and the 
cavity shape. For the same cavity shape, the smaller the cavity length, the higher the strain sensitivity achieved. 
The D-shaped cavity exhibits the higher strain sensitivity than that of elliptic cavity, while the crescent shaped 
cavity possesses the highest strain sensitivity. This may be due to the fact that the crescent-shaped FP cavity has 
two converging reflection surfaces, compared with one flat and one converging, and one diverging and one con-
verging reflection surfaces of D-shaped and elliptic shaped cavities, respectively. The converging, flat or diverging 
reflected beams not only affect the insertion loss of the device but also the variation of cavity length. The insertion 
loss of the crescent shaped FP cavity is also smaller than that of the other shaped cavities, and the smaller the 

Figure 5. The reflection spectra and the output dip wavelength versus axial strain for device sample of 
D-shaped FP cavity with (a) cavity length of 48 μ m; (b) cavity length of 24 μ m; and (c) cavity length of 12 μ m.
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cavity length, the lower the insertion loss. The smallest insertion loss achieved by crescent shaped cavity with cav-
ity length of 9 μ m is ~16 dB. The visibility of the crescent shaped FP cavity also appears to be the best of the three 
type FP cavities. For the device samples with cavity length of ~20 μ m, the crescent shaped FP cavity has a visibility 
of 7 dB, compared with the results of 5 and 6.5 dB of the D-shaped and elliptic FP cavities with cavity length of 
~24 μ m. It can also be noted that the thickness of cavity wall plays no clearly significant role when compared with 
the cavity length, being different from that of the previous work reported20. This is likely due to the fact that our 
device samples exhibit only a short length of cavity wall (at least one reflection surface is a curve) associated with 
a relatively large thickness.

The temperature responses of the FP cavity devices of different shapes are displayed in Fig. 7. The tempera-
ture sensitivities for a crescent shaped FP cavity with cavity length of 20 μ m, a D-shaped FP cavity with cavity 
length of 24 μ m, and an elliptic FP cavity with cavity length of 24 μ m, are ~15.45, ~12.41, and ~10.74 pm/°C, 
respectively. Considering of their strain sensitivity of ~6.21, ~3.38, and ~3.1 pm/μ ε  respectively, the temperature 
cross-sensitivities are determined as ~2.49, ~3.67 and ~3.46 μ ε /°C respectively, which are lower than that of MZI 
(5.25 μ ε / °C)21 and PCF based Sagnac loop22. The crescent shaped FP cavity also exhibits the lowest temperature 
cross-sensitivity when compared with that of D-shaped and elliptic FP cavities.

Conclusion
In conclusion we have demonstrated an ultra-thin crescent shaped FP cavity for ultra-sensitive strain measure-
ment. The device is simply fabricated by fusion splicing an etched MMF with a section of SMF. The smallest 
cavity length achieved is ~9 μ m, which provides a high sensitivity of ~9.67 pm/μ m, more than 3 times that of 
optical fiber MZI and ~9 times that of fiber Bragg grating. The crescent shaped FP cavity is superior to other FP 
cavities such as elliptic and D-shaped cavities in terms of strain sensitivity, insertion loss, fringe visibility as well 
as temperature cross-sensitivity. Such an FP cavity device is highly compact, robust, low cost, simple in structure 
and easy in fabrication, and exhibits ultra-high strain sensitivity and low temperature cross-sensitivity, thus is 
promising in many strain sensing applications.

Methods
Device fabrication. The crescent shaped FP cavity device is fabricated by fusion splicing an etched MMF 
with a section of SMF. The fabrication process includes a number of steps which are illustrated in Fig. 8.

Figure 6. The reflection spectra and the output dip wavelength versus axial strain for device sample of elliptic 
FP cavity with (a) cavity length of 48 μ m; (b) cavity length of 24 μ m.
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(a)  The cleaved end of SMF is placed in a fusion splicer and electrically discharged for a short period of time to 
create an arching shaped fiber end.

(b)  A section of MMF is etched by use of HF acid with concentration of 40% before a taper-shaped hole of several 
micrometers in depth is formed at the end of MMF.

(c)  The etched MMF is then fusion spliced with the SMF with the arching shaped fiber end to form a crescent 
shaped inner air FP cavity.

During the device fabrication process of crescent shaped FP cavities, the three device samples with cavity lengths 
of 58, 20 and 9 μ m, respectively, are etched for 3.5, 1.5 and 1 minutes, respectively, the discharge time and power 
employed in the fusion splicer (Fujikura 80 s) are 300 ms and 45 bit respectively, and the overlap adopted are 20, 
15 and 12 μ m, respectively.

To create a D-shaped inner air FP cavity, the SMF with a cleaved fiber end is directly fusion spliced with etched 
MMF as demonstrated in Fig. 9. The etched time for three device samples with D-shaped FP cavity lengths of 

Figure 7. The reflection spectra and the output dip wavelength versus temperature for device sample of  
(a) crescent shaped FP cavity with cavity length of 20 μ m; (b) D-shaped FP cavity with cavity length of 24 μ m; 
(c) elliptic FP cavity with cavity length of 24 μ m.
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48, 24 and 12 μ m, respectively, are 3.5, 2 and 1 minute respectively, the discharge time and power employed are 
300 ms and 40 bit respectively, and the overlap lengths adopted for all the three device samples are 10 μ m.

The elliptic FP cavity is fabricated by fusion splicing of etched MMF and SMF as shown in Fig. 10. The etched 
time for the two device samples of elliptic FP cavity with cavity lengths of 48, and 24 μ m, respectively are 5 and 
2.5 minutes, respectively, the discharge time and power employed are 1000 ms and 30 bit respectively, and the 
overlap lengths adopted for both the device samples are 10 μ m.

Figure 8. Schematic diagram of the crescent shaped FP cavity fabrication process. 

Figure 9. Schematic diagram of the D-shaped FP cavity fabrication process. 

Figure 10. Schematic diagram of the elliptic FP cavity fabrication process. 
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