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A Parallel Adaboost-
Backpropagation Neural  
Network for Massive Image  
Dataset Classification
Jianfang Cao1, Lichao Chen2, Min Wang2, Hao Shi2 & Yun Tian1

Image classification uses computers to simulate human understanding and cognition of images by 
automatically categorizing images. This study proposes a faster image classification approach that 
parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce 
parallel programming model. First, we construct a strong classifier by assembling the outputs of 
15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost 
algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network 
and the feature extraction algorithm. Finally, we establish an automated classification model by 
building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the 
classification model. The results are superior to those obtained using traditional Adaboost-BP neural 
network or parallel BP neural network approaches. Our approach increased the average classification 
accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural 
network and parallel BP neural network, respectively. Furthermore, the proposed approach requires 
less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed 
approach may provide a foundation for automated large-scale image classification and demonstrates 
practical value.

Image classification uses automated analysis to categorize images1. Image classification has been widely applied 
for target detection and recognition, image retrieval, information filtering and so on in fields such as information 
search, security monitoring, medical information, and aerospace. Therefore, effectively and accurately dividing 
images into appropriate categories has been the focus of much research.

Studies on image classification technologies have concentrated primarily on classification approaches. Based 
on the design concept of the classifiers, image classification can be divided into two approaches: the classification 
approach based on the generative model and the classification approach based on the discriminant model. The 
classification approach based on the generative model is based on the joint probability distribution of image 
features and image categories. The simplest approach to image classification based on the generative model is 
the Bayesian model. Ducinskas et al. presented Bayes linear discriminant functions and applied them to image 
classification2. To improve image retrieval, Gao et al. used a Simple Bayesian Classifier to perform semantic clas-
sification of image resources3. The most common approach for image classification based on the generative model 
is the Gauss Mixture Model (GMM). Valiaya et al. proposed a hierarchical image classification method through 
modeling image features. They first performed classification on different levels for a vacation image dataset and 
then practiced Gauss mixture modeling for each class to achieve the whole vacation image classification4. With 
the wide application of the bag-of-words model in the image fields, various types of topic models have become 
widely used for image classification. One of the most common models is Probabilistic Latent Semantic Analysis 
(PLSA), which represents an image as a set of visual words using the bag-of-words model, regards the image cat-
egory as a potential theme, and then finds the distribution of latent semantics by analysis5. The PLSA model was 
first proposed for document processing aiming at discrete text information. To better adapt this model to image 
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data, Horster et al. proposed an approach of modeling the distribution of visual word elements using the distri-
bution of continuous local feature vectors. Experiments showed that this method was superior to the traditional 
discrete visual word element model6. Because the image classification approach based on the generative model 
expresses the data distribution from the perspective of statistics and can reflect the similarity of similar data, its 
expansion capability is stronger and can produce good results in the case of more sample data or incomplete data 
information. However, the model directly determines the complexity of the algorithm. The complexity of a simple 
model is small, but with fewer parameters, the descriptive ability is poor; the descriptive ability of complex models 
is strong, but the algorithm complexity is high due to the inclusion of more parameters7.

Image classification approaches based on the discriminant model are established on the basis of the condi-
tional probability distribution of the image features and the image categories. Artificial Neural Networks (ANN), 
decision trees and Support Vector Machines (SVM) are commonly used image classification approaches based on 
the discriminant model. ANN simulates the working process of biological neural networks to realize image clas-
sification, and strong adaptive learning ability is its most important feature. Kuruvilla et al. used neural network 
algorithms to classify computed tomography (CT) lung cancer images8. Han et al. proposed a neural network 
ensemble algorithm to classify remote sensing images9. To improve the classification accuracy rate, they employed 
radial basis function (RBF) neural networks as base classifiers and constructed a new classifier using the Rotation 
Forest algorithm. To obtain high discrimination of image representations from small datasets, Shi et al. proposed 
an image classification method based on a mixed deep transfer learning model10. Decision trees are an image clas-
sification approach based on inductive learning, which can deduce classification rules such as decision trees from 
data samples without order and rule. With the goal of classifying SAR images, Topouzelis et al. proposed a novel 
oil spill feature selection and classification technique based on a decision tree forest that constructed the optimum 
forest containing 70 trees11. Dou et al. studied decision tree classification technology and performed remote sens-
ing image classification using the C5.0 algorithm, which improved both classification accuracy and effectiveness 
compared with a support vector machine (SVM) classifier12. SVM is one of the most widely used classification 
approaches in the image field. Liang et al. proposed a novel classification approach for hyperspectral remote 
sensing images based on the ICA and SVM algorithms13. This approach used the independent component anal-
ysis (ICA) algorithm to extract characteristic information from the hyperspectral remote sensing images. It then 
used the SVM algorithm to construct a classifier. To improve SVM classification performance, Pasolli et al. pre-
sented a new active learning approach that integrated spatial information from remote sensing images14. Image 
classification approaches based on the discriminant model can reflect the differences between data categories 
and determine the optimal classification surface between different data categories. The classification boundary 
is more flexible, which results in strong generalization ability and simple models that are easy to learn. Although 
it can solve complex nonlinear mapping problems, the artificial neural network has several disadvantages, such 
as overfitting, falling easily into a local optimum, and slow convergence speed. The classification accuracy of the 
decision tree algorithm drops dramatically when processing multiclass problems; although Bayes’ algorithm can 
make judgments along scientific lines, the analysis and calculation process is more complex. Moreover, some data 
must also use a subjective probability. The support vector machine has good generalization ability and can solve 
nonlinear high-dimensional problems, but it is difficult to determine its nuclear and penalty parameters, compli-
cating the task of improving the classification model in practical applications15.

Subsequently, scholars proposed a number of optimization algorithms that improved image classification 
accuracy by optimizing the parameters of the traditional algorithms. Li et al. proposed a hybrid feature selection 
strategy to realize hyperspectral image classification by combining the genetic algorithm (GA) and SVM16. To 
solve the BP neural network’s problem of falling easily into a local minimum, Song et al. used the GA algorithm 
to optimize the initial parameters of BP neural network and then classified ETM+​ remote sensing images17. 
Aiming at classifying fully polarimetric SAR images, Yu et al. presented a new supervised classification algorithm 
based on the BP neural network optimized by the particle swarm optimization (PSO) algorithm18. Xue et al. used 
the PSO algorithm to optimize the penalty parameter, C, and the kernel parameter, gamma, for the SVM clas-
sifier and constructed an optimized classification model for hyperspectral images19. Wang et al. introduced the 
ant colony optimization algorithm for image classification20. However, these optimization algorithms have some 
deficiencies. The search speed of GA is slow, and it is not capable of a good local search. When applied to discrete 
optimization problems, the PSO algorithm’s effect is not good, and it falls easily into local optimums. The time 
complexity of the ant colony algorithm is high, and its computational cost is large21.

In the era of big data, the number of available images has increased by orders of magnitude: from GBs to TBs 
or even PBs per day. In such an environment, the time efficiency and classification accuracy of traditional classi-
fication algorithms decline sharply, leading to new challenges. MapReduce is a parallel programming model used 
on the Hadoop platform22. Using this model, distributed parallel processing can be achieved without increasing 
the hardware costs involved, making it cost-effective to apply parallel processing to the traditional classifica-
tion algorithms. At present, studies on the MapReduce model are in full swing. To obtain better generalization 
performance, He et al. proposed an efficient parallel extreme learning machine (ELM) for regression based on 
the MapReduce framework23. To enable large-scale distributed computing across multiple clusters, Wang et al. 
designed and implemented a MapReduce framework called G-Hadoop24. Ahmad et al. solved the problem of 
communications overlap in the MapReduce model by including Reduce in the overlap25. To improve reduc-
tion efficiency, Qian et al. proposed a parallel attribute reduction algorithm based on MapReduce26. Idris et al. 
proposed the MapReducePack, which executed a set of related algorithms in a single MapReduce job and, thus, 
extended MapReduce, which previously supported execution of only a single algorithm in the entire Hadoop 
cluster27. Matsuzaki et al. adopted parallel tree accumulations on MapReduce as the target computational pat-
tern28. Zhang et al. proposed a BP neural network algorithm based on MapReduce and constructed a bank risk 
prediction model29. Although numerous studies on MapReduce exist, only a few studies address image classifica-
tion directly using the MapReduce model.
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In view of the problems described above, this paper proposes a new parallel Adaboost-BP neural network 
algorithm for classifying massive image datasets. This algorithm is a parallelized version of the traditional 
Adaboost-BP neural network algorithm that takes full advantage of the MapReduce parallel programming model 
and establishes a model for mass image classification. This study effectively improves the time performance and 
accuracy of image classification by employing distributed parallel processing techniques.

Results and Discussion
To evaluate the efficiency of the proposed approach, we implemented a prototype image classification system 
using the Java programming language. The automated system classifies images into the classes defined by the 
Pascal VOC2007, Caltech256 or SUN datasets according to the classification model shown in Fig. 1. The user 
interface of the prototype automated image classification system is presented in Fig. 2.

In addition, to validate the performance of the proposed algorithm, we conducted experimental comparisons 
by evaluating its classification accuracy, running time, speedup, sizeup, and scaleup.

Classification accuracy.  Based on the Pascal VOC2007, Caltech256 and SUN datasets, the traditional 
Random Forest (RF), Support Vector Machine (SVM), Adaboost-BP neural network algorithm30, the method of 
Shi et al.10, the parallel BP neural network algorithm29, and the parallel Adaboost-BP neural network algorithm 
proposed in this study were compared in terms of their classification precision ratios. The experimental results are 
shown in Tables 1 and 2 and in Fig. 3. Because Pascal VOC2007 has only 20 categories, whereas the Caltech256 

Figure 1.  The classification model for massive image datasets. 

Figure 2.  A snapshot of the automated image classification system user interface. 
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and SUN datasets have many categories, the following lists the classification accuracy of all categories of the 
Pascal VOC2007 dataset. The classification accuracy of the other two datasets cannot be presented for all catego-
ries; thus, only the minimum, maximum and average values of the classification accuracy are given.

Table 1 shows a comparison of the classification accuracies of the tested classification approaches based on the 
20 categories from the Pascal VOC2007 dataset. As Table 1 shows, the classification performance of the approach 
proposed in this study is more accurate than those of the other methods. Compared with the traditional RF, SVM, 
Adaboost-BP neural network algorithm and the method of Shi et al., the proposed approach achieved accuracy 
improvements of 15.1%, 15.0%, 14.5% and 10.0%, respectively. Compared with the parallel BP neural network 
algorithm, the classification accuracy improved by 6.4%. Although all six methods are based on the discriminant 
model, the classification accuracy of the traditional RF, SVM, Adaboost-BP neural network algorithm and the 
method of Shi et al. based on stand-alone architecture are significantly lower; however, that of the parallel BP 
neural network algorithm and the proposed approach based on the MapReduce parallel programming model 
are obviously higher. Moreover, the classification accuracy of the proposed approach is higher than that reported 
for the parallel BP neural network algorithm in due to the combination of the outputs of 15 BP neural networks 
that construct a strong classifier29. Consequently, the proposed approach leads to the lowest standard deviation, 

Image category RF SVM Adaboost-BP32
The method of 

Shi et al.10. Parallel BP29
The proposed 

approach

plane 81.9 82.5 82.6 87.2 90.0 94.1

bike 80.0 79.9 79.8 83.3 86.2 90.5

bird 78.2 78.4 78.4 83.9 87.1 92.6

boat 79.9 80.1 80.5 85.0 87.6 94.3

btl 55.0 54.2 54.6 57.1 63.2 73.6

bus 72.8 73.2 73.1 79.6 82.9 87.3

car 81.5 80.8 81.9 86.4 89.8 95.7

cat 83.1 83.2 83.6 86.8 89.4 94.5

chair 65.4 64.9 65.8 70.5 72.6 83.6

cow 66.2 66.5 67.0 71.4 74.0 86.3

table 60.1 60.0 60.3 65.2 70.5 81.6

dog 84.3 84.1 84.7 88.4 90.4 96.5

horse 81.9 82.1 82.4 87.3 91.3 95.9

moto 79.0 79.2 79.3 83.8 87.2 92.8

pers 86.5 86.9 87.3 93.5 95.7 97.1

plant 58.3 59.1 60.2 66.1 71.9 78.6

sheep 73.6 74.1 74.8 79.9 82.6 90.0

sofa 63.5 63.9 65.7 68.3 73.8 79.9

train 81.0 81.4 81.7 85.9 89.1 94.7

TV 73.3 73.9 74.8 78.4 84.2 89.1

Mean 74.3 74.4 74.9 79.4 83.0 89.4

Standard deviation 9.314 9.377 9.213 9.400 8.576 6.634

Table 1.   Classification accuracy (%) of different approaches based on the Pascal VOC2007 dataset.

Image dataset Classification approach Min (%) Max (%) Average accuracy (%)

Caltech256 dataset

RF 51.7 68.3 59.8

SVM 51.4 70.6 60.1

Adaboost-BP32 52.9 71.1 60.3

The method of Shi et al.10. 60.8 79.5 68.7

Parallel BP29 72.3 86.1 78.7

The proposed approach 82.2 95.9 86.3

SUN dataset

RF 54.2 70.0 61.9

SVM 53.7 71.6 62.1

Adaboost-BP32 55.1 71.9 63.4

The method of Shi et al.10. 63.3 81.7 72.5

Parallel BP29 73.6 90.5 82.1

The proposed approach 83.9 96.1 89.2

Table 2.   Average accuracy (%) of different approaches based on the Caltech256 dataset and SUN dataset.
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showing that fluctuations in the sample data affect it the least; therefore, it achieves the best classification results 
in the experiments.

Table 2 shows a comparison of the average classification accuracies of the tested classification approaches 
based on approximately 30,000 images from the Caltech256 and SUN datasets. Figure 3 shows the sharp contrast 
in average classification accuracy of different methods on the three datasets. In the case of the Caltech256 dataset, 
compared with the results in Table 1, the average classification accuracy of the traditional RF, SVM, Adaboost-BP 
neural network algorithm and the method of Shi et al. decreases by 14.5%, 14.3%, 14.6% and 10.7%, respectively. 
For the SUN dataset, the average classification accuracy decreases by 12.7%, 12.3%, 11.5% and 6.9%, respectively, 
but the accuracy of the parallel BP neural network algorithm and the proposed approach decreases by only 4.3% 
and 3.1%, 0.9% and 0.2% in case of Caltech256 dataset and SUN dataset, respectively, further indicating that the 
classification performance of the traditional algorithms based on stand-alone architecture will continue to decline 
as the amount of data increases. In contrast, the classification performance of the proposed algorithm based on 
the MapReduce model decreases only slightly because they use an applied distributed parallel processing archi-
tecture, in which greater amounts of data are simply processed using more of the computational capability of the 
clustered nodes.

In addition, to better verify the classification performance, we randomly selected images from different image 
categories (5, 10, 20, 50, 100, and 200 images per category) and total numbers of images (500, 1,000, 2,000, 5,000, 
10,000, and 20,000—65% for training and 35% for testing) from the Pascal VOC2007, Caltech256 and SUN data-
sets for comparison purposes. The experimental results are shown in Tables 3 and 4 and Fig. 4.

Table 3 shows the average accuracies of the tested approaches based on different numbers of images and 
categories. Typically, for different classification algorithms, changing the proportions of the training set and test 
set would affect the classification accuracy for the same dataset. Increasing the number of the training set would 
improve the classification accuracy. Presumably, with the increase in the number of images and categories, the 
number of datasets may increase accordingly. As a consequence, the training and test processes will become 
more complex, which leads to a decrease in the classification accuracy. As Table 3 shows, regardless of which 
classification approach is used, when the number of images is fixed, classification accuracy decreases as the num-
ber of image categories increases. Similarly, when the number of categories is fixed, classification accuracy also 
decreases as the number of images increases. This result suggests that larger numbers of images and categories 
complicate the classification process, leading to declines in classification accuracy.

Table 4 lists the degree of decline of the classification accuracy of the different classification approaches 
with different numbers of images as the number of images in each category increases from 5 to 200. As Table 4 
shows, increasing the number of categories has little effect on classification accuracy (except for the traditional 
RF, SVM and Adaboost-BP neural network algorithms) when there are fewer than 5,000 images. However, 
after the number of images surpasses 5,000, increasing the number of image categories has an obvious effect on 
classification accuracy, particularly on the algorithms based on single node architecture such as the traditional 
RF, SVM, Adaboost-BP neural network algorithm and the method of Shi et al.10. Therefore, as the number of 
images increases, the classification accuracy declines in the parallel algorithms (those based on parallel distrib-
uted processing architecture technology such as the parallel BP neural network algorithm and the proposed 
algorithm) are far smaller as the number of image categories increases. This finding is particularly true for the 
parallel Adaboost-BP algorithm proposed in this study, which is mainly due to construction of a strong classifier, 
although the classification accuracy of all the classification approaches declines.

Figure 4 (a–f) shows the declines in classification accuracy for the different classification approaches as the 
number of images and image categories increases. It shows that the traditional RF, SVM and Adaboost-BP neural 
network algorithms achieve the lowest classification accuracy, while the approach proposed in this study achieves 
the highest classification accuracy. Moreover, the classification accuracies of the different approaches are almost 
the same with fewer than 2,000 images, but they increasingly diverge in classification accuracy (particularly the 
traditional RF, SVM, Adaboost-BP neural network algorithm and the method of Shi et al.10.) as the number of 
images surpasses 2,000. In addition, as the number of image categories increases, the decline curves of classifica-
tion accuracy for the two parallel algorithms are gentle as the number of images increases. This result indicates 
that increasing the number of images has little influence on the classification performance of parallel algorithms 

Figure 3.  Comparison of the average accuracy (%) of the different approaches based on different datasets. 
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based on MapReduce and further illustrates the advantages of distributed parallel processing, which are even 
more apparent in the approach proposed in this study.

Furthermore, to evaluate the statistical differences between the different approaches, we counted the number 
of correctly classified images and incorrectly classified images in the test sets of the three datasets according to 

Image categories Classification approach

Number of images

500 1,000 2,000 5,000 10,000 20,000

5

RF 96.1 95.0 91.9 85.8 77.8 67.9

SVM 96.3 95.1 92.2 86.5 78.6 69.3

Adaboost-BP 96.3 95.0 92.6 87.4 80.1 71.7

The method of Shi et al. 96.3 95.3 93.5 90.0 85.5 78.3

Parallel BP 100.0 99.6 99.4 99.2 97.5 94.6

Parallel Adaboost-BP 100.0 100.0 99.9 99.8 98.0 97.1

10

RF 95.0 93.5 88.9 82.6 74.3 63.8

SVM 95.1 93.9 89.7 83.8 76.1 65.2

Adaboost-BP 95.1 94.2 91.4 85.5 77.2 67.0

The method of Shi et al. 95.5 94.7 92.6 89.3 84.5 78.0

Parallel BP 99.7 99.5 99.3 99.1 96.8 94.0

Parallel Adaboost-BP 100.0 100.0 99.8 99.7 97.3 96.3

20

RF 93.1 92.0 85.9 77.9 69.1 58.8

SVM 93.5 92.0 86.7 79.3 70.4 60.5

Adaboost-BP 94.0 92.1 88.3 81.9 72.6 62.0

The method of Shi et al. 94.0 94.0 91.6 87.2 80.5 71.8

Parallel BP 99.5 99.4 99.0 97.3 94.1 90.8

Parallel Adaboost-BP 99.8 99.6 99.5 99.0 97.1 95.3

50

RF 92.7 89.4 82.8 75.0 66.6 56.8

SVM 92.8 90.1 83.9 76.9 68.1 58.3

Adaboost-BP 92.8 90.3 85.6 79.1 70.7 60.6

The method of Shi et al. 93.3 93.0 91.0 86.6 78.5 68.9

Parallel BP 98.8 98.7 98.0 97.0 93.8 89.6

Parallel Adaboost-BP 99.7 99.0 98.5 97.4 96.0 93.4

100

RF 89.7 87.6 80.1 73.7 64.1 54.1

SVM 90.3 88.0 81.9 74.2 65.8 56.0

Adaboost-BP 90.9 88.4 83.7 77.5 68.4 58.3

The method of Shi et al. 92.3 92.1 89.0 83.2 69.7 59.4

Parallel BP 98.9 97.6 95.0 93.9 90.2 83.1

Parallel Adaboost-BP 99.5 99.0 98.1 94.8 92.3 90.0

200

RF 87.0 83.6 76.9 68.8 58.1 46.0

SVM 87.1 84.3 77.8 70.0 60.2 49.2

Adaboost-BP 87.2 85.1 79.5 72.3 62.4 51.0

The method of Shi et al. 90.3 89.5 87.6 81.2 68.7 58.3

Parallel BP 98.5 97.1 93.9 90.7 85.3 78.2

Parallel Adaboost-BP 99.5 98.5 98.1 93.4 90.7 86.1

Table 3.   Average accuracy (%) of different approaches based on different numbers of images and image 
categories.

Classification approaches
500 

images
1,000 

images
2,000 

images
5,000 

images
10,000 
images

20,000 
images

RF 9.1 11.4 15.0 17.0 19.7 21.9

SVM 9.2 10.8 14.4 16.8 18.4 20.1

Adaboost-BP 9.1 9.9 13.1 15.1 17.7 20.7

The method of Shi et al. 6.0 5.8 5.9 8.8 16.8 20.0

Parallel BP 1.5 2.5 5.5 8.5 12.2 16.4

Parallel Adaboost-BP 0.5 1.5 1.8 6.4 7.3 11.0

Table 4.   The accuracy declines (%) of different approaches as the number of images in each category 
changes from 5 to 200.
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the experimental results in Tables 1 and 2 (see Table 5) and then verified the reliability of the experimental results 
using the chi-square test for statistical analysis. Figure 5 lists the statistical analysis results using the chi-square 
method.

The data in Table 5 show that the performance of the traditional classification algorithms (such as RF, SVM, 
Adaboost-BP, and the method of Shi et al.) based on single node architecture is far worse than the performance of 
the parallel algorithms (such as parallel BP, the proposed approach in this study) based on MapReduce when used 
with a large number of datasets. In general, when using the chi-square test, if the value of Asymp.Sig is less than 
0.05 and the number of cells of theoretical frequency less than 5 is not more than 20%, the experimental results 
are considered reliable. As shown in Fig. 5, the value of Asymp.Sig is 0.001 and 0 cells (.0%) have an expected 

Figure 4.  (a) The accuracy decline curve of different approaches with 5 images in each category. (b) The 
accuracy decline curve of different approaches with 10 images in each category. (c) The accuracy decline curve 
of different approaches with 20 images in each category. (d) The accuracy decline curve of different approaches 
with 50 images in each category. (e) The accuracy decline curve of different approaches with 100 images in each 
category. (f) The accuracy decline curve of different approaches with 200 images in each category.

Classification approaches
The number of correctly 

classified images
The number of incorrectly 

classified images

RF 18,725 11,205

SVM 18,795 11,135

Adaboost-BP 18,998 10,932

The method of Shi et al. 21,442 8,488

Parallel BP 24,133 5,797

Parallel Adaboost-BP 26,300 3,630

Table 5.   The number of correctly classified images and incorrectly classified images in the test sets of the 
three datasets.

Figure 5.  The results of the chi-square test. 
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count less than 5, which fully shows that the classification accuracy results obtained using different classification 
approaches are reliable.

Running time.  To further verify the effectiveness of the proposed approach, Table 6 reports the training and 
testing times for the different classification approaches while varying the number of images.

Table 6(a) shows the training time required for different numbers of images. The training time required by 
the RF, SVM, Adaboost-BP neural network algorithm and the method of Shi et al. are much longer than those of 
the two parallel algorithms because the two parallel algorithms adopt distributed parallel processing technology, 
while RF, SVM, Adaboost-BP neural network algorithm and the method of Shi et al. use single node architecture 
with limited processing capacity. The value in Table 6(b) shows the average testing time per image, which is cal-
culated by dividing the total testing time by the total number of images tested. Again, the testing time required 
by RF, SVM, Adaboost-BP neural network algorithm and the method of Shi et al. is greater than that of the two 
parallel algorithms. In addition, the training and testing times of the parallel Adaboost-BP neural network algo-
rithm proposed in this study are a little shorter than those of the parallel BP neural network algorithm. This dif-
ference mainly occurs because the proposed approach constructs a strong classifier using the Adaboost algorithm 
and employs the designed combine() function to process the intermediate results of the Map task locally. These 
decisions made during the process of parallel algorithm design effectively reduce the communication overhead 
among the nodes in the cluster.

(a) Training time (s)

Classification approach
Image 

category
1,000 

images
5,000 

images
15,000 
images

RF

10 56 373 5,874

30 58 388 6,137

100 67 404 6,581

SVM

10 55 371 5,869

30 58 386 6,130

100 68 402 6,573

Adaboost-BP

10 56 372 5,872

30 59 388 6,135

100 67 403 6,579

The method of Shi et al.

10 55 370 5,431

30 59 391 5,955

100 68 401 6,417

Parallel BP

10 12 47 139

30 14 50 149

100 19 54 155

Parallel Adaboost-BP

10 11 45 129

30 14 49 133

100 18 52 148

(b) Testing time (ms)

RF

10 4 6 10

30 4 7 13

100 6 11 16

SVM

10 4 6 9

30 4 7 12

100 6 10 15

Adaboost-BP

10 4 6 9

30 4 7 12

100 6 10 16

The method of Shi et al.

10 4 5 9

30 5 7 11

100 5 10 14

Parallel BP

10 1 2 4

30 1 2 4

100 1 3 4

Parallel Adaboost-BP

10 1 2 3

30 1 2 3

100 1 2 4

Table 6.   Running times for the different approaches.
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Speedup, sizeup and scaleup.  For the parallel programming model based on MapReduce, we evaluate the 
performance of the proposed algorithm in terms of speedup, sizeup and scaleup31.

Speedup refers to the ratio of the time required to run a task on a single calculating node to the time required 
to run that same task on multiple calculating nodes. To measure the speedup, we fix the size of the dataset and 
increase the number of node computers employed (e.g., from one node to four nodes). In addition, we investi-
gated different numbers of images: 1,000, 5,000, and 20,000. The results are shown in Fig. 6.

In ideal conditions, speedup would grow linearly as the number of calculating nodes increases. However, 
because conditions can be affected by load balancing, communication overhead and other factors, speedup does 
not increase linearly. We find that the parallel Adaboost-BP neural network algorithm proposed in this study 
has good speedup performance. The maximal value of the speedup can reach approximately 3.8 when using four 
slave node computers. Moreover, as the number of images increases, the speedup increases as well. This primarily 
occurs because the time to process small numbers of images is not significant compared to the time consumed 
by communication and task arrangement; however, the intensive image computation becomes dominant as the 
number of images increases, and the speedup thus increases as well. Most importantly, as the number of image 
surpasses 20,000, the speedup is almost linear. Therefore, the proposed algorithm is appropriate for processing 
large datasets efficiently.

Sizeup is defined as the additional time required on a given system as the number of images becomes m-times 
larger than the original number of images. In other words, the greater the number of images, the higher the value 
of sizeup and the longer the cluster system would require to process them. To measure sizeup, we fix the number 
of the slave nodes to 1, 2, 3, or 4 while increasing the number of images from 1,000 to 20,000 images for each 
node. Figure 7 shows the experimental results. It is easy to see that when we increase the number of images from 
1,000 to 20,000, the sizeup of the 1-node system increases by approximately 2.5, while it increases by only 1.5 for 
the 4-node system because the communication time of the 1 node system is smaller than that of the 4 node sys-
tem, but the communication time does not increase much in the proposed parallel Adaboost-BP neural network 
algorithm as the number of images increases. Therefore, the proposed algorithm in this study has a good sizeup 
performance.

Scaleup refers to the ability of a system m-times larger to perform a job m-times larger in the same running 
time as the original system. The scaleup measure is used to evaluate the ability of an algorithm to adapt to both 
system growth and to increases in the number of images. Obviously, a higher scaleup value indicates better algo-
rithm performance. Therefore, scaleup validates how well the algorithm handles larger numbers of images when 
more node computers are available. To evaluate the scaleup measure, we increase the number of node computers 

Figure 6.  Speedup comparison. 

Figure 7.  Sizeup comparison. 



www.nature.com/scientificreports/

1 0Scientific Reports | 6:38201 | DOI: 10.1038/srep38201

and the number of images simultaneously and obtain the scaleup values for the following combinations (1 node 
computer, 1,000 images), (2 node computers, 5,000 images), (3 node computers, 10,000 images) and (4 node com-
puters, 20,000 images). The results are shown in Fig. 8. The higher the scaleup value, the better the performance. 
As Fig. 8 shows, the scaleup values are all higher than 0.90, demonstrating that the proposed algorithm scales well.

Conclusions
Image classification is a complicated and time-consuming process, requiring space and time to select, extract, 
identify features and establish a classification model. The rapid development in information network technology 
today means that increasing numbers of images are available, far exceeding the abilities of traditional classifica-
tion algorithms to use these images efficiently unless their calculation times drop dramatically. The open-source 
and distributed computing Hadoop platform has been widely adopted because it is both convenient and inexpen-
sive to establish Hadoop clusters, and the platform has a simple and easy-to-use computing model. The academic 
and industrial worlds are continuously studying ways to adapt the traditional algorithms and applications devel-
oped for single machine or mainframe environments to the Hadoop cluster environment.

This study proposed a parallel Adaboost-BP neural network algorithm based on MapReduce for massive 
image dataset classifications. Moreover, it conducted an in-depth exploration and analysis of the parallel design 
and implementation of the Adaboost-BP neural network algorithm. The following three topics were investigated: 
construction of a strong classifier using the Adaboost algorithm, the parallel design and implementation of the 
Adaboost-BP neural network algorithm, and fast and accurate automated classification for massive image data-
sets using the Hadoop platform. The completed implementation was tested with image data from the Pascal 
VOC2007, Caltech256 and SUN datasets. The experimental results verify that the proposed algorithm not only 
can handle large-scale datasets but also scales very well in terms of the evaluation metrics of speedup, sizeup and 
scaleup. The experimental results show that the algorithm proposed in this study achieves good parallelization 
that can make full use of distributed system resources to improve the algorithm’s classification performance. 
In addition, the distributed parallel system based on MapReduce greatly improved performance relative to tra-
ditional single node algorithm architectures and fully demonstrates the powerful computing ability of parallel 
processing. Because the parallel design and implementation of algorithms is a new and hot research topic, in 
our future work, we intend to explore designing optimized Map and Reduce tasks for the MapReduce parallel 
programming model.

Methods
The MapReduce parallel programming model.  MapReduce is a core technology of distributed parallel 
processing on the Hadoop platform that uses a standard functional programming calculation model and divides 
the calculation into two tasks, Map and Reduce, which correspond to the mapper() and reducer() functions, 
respectively32. The two functions use key/value pairs and convert the input key-value pair (<​keyi, valuei>​) to an 
output key-value pair (<​keyj, valuej>​) according to certain mapping rules. The goal of the Map task is to decom-
pose a large dataset into a set of smaller datasets (split) and then calculate and generate intermediate results using 
free nodes in the Hadoop cluster. The Reduce task traverses and sorts the intermediate results generated by the 
Map task based on specified instructions. Then, it generates the final results. In other words, the MapReduce 
parallel programming model uses the mapper() function to segment a large dataset (the smaller datasets after 
segmentation are handled by each computational node), and the Reduce task uses the reducer() function to 
combine the process results of each node. Together, these functions achieve distributed parallel processing. The 
MapReduce implementation process is shown in Fig. 9.

Algorithm design.  The traditional Adaboost-BP neural network algorithm.  To construct a good network 
structure, the traditional BP neural network algorithm tests the network continually based on experience and 
repeated experiments to obtain good generalization ability. Hansen and Salamon have proven that repeatedly 
training multiple neural networks and combining the outputs can significantly improve the generalization ability 
of neural network algorithms33. The AdaBoost algorithm, proposed by Freund and Schapire in 1999, is an iterative 

Figure 8.  Scaleup comparison. 
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algorithm that obtains a sample weight by repeatedly searching the sample characteristic space30. It constantly 
adjusts the weights of training samples during the iterative process (increasing sample weights that have low 
forecast precision and reducing sample weights that have high forecast precision) and forms a strong classifier 
by linearly combining learning algorithms to improve their classification performance. The Adaboost algorithm 
is widely used in all types of practical problems because it does not need to know the lower limits of the weak 
classification learning algorithms in advance. The Adaboost-BP neural network algorithm is a combination of 
the Adaboost algorithm and the BP neural network algorithm that uses BP neural networks as the weak classifi-
ers and constructs a strong classifier by integrating the outputs of multiple BP neural networks. The steps of the 
algorithm are as follows:34

(1)	 Initialize the distribution weights of the sample data and the BP neural network.
	 The distribution weights Dt (i) of the sample data are calculated by the formula =D i( )t m

1 , where m is the 
number of training samples.

	 Determine the structure of the BP neural network. The number of nodes in the input layer is determined 
according to the features of the sample, the number of nodes in the output layer is determined according to 
the output result dimension, and the number of nodes in the hidden layer is determined by the following 
formula:

α= + +n n n (1)h i o 
where ni, no, nh are the number of nodes of the input, output and hidden layers, respectively, and α​ is a ran-
dom number between 0 and 1.

	 The initial weights and threshold values of the BP neural network are initialized to a random number between 
0 and 1.

(2)	 Make a predictor of a single BP neural network as a weak classifier. Train the BP neural network and calculate 
the sum εt of its prediction error for the prediction sequence g(t):

∑ε = ≠ =
=

D i g x y i m( ) ( ) , 1, 2, ,
(2)t

i

m

t t i i
1 

where gt (xi) is the prediction value of BP neural network and yi is the desired value.
(3)	 Calculate the weight of the predicted sequence αt as follows:

α
ε
ε

=




− 




1
2

ln 1

(3)
t
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t

Figure 9.  MapReduce implementation process. 

Figure 10.  The parallel model of the proposed algorithm. 
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(4)	 Adjust the weights of the samples:

α= × − =+ D i D i
B

y g x i m( ) ( ) exp[ ( )] 1, 2, , ,
(4)t

t

t
t i t i1

 
where Bt is a normalization factor whose purpose is to keep the weight sum to 1 for a constant weight 
proportion.

(5)	 Construct a strong classification function. The strong classification function h(x) is obtained by integrating T 
groups of weak classification functions f (gt, αt) after T rounds of training.

∑α α=




 ⋅







=
h x sign f g( ) ( , )

(5)t

T

t t t
1

Parallel Adaboost-BP neural network algorithm.  To overcome the defects of hardware overhead and long train-
ing time exhibited by the traditional Adaboost-BP neural network algorithm when processing massive data, this 
study parallelizes the Adaboost-BP neural network algorithm using the MapReduce parallel programming model, 
which effectively shortens the training time and improves prediction accuracy. The parallel model is shown in 
Fig. 10.

(1)	 Design and realization of the Adaboost-BP-mapper() function
	 In the Map stage, aiming at each BP neural network, the mapper() function calculates the output of the net-

work layer by layer, compares the outputs with the desired values, obtains the prediction error εt, updates the 
connection weights, and passes the results to the Reduce task. The pseudo-code is as follows:

Input: <​ ID of weak classifier, sample feature>​
Output: <​ ID of weak classifier, εt>​
Adaboost-BP-mapper (ID of weak classifier, sample feature)
{
  //For each weak classifier,
  Train weak classifier:
    {
      Calculate the outputs of each layer of the network;
      Calculate the learning error of the network;
      Update the connection weights of the network;
    }
  Obtain the prediction function gt of the weak classifier;
  Calculate the prediction error εt;
  Output (ID of weak classifier, εt);
}

(2)	 Design and realization of Adaboost-BP-combine() function
	 For the MapReduce parallel programming model, a combine() function can be used to perform local pro-

cessing of the intermediate results generated in the Map stage. This function greatly reduces communication 
overhead. Therefore, this study designs an Adaboost-BP-combine() function to process the intermediate re-
sults produced by the Adaboost-BP-mapper() function locally before entering the Reduce stage. The pseu-
docode is as follows:

Input: <​ ID of weak classifier, εt>​
Output: <​ ID of weak classifier, >​
Adaboost-BP-combine(ID of weak classifier, εt)
{
  count←​0; //Count the number of weak classifiers
  //For each weak classifier,
Continued
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  Resolve and deal with the coordinate value of each dimension of εt;
  count←​count +​ 1;
  Collect all the key value pairs with the same ID, make a local 
reduction, and obtain ;
  Output (ID of weak classifier, );
}

(3)	 Design and implementation of Adaboost-BP-reducer()

�At the Reduce stage, the reducer() function receives the outputs of the combine() function. It combines and 
calculates using these values and returns the final outputs. The pseudocode is as follows:

Input: <​ ID of weak classifier, ε ′t>​
Output: <​ ID of weak classifier, ε∑ ′= n/i

n
t1 >​

Adaboost-BP-reducer(ID of weak classifier, ε ′t )
{
  Accumulate the ε ′t  values of all classifiers with the same ID to obtain ε∑ ′=i

n
t1 ;

  Output: (ID of weak classifier, ε∑ ′= n/i
n

t1 );
}

A massive image dataset classification approach using parallel Adaboost-BP neural network.  
Parallel extraction of image features.  Scale-invariant feature transform (SIFT) is an image feature descriptor 
based on scale space proposed by David G35. SIFT is a calculation method that works by detecting pyramid 
extreme points of multiresolution images to extract the invariant key points of image position, scale and rotation. 
It has become a widely used image feature extraction algorithm because of its invariance to image scaling, rotation 
and affine transformation as well as its strong distinguishing capabilities. The calculation process mainly involves 
constructing a scale space, detecting extreme points and obtaining the scale invariance, filtering and precisely 
positioning the feature points, distributing the direction value for each feature point, and generating feature 
descriptors.

After image feature extraction using the SIFT algorithm, a feature matrix of n ×​ 128 is generated, in which  
n is the number of key points for each image and 128 represents the feature dimension of each key point. However, 
different images have different numbers of key points because the number of key points for each image is highly 
dependent upon the gradient of the image itself. Moreover, n is generally the number of key points of the image 
with the maximum number of key points extracted by SIFT, which causes the generated feature matrix to be a 
sparse matrix with a large number of zero elements and high redundancy. Therefore, this study improves the 
classical SIFT algorithm by clustering the feature matrix of n×​128 to decrease the number of key points when 
parallelizing the SIFT algorithm based on the MapReduce model. The steps for parallel SIFT feature extraction 
are as follows.

Input: Image dataset List (in the form of <​image_id, image>​)
Output: Image feature dataset FeatureDB (in the form of <​image_id, feature_matrix>​)

Step 1. Decompose the image dataset List. Each image is regarded as a Split.
Step 2. The mapper() function receives the input and extracts the features of each image in parallel according 

to the SIFT algorithm described in and, finally, generates the feature matrix35.
Step 3. For the feature matrix in Step 2, the function mapper() clusters the n key points using fuzzy C-means 

(FCM) following36. (The number of cluster centers in this study is limited to 100.)
Step 4. The reducer() function receives the outputs of the mapper() function. It collects and merges the data, 

calculates the means of the key points belonging to the same category in the clustering results, and generates the 
100 ×​ 128 feature matrix as the final output.

Constructing the classification model.  After extracting the SIFT features of images, the classification model for 
massive image datasets is designed according to the proposed parallel Adaboost-BP neural network algorithm in 
this study (Fig. 1).

The classification model is based on a Hadoop distributed architecture. First, the model distributes the work. 
This requires a complex calculation process (e.g., image feature extraction, training the classification model, 
and predicting classifications) that is distributed among the node computers in the large-scale computer cluster. 
Second, all node computers execute tasks in parallel, and the master node computer summarizes and merges the 
intermediate results. Finally, the classification results are fed back to the user.
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Implementing massive image dataset classification.  The massive image dataset classification model 
based on the parallel Adaboost-BP neural network uses the MapReduce parallel programming model from the 
Hadoop platform to achieve parallel distributed processing for automated massive image dataset classifications. 
The specific steps are as follows.

(1)	 Extract image features according to the above parallel SIFT feature extraction method. Extract and cluster 
SIFT features of images in parallel and generate the feature matrix.

(2)	 Determine the topological structure of the Adaboost-BP neural network model according to the previously 
described traditional Adaboost-BP neural network algorithm. This study used 15 BP neural networks as weak 
classifiers. The number of weak classifiers is determined by practical experience.

(3)	 Determine the learning sample and normalize the sample data according to Formula (6):

=
−
−

r x x
x x (6)i

i min

max min 
where x1 is the feature value extracted using the improved SIFT algorithm for the sample, xmax, xmin are the 
maximum and minimum of feature values for all sample data, respectively, and ri is the feature value after 
normalization.

(4)	 Train the Adaboost-BP neural network in parallel. To train the parallel Adaboost-BP algorithm proposed in 
this study, build the Hadoop cluster, update the connection weights continuously, correct the errors repeatedly,  
and combine the outputs of the networks.

(5)	 Make classification predictions. Predict the image category using the trained network structure, and return 
the results to users.

Experimental environment and data.  The experimental environment for this study consisted of one 
Hadoop cluster with five computers in an intranet. One computer was designated as the master node and the 
other four were the slave nodes. All the node computers were equipped with 4 GB quad-core processors, 1 TB 
hard disks, and the Ubuntu operating system.

The experimental data in this study stemmed from the Pascal VOC2007, Caltech256 and SUN datasets. These 
three datasets incorporate a variety of categories such as vehicles, animals and plants, and indoor and outdoor 
scenes. At present, these three large image datasets have been made available for free. The Pascal VOC2007 dataset 
contains 9,963 images in 20 categories (such as plane, bike, bird, car, and table). The Caltech256 dataset contains 
30,607 images in 256 categories (such as basketball, bat, canoe, French horn, and ladder), each of which contains 
at least 80 images. The SUN dataset contains 131,067 images in 908 categories (such as kitchen, mesa, plaza, wave, 
and roof garden). In this study, we randomly selected 300 images and 65 images from each category in the Pascal 
VOC2007 and Caltech256 datasets, respectively, for the training set, and the remaining images were included in 
the test sets. Because the SUN dataset is a scene image dataset and each category contains different numbers of 
images, this paper randomly selected 30,000 images (18,000 images for the training set and 12,000 images for 
the test set) from the dataset for the experiments. For processing convenience, we formatted all the experimental 
images to a consistent size: 256*256 pixels. To verify the classification performance, experiments are performed to 
compare the following three aspects: classification accuracy, running time, speedup, sizeup and scaleup.
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