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Test of quantum thermalization in 
the two-dimensional transverse-
field Ising model
Benjamin Blaß & Heiko Rieger

We study the quantum relaxation of the two-dimensional transverse-field Ising model after global 
quenches with a real-time variational Monte Carlo method and address the question whether this non-
integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the 
paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged 
probability distributions of non-conserved quantities like magnetization and correlation functions to 
the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte 
Carlo simulations at temperatures defined by the excess energy in the system. We find that the 
occurrence of thermalization crucially depends on the quench parameters: While after the interaction 
quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches 
in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase 
with the quench strength and become especially clear comparing the shape of the thermal and the time-
averaged distributions, the latter ones indicating that the system does not completely lose the memory 
of its initial state even for strong quenches. We discuss our results with respect to a recently formulated 
theorem on generalized thermalization in quantum systems.

In recent years the non-equilibrium dynamics of isolated many-body quantum systems, defined by the unitary 
time evolution starting from a generic non-eigenstate of the Hamiltonian, has gained tremendous interest1–29. A 
central point of fundamental importance is the nature of the stationary state of the observables of the system. Here 
one is especially interested in answering the question whether the system thermalizes, i.e. whether time-averaged 
observables and their probability distributions can be described by the canonical Gibbs ensemble (CGE)6,16,30–41:
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The Lagrange multiplier β =  1/T is the inverse temperature and is determined under the constraint of maxi-
mizing the entropy.

Thermalization is closely linked to the conserved quantities of the system. While in non-integrable systems 
only the energy is conserved, integrable systems possess additional conserved quantities which avoid thermaliza-
tion. The canonical Gibbs ensemble thus cannot be applied to integrable systems, but it has been shown that their 
stationary state can be well described by the generalized Gibbs ensemble (GGE)2–4,7–12,14,22,42–46, which includes all 
the conserved quantities of the system, the so-called charges:
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The conserved charges are taken into account by the operators Î n and the Lagrange multipliers β and λn are 
uniquely determined by the initial conditions. However new results show that care has to be taken in the defini-
tion of the GGE47–51. While in the past only local charges of the system were considered in the GGE, recently the 
existence of previously unknown quasilocal charges for different field theoretical models52 as well as for the the 
spin-1/2 Heisenberg chain53,54 has been shown. These quasilocal charges have to be included in the GGE, too, to 
give an adequate description of the stationary state of the systems. An universal mathematical framework for the 
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construction of the GGE including quasilocal charges has been recently formulated along with the conditions 
under which generalized thermalization should occur in systems of any dimensionality55.

In non-integrable systems the energy is the only conserved quantity, but non-integrability is not synonymous 
to thermalization. Counterexamples are the driven Rabi model56 or a non-integrable model of hard-core bosons 
on connected triangular lattices57. For the latter one it has been shown that the applicability of the CGE to the 
stationary state depends on the symmetries in the system: In case of an extensive number of local symmetries the 
GGE has to be applied rather than the CGE.

Predictions on whether non-integrable systems thermalize or not usually rely on the eigenstate thermalization 
hypothesis (ETH)2–4,58–62, which computes matrix elements of observables in energy eigenstates of the system. 
The ETH is a sufficient but not a necessary condition for thermalization and has been applied to a wide variety of 
systems. In contrast to this there are only few studies on thermalization in non-integrable systems for system sizes 
larger than those accessible with exact diagonalization which compute the time evolution of the systems. Among 
them are studies of the one-dimensional Bose Hubbard model with time-dependent density matrix renormaliza-
tion group theory (t-DMRG)6 and of the antiferromagnetic anisotropic Heisenberg chain with a Chebyshev pol-
ynomial expansion63,64. In higher dimensions there are results for a D-dimensional effective O(N)-Hamiltonian 
close to dynamical critical points based on a renormalization-group method65–67.

Here we present for the first time a systematic investigation of the relaxation dynamics of a two-dimensional, 
non-integrable model going beyond system sizes accessible with exact diagonalization and applicable to large 
areas of the parameter space. We study the transverse-field Ising model in two dimensions (2D-TFIM) after 
global interaction quenches in the paramagnetic phase and global field quenches in the ferromagnetic phase. In 
contrast to the Ising chain in one dimension, the 2D model is non-integrable and cannot be solved analytically. 
We use a real-time variational Monte Carlo (rt-VMC) method to compute the time evolution of observables like 
magnetization and correlation functions with high accuracy for long time scales and large system sizes. To answer 
the question whether the 2D-TFIM thermalizes or not we compare the time-averaged distributions of the observ-
ables to their thermal distributions for the system in equilibrium at temperatures determined by the excess energy 
after the quench. For a system that thermalizes one would expect the asymptotic time-averaged distributions and 
the thermal distributions to be identical. We discuss our results with respect to the theorem on generalized ther-
malization55. For the interaction quenches in the paramagnetic phase, for which the conditions of the theorem 
are fulfilled, we indeed observe thermalization. For the field quenches on the other hand we find a continuously 
increasing degree of non-thermalization with increasing quench strength.

Model and Methods
The model. We study the 2D-TFIM with nearest neighbour interactions on a square lattice of size L ×  L with 
periodic boundary conditions (PBC). The system is described by the Hamiltonian

∑ ∑σ σ σ= − −
′

′
ˆ ˆ ˆ ˆH J h

2 2 (3)
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with coupling strength J and external transverse field h. The total number of spins in the system is N =  L2, thus the 
dimension of the Hilbert space  is 2N. As basis of  we choose the x-basis, in which the operator σ̂x

R measures 
the orientation of the spin at site R, while σ̂z

R inverts it.
The model is highly symmetric. Its Hamiltonian is invariant under the global 2 spin flip transformation 

σ σ→ −ˆ ˆx x
R R and σ σ→ˆ ˆz z

R R generated by the unitary operator σΣ = Πˆ ˆ
z z

R R. Due to the square lattice with PBC the 
Hamiltonian also shows translation, rotation and reflection symmetries. Their generators can be constructed 
from the unitary transposition operators σ σ= +→ ⋅ →′ ′

ˆ ˆ ˆ ˆ�T ( )R R R R,
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, which interchange two sites σ σ↔ ′ˆ ˆx x
R R  and 

σ σ↔ ′ˆ ˆz z
R R . These symmetries can also be found in the eigenstates of the Hamiltonian and are conserved under 

unitary time evolution.
Ferromagnetic long-range order exists in the thermodynamic limit (L →  ∞ ) at low temperatures and fields 

due to spontaneous symmetry breaking of the global spin flip symmetry and is indicated by a non-vanishing 
ground state magnetization in x-direction µΨ Ψ ≠ˆ 0x

0 0  with µ σ= ∑ˆ ˆx
N

x
R R

1 . In the ferromagnetic phase the 
system has no energy gap in contrast to the paramagnetic phase. For h =  0 the equilibrium phase transition occurs 
at (T/J)crit ≈  1.13568 and for T =  0 at (h/J)crit ≈  3.04469–71. As there is no spontaneous symmetry breaking in the 
finite system, here µΨ Ψ =ˆ 0x

0 0  due to the global spin flip symmetry irrespective of the values of T/J and h/J. 
For this reason we use for the finite systems in our numerical studies the modulus of the magnetization as order 
parameter. In order to get rid of finite size effects it is renormalized according to
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the expectation value of the modulus of the magnetization in the completely uncorrelated state. In the thermody-
namic limit it is µ µΨ Ψ = Ψ Ψ̂

ˆx x
0 0 0 0 . Figure 1(a) shows the phase diagram of µ̂

x
CGE

 for a 16 ×  16 system. 
Already for this system size one observes only small deviations from the results for the system in the thermodynamic 
limit, whose critical values for T/J and h/J can be obtained from the Binder cumulant applying finite size scaling72.

The Hamiltonian of the 1D-TFIM can be diagonalized by a transformation to a system of free fermions73. For the 
2D-TFIM this is not possible as its Hamiltonian is non-local after the 2D-Jordan-Wigner transformation74–76, so that 
there is no canonic transformation to a system of free fermions. For this reason its relaxation process after a quench can-
not be described with the semiclassical theory of non-interacting quasiparticles introduced for the 1D-TFIM either20.
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Quench protocol and effective temperature. We drive the system out of equilibrium by a global 
quench, i.e. the system is prepared in its ground state |Ψ i,0〉  for given parameters Ji and hi of the initial Hamiltonian 
Ĥ i and at t =  0 the coupling strength and the external transverse field are instantaneously changed to new values 
Jf and hf of the final Hamiltonian Ĥ f  at each site of the lattice. To characterize the quenches we use the notation

→ .J h J h( ; ) ( ; ) (5)i i f f

The energy change in the system due to the quench is

∆ ≡ −E E E (6)f i,0

with = Ψ Ψ = ∑ Ψ Ψλ λ λ
ˆE H Ef i,0 f i,0 f, i,0 f,

2 the expectation value of the energy in the system after the 
quench. The Ef,λ are the eigenvalues of the final Hamiltonian Ĥ f  and |Ψ f,λ〉  the corresponding eigenstates.

More important than the energy change in the system caused by the quench is the excess energy

≡ −E E E , (7)exc f f,0

i.e. the energy in the system above its ground state energy after the quench. While always Eexc >  0, Δ E can be 
positive or negative depending on the quench parameters.

We determine the (positive) temperature of a system in equilibrium for which the excess energy due to the 
quench is equal to the thermal energy above the ground state energy and compare the thermal distributions and 
the time averages of the distributions after the quench. The temperature attributed to a quench is called effective 
temperature Teff. Its conditional equation reads

= .Ĥ E (8)
T

f CGE f
eff

In the following we will focus on interaction quenches (0; h) →  (J; h) and field quenches (J; 0) →  (J; h). These 
quenches just lower the ground state energy of the system, so that Δ E =  0 and Ef =  Ei,0. For the interaction 
quenches in the initial state all spins are aligned in the direction of the external transverse field:

∑Ψ = ↑↑ … ↑↑ = .x1

2 (9)z N x
i,0

The energy of this state is = −E h
Ji,0 2
 with the tilde denoting that the energy per site in units of the coupling 

constant J is considered, i.e. ≡E E
NJ

. For the field quenches the initial state is the symmetric superposition

Ψ = ↑↑ … ↑↑ + ↓↓ … ↓↓ .{ }1
2 (10)x xi,0

of the two fully magnetized basis states of the x-basis with the energy = −E 1i,0 . Both the initial state of the inter-
action quenches and the field quenches are invariant under global spin inversion, i.e. there is no symmetry break-
ing of the global spin flip symmetry and thus µΨ Ψ =ˆ 0x

i,0 i,0 .
For the determination of the effective temperature after the quenches the thermal energy (see Fig. 1(b)) of the 

final Hamiltonian has to be equal to the ground state energy of the system before the quench. This is illustrated in 
Fig. 2, which shows E as a function of T/J for different values of h/J for the system with L =  16. The results for Teff 
for the interaction and the field quenches are shown in Fig. 3(a) and (b) respectively for different system sizes. The 
energy argument predicts that the end points of the interaction quenches always lie in the paramagnetic phase, i.e. 
starting from the completely uncorrelated state the system cannot be driven into the ferromagnetic phase switch-
ing on a coupling between the spins. There is a minimum of Teff/J for h/J ≈  (h/J)crit. A dependency of the effective 
temperature on the system size can only be observed for interaction quenches ending close to the phase transi-
tion. This is due to the increasing correlation length in the vicinity of the phase transition. Field quenches are 

Figure 1. Expectation values of (a) the rescaled modulus of the magnetization in x-direction µ̂
x

CGE
 according 

to equation (4) and (b) the energy per site Ĥ
NJ
1

CGE
 of the 2D-TFIM with PBC on a square lattice of size 

16 ×  16 computed with a cluster Monte Carlo algorithm in continuous imaginary time71. Each data point is an 
average over 105 samples.
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predicted to drive the system out of the ferromagnetic phase when the external field is quenched to values larger 
than ≈h J h J/ ( / )1

2 crit. At the phase transition the energy isoline = −E h J T J( / ; / ) 1, which defines the end points 
of the field quenches, shows a turning point, which becomes more pronounced with increasing system size. 
Within the ferromagnetic phase the system size has almost no effect on the effective temperature attributed to the 
quench. Only in the vicinity of the phase transition larger deviations between the effective temperature can be 
observed for different system sizes. These deviations decrease again in the paramagnetic phase.

The shape of Teff/J as function of h/J can be understood considering the effects of J, h and T onto the order in 
the system. In the ground state at T =  0 for h/J <  (h/J)crit a parallel orientation of the spins in x-direction is ener-
getically preferred, while for h/J >  (h/J)crit the orientation of the spins in z-direction parallel to the external trans-
verse field is favourable. The temperature causes fluctuations of the orientation of the spins and thus disturbs the 
described order. The strength of this effect depends on h/J. For strong couplings or strong fields higher tempera-
tures are necessary to disturb the order of the spins. This can be seen considerng the energy as a function of T/J 
for fixed h/J in Fig. 2. The energy increases monotonically as a function of T/J with =→∞

Elim 0T J( / ) . The high 
temperature limit follows from the symmetry of the energy eigenvalues with respect to 0. For T =  0 on the other 
hand the energy E is close to − 1 for small values of h/J, while for large ratios of h/J it approaches − h

J2
 from below. 

For low temperatures there is a temperature interval in which the energy is almost not affected by the increase of 
the temperature. The length of this interval depends on h/J. The closer h/J is to (h/J)crit, the less ordered the spins 
are and thus can be more easily disturbed by the temperature. As for the interaction quenches the expectation 
value of the energy of the system in thermal equilibrium at Teff has to be equal to − h

J2
, this causes the minimum of 

Teff/J close to (h/J)crit. Away from (h/J)crit the effective temperature of the system after the interaction quenches 
increases. Although for large ratios h/J the energy E at T =  0 is only slightly smaller than the energy − h

J2
 in the 

conditional equation for the effective temperature, due to the strong transverse field high temperatures are neces-
sary to disturb the order of the spins. For interaction quenches with small ratios h/J the same argument holds. In 
this case the order is caused by the coupling between the spins. For the field quenches the effective temperature is 
determined by the condition that = −E 1. Obviously it is Teff/J =  0 for h/J =  0. In the limit h/J →  ∞  on the other 
hand = −E 1 implies = ∞→∞T Jlim /h J( / ) eff  as the ground state energy of the system at T =  0 is lowered almost 
linearly with h in this case.

Figure 2. Energy E per site in units of J as function of T/J for different ratios h/J for the 16 × 16 system. The 
graphs illustrate the determination of the effective temperature Teff after (a) the interaction quenches (0; h) →  (J; h)  
and (b) the field quenches (J; 0) →  (J; h). The colour code is as follows: continuous lines: − h/J =  0.5/  h/J =  1/ 

 h/J =  1.5/  h/J =  2/  h/J =  2.5, scattered lines: − h/J =  3/  h/J =  3.5/  h/J =  4/  h/J =  4.5/  h/J =  5. E 
increases monotonically with T/J. For small T/J there is a temperature interval where E is almost constant. This 
temperature interval is the longer the closer h/J is to the critical point (h/J)crit ≈  3.044.

Figure 3. Effective temperature Teff attributed to (a) interaction quenches (0; h) →  (J; h) and (b) field quenches 
(J; 0) →  (J; h) for different system sizes. The shaded area represents the ferromagnetic phase for the system in the 
thermodynamic limit.
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Time evolution. We prepare the system in the ground state of the initial Hamiltonian Ĥ i before the quench, 
i.e.

Ψ = = Ψt( 0) (11)i,0

with ketΨ i,0 according to equations (9) and (10) respectively. In general the initial state of the system is not an 
eigenstate of the final Hamiltonian, so that the system evolves unitarily in time according to the Schrödinger 
equation

Ψ = Ψ = .− ˆt e t( ) ( 0) (12)iH tf

In terms of the eigenbasis of Ĥ f  the time evolution of the expectation value of an arbitrary operator ̂ reads
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The initial state of the system is a pure state and its state remains a pure state under unitary time evolution. 
A thermal system on the other hand is described by a mixed state. For this reason time averages of the observa-
bles after the quench have to be compared to the thermal values as will be shown in the following. Considering 
the time-evolved expectation value in equation (13), one observes that the diagonal part is time-independent, 
while the non-diagonal contributions consist of harmonic oscillations. Averaging over time the non-diagonal 
part vanishes for long time intervals if there are no degenerate energy eigenvalues, so that the stationary state is 
determined only by the diagonal part:

 ∫ ∑
∆

= .
λ

λ λλ
∆ →∞

+∆ ˆ
t

dt clim 1
(14)t t

t t

t f,
2

0

0

The stationary state of the system can thus be described by a mixed state in the so-called diagonal ensemble:

∑ρ ρ= 





= Ψ Ψ = .
λ

λ λ λ λ λ
ˆ ˆ ˆ ˆ p p cTr with ,

(15)diag diag diag f, f, f, f, f,
2 

For the distributions of the (possibly degenerate) eigenvalues j  of ̂ one has

  δ ρ= 


− 

.ˆ ˆp ( ) Tr ( ) (16)j jdiag diag

As the dimension of the Hilbert space  grows exponentially with the system size, the above computations in 
the eigenbasis of Ĥ f  with exact diagonalization are only possible for small systems. For this reason we use a 
rt-VMC method to give an accurate description of the time evolution of the 2D-TFIM for larger system sizes.

Real-time variational Monte Carlo. Rt-VMC was introduced by Carleo et al. for the Bose-Hubbard 
model77,78 and has also been successfully applied to lattice bosons and spin systems with long-range interactions79 
as well as to strongly correlated electron systems80. Its idea is the existence of a set of variational parameters which 
are sufficient to describe the physical properties of the system while their number is much smaller than the 
dimension of the Hilbert space. The equations of motion of the variational parameters are determined minimiz-
ing the Euclidian distance  t( ) between the exact time evolution Ψ t( )exact  of the variational state and its varia-
tional time evolution Ψ t( )var , which reads in the x-basis

∑= Ψ − Ψ . t t tx x( ) ( , ) ( , )
(17)x

exact var
2

A common choice for the variational state is the Jastrow ansatz77–79, which is well suited to describe the time 
evolution of the 2D-TFIM after interaction quenches in the paramagnetic phase. For the field quenches in the 
ferromagnetic phase we introduce a new ansatz, which makes use of the symmetries of the model and the high 
degree of order in this phase. Both ansatz functions reduce the number of parameters in the wave function of the 
system from a number growing exponentially with the system size to a number growing algebraically with the 
number of sites.

Paramagnetic phase. In the paramagnetic phase we use the Jastrow ansatz for the variational function. This 
ansatz is constructed from the completely uncorrelated state. Correlations are taken into account by the Jastrow 
factor. For the 2D-TFIM the Jastrow ansatz reads79

∑αΨ =









↑↑ … ↑↑ .ˆt t C( ) exp ( )

(18)

xx
z

r
r r

The operators
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∑σ σ≡ +
ˆ ˆ ˆC

N
1

(19)
xx x x
r

r R
R R r

measure the correlations between all spin pairs of the system with distance r normalized by their number Nr. The 
sum over r runs over all independent directions in the lattice, whose number also determines the number of var-
iational parameters αr(t), which is N/8 +  3L/4 for the square lattice with edge length L. For a given r, the average 
over all dependent directions is taken (see the supplementary material). The state ↑↑ … ↑↑ z

 is the completely 
uncorrelated state of the system, which is the exact ground state in the limit h/J →  ∞ , i.e. which represents the 
completely paramagnetic state. Inserting the Jastrow ansatz from equation (18) into equation (17), one gets the 
following equations of motion for the variational parameters77,78:

∑ δ δ α δ= −
′

′ ′
ˆ ˆ ˆC C t i E t C( ) ( )

(20)
xx xx

t
xx

t
r

r r r rf
local

with   δ ≡ −ˆ ˆ ˆ
t
 and ≡

Ψ

Ψ

ˆ
E tx( , ) H t

t
x

xf
local ( )

( )
f  the local energy. The time-dependent expectation values

≡ ∑
Ψ

∑ Ψ
.ˆ t

t
x x

x
( , ) ( )

( , ) (21)t
x

x

2

2


have to be determined at each time step. For this we use the single spin flip quantum Monte Carlo algorithm81 
described in the supplementary material. The integration of the equations of motion is done numerically with 
a fourth order Runge-Kutta scheme. For the interaction quenches with Ji =  0 the initial values of the variational 
parameters are

α = = .t( 0) 0 (22)r

Ferromagnetic phase. Due to its construction from the completely paramagnetic state, the Jastrow ansatz is well 
suited for the paramagnetic phase, but fails to describe the time evolution of the system after field quenches in the 
ferromagnetic phase. For example the initial state cannot be represented by it. We thus derive in the Appendix 
the ansatz

∑ ∑αΨ = Ψ Ψ ≡ Ψ
=

t t
N

( ) ( ) with 1

(23)m n
m n m n m n

m n k

N

m n
k

,
, , ,

, 1
,

m n,

for the field quenches in the ferromagnetic phase. |Ψ m,n〉  is the normalized symmetric superposition of all basis 
states with m spin down and n broken bonds, so-called kinks. The ansatz separates the Hilbert space of the system 
into subspaces m n,  of states with the same magnetization per site

µ = −
= … −

N m
N

m N N2 with 0, 1, 2, , 1, (24)m
x

and the same energy contribution of the diagonal part of the Hamiltonian per site in units of the coupling con-
stant J

ε =
−

= … − − .
N n

N
n N N Nwith 0, 4, 6, , 2 6, 2 4, 2 (25)n

xx

The dimension of the subspace (m, n) is Nm,n. Transitions between subspaces are induced by spinflips. A 
spinflip increases or decreases m by one and keeps n untouched or changes it by ± 2 or ± 4. Thus each subspace 
is linked to up to 10 other subspaces. We denote the total number of transitions between the subspaces (m, n) 
and (m′ , n′ ) with Tm,n;m′,n′. The Tm,n;m′,n′ are symmetric with respect to (m, n) ↔  (m′ , n′ ). The determination of the 
Nm,n and the Tm,n;m′,n′ is a pure combinatorics problem. As for the 2D-TFIM there are no closed-form expressions 
for their values and due to the high dimensionality of the Hilbert space we determine them with rare event sam-
pling (RES)82 described in the supplementary material. As the Nm,n and Tm,n;m′,n′ are independent of the quench 
parameters, they have to be determined only once for each system size. The possible values of n depend on m in 
a non-trivial way. In case of the 2D-TFIM not just the maximal number of kinks is a function of m like in one 
dimension, but also their minimal number. The PBC have to be taken into account, too. In leading order the num-
ber of possible values of n grows linearly with m. As the number of possible values of m grows linearly with the 
system size N, the number of variational parameters thus grows in leading order with N2. Due to the symmetry of 
the variational parameters with respect to m ↔  N −  m and the conservation of this symmetry under time evolu-
tion, we can reduce the number of independent variational parameters using αm,n(t) =  αN−m,n(t). For the system 
sizes we studied the numbers of the variational parameters are listed in Table 1.

The equations of motion of the variational parameters are derived in the Appendix:

∑α α α= − − − ≡ .
′ ′

′ ′ ′ ′ ′ ′
′ ′

′ ′


i t J N n t h t t t
T
N N

( ) ( ) ( )
2

( ) with
(26)

m n m n
m n

m n m n m n m n m n
m n m n

m n m n
, ,

,
, ; , , , ; ,

, ; ,

, ,
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The sum over m′  and n′  runs over all subspaces that can be reached from any basis state of the subspace (m, n)  
by flipping one single spin. The equations of motion of the variational parameters are thus a system of coupled 
linear differential equations of first order with constant (time-independent) coefficients, which are known from 
RES. As each subspace is linked to only up to 10 other subspaces, the system is sparse. We solve it with a fourth 
order Runge-Kutta scheme. The initial values of the variational parameters are

α = =






=
.t m n N( 0)

1
2

if( , ) (0, 0) or ( , 0)

0 else (27)
m n,

For t >  0 the αm,n(t) are in general complex.

Observables. As observables we consider the rescaled modulus of the magnetization according to equa-
tion (4) and the correlation function between two spins at distance r according to equation (19), which reads for 
nearest neighbours

∑ σ σ= .
′

′
ˆ ˆ ˆC

N
1

2 (28)

xx x x

R R
R Rnn

,

For the interaction quenches the expectation values of the observables and their distributions are computed in 
the course of the single spin flip quantum Monte Carlo algorithm for the coefficients of the equations of motion at 
each time step, while for the field quenches there is a direct functional relationship to the variational parameters. 
For the modulus of the magnetization this relationship reads

∑µ α µ= ⋅ˆ t( )
(29)

x
t

m n
m n m

x

,
,

2

with the eigenvalues µm
x of µ̂x according to equation (24) and for the correlation function between nearest neigh-

bours it is

∑ α ε= ⋅Ĉ t( )
(30)

xx
t

m n
m n n

xx
nn

,
,

2

with the eigenvalues εn
xx of Ĉ

xx
nn according to equation (25). The distributions of µm

x and εn
xx at time t are given by

∑µ α=p t( ) ( )
(31)t m

x

n
m n,

2

and

∑ε α= .p t( ) ( )
(32)t n

xx

m
m n,

2

The correlation function between spins that are not nearest neighbours can be computed according to

∑ ∑∑α σ σ= ⋅ ≡ Ψ Ψ .+

±
� ��������� ���������

ˆ ˆ ˆC t C m n C m n
N

( ) ( , ) with ( , ) 1

(33)

xx
t

m n
m n

xx xx

k
m n
k x x

m n
k

r r r
r R

R R r
,

,
2

, ,

1

The C m n( , )xx
r  also have to be determined with RES.

To decide whether the system thermalizes or not the expectation values of the observables as well as their dis-
tributions in the stationary state have to be compared to their counterparts for the thermal system. As the exact 
computation in the diagonal ensemble would require the knowledge of the full spectrum of the Hamiltonian after 
the quench, we use time averages to approximate the expectation values and distributions in the stationary state 
according to

 ∫ ρ=
∆

+∆ˆ ˆ ˆ
t

dt t1 Tr[ ( )]
(34)t t

t t

0

0

and

  ∫ δ ρ=
∆

−
+∆ ˆ ˆp

t
dt t( ) 1 Tr[ ( ) ( )]

(35)t j
t

t t
j

0

0

L 4 8 12 16

number of αm,n 45 848 4551 14834

Table 1.  Number of variational parameters for the ansatz function in equation (23) for the field quenches as 
function of the edge length L of the square lattice. In leading order the growth is proportional to N2.
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with ρ = Ψ Ψˆ t t t( ) ( ) ( )  and  j the (possibly degenerate) eigenvalues of ̂. We computed the time averages for 
different interval lengths Δ t and different t0 in the range of times that we can simulate (t0 +  Δ t <  25 for the 
16 ×  16 system, longer times for smaller systems) and found that the results are stable with respect to our tests.

The time averages of the observables are compared to the thermal expectation values of the system in equilib-
rium at the effective temperature Teff attributed to the quench, which are given by

= = .− −ˆ ˆ ˆ ˆ

Z
e Z e1 Tr[ ] with Tr[ ]

(36)

T
T

H T T H T
CGE

CGE

/
CGE

/eff

eff
eff eff eff 

The thermal distribution of the eigenvalues  j of ̂ reads

  δ= − .−ˆ ˆp
Z

e( ) 1 Tr[ ( ) ]
(37)

T
j j

H T
CGE

CGE

/eff eff

The expectation values and distributions for the system in thermal equilibrium are computed with a cluster 
Monte Carlo algorithm in continuous imaginary time71.

Results and Discussion
Before we apply the rt-VMC algorithm to large system sizes, we consider a system of size 4 ×  4, whose time evo-
lution can also be computed with numerical integration of the Schrödinger equation, and compare the rt-VMC 
results to the exact results to benchmark the algorithm. We do this exemplarily for the rescaled modulus of the 
magnetization. Results are presented in Fig. 4 for (a) interaction quenches and (b) field quenches. (a) i. and (b) i. 
contain a comparison between the exact time evolution (green) and the rt-VMC time evolution (red). Time aver-
ages are represented by the dashed lines of the respective colours, while the black dashed line is the thermal 
expectation value for the system in equilibrium at the temperature attributed to the quench. In (a) ii. and (b) ii. we 
compare the time-averaged distributions of µm

x of the exact diagonalization (green) and the rt-VMC (red) to the 
thermal distribution (black). We observe that after the interaction quenches the shape of the curves of the time 
evolution is close to harmonic oscillations with time-dependent variations of the amplitude. As long as 

h J h J/ ( / )crit, the rt-VMC algorithm with the Jastrow ansatz allows a good description of the time evolution. 
There are differences between the frequencies and between the amplitudes, which increase for stronger interac-
tion quenches when the system is driven closer to its phase transition. Despite of these deviations the time aver-
ages as well as the time-averaged distributions of the exact and the rt-VMC time evolution still show a very good 
agreement except for the quench (0; 3.5) →  (1; 3.5), which drives the system close to its phase transition. 
Deviations from the thermal values on the other hand can already be observed beginning from the quench  
(0; 5) →  (1; 5). For the field quenches the rt-VMC results for the time evolution after the quench show an even 
better agreement with the exact time evolution. The frequency of the oscillations is reproduced with high accu-
racy even for strong quenches. With increasing quench strength small deviations of the amplitude of the oscilla-
tions can be observed, but the time averages and the time-averaged distributions of the rt-VMC and the 
corresponding results of the exact time evolution coincide for all the quenches we studied. As in case of the 
interaction quenches there are increasing deviations between the time averages after the quench and the results 
for the thermal system in equilibrium at Teff with increasing quench strength. In order to quantify the deviations 
between the thermal expectation values and the time averages after the quench as a function of the quench 
parameters we compare in Fig. 5(a) i. and (b) i. the thermal expectation values for the system in equilibrium at the 
temperature Teff attributed to the quench (black) and the time-averaged values of the exact time evolution (green) 
and of the rt-VMC time evolution (red). The relative error between the time-averaged expectation values of the 
exact and the rt-VMC time evolution is shown in (a) ii. and (b) ii.. For the interaction quenches we observe an 
excellent agreement while h J/ 4 with a deviation of less than 2%. For the field quenches we find that beginning 
from h/J ≈  0.75 deviations increase, but even for h/J =  1.5 they do not exceed 1.5%. For both quench protocols our 
rt-VMC method thus allows us to compute the time averages of the observables as well as their distributions with 
high accuracy for a wide range of ratios h/J. We may derive two main results from our studies of the 4 ×  4 system: 
First we observe that for this small system size significant deviations between time-averaged results and the ther-
mal results exist when the system is quenched close to its phase transition. Second there is a very good agreement 
between the time-averaged values of the exact time evolution and the rt-VMC time evolution for a wide range of 
ratios h/J. This agreement does not just concern the time averages of the observables, but also the underlying 
distributions. Only for strong quenches deviations between the time averages of the exact time evolution and the 
rt-VMC time evolution can be observed, but these deviations are much smaller than the deviations from the 
values of the system in thermal equilibrium.

We now apply the rt-VMC method to larger system sizes. To make predictions for the system in the thermo-
dynamic limit, we computed results for the rescaled modulus of the magnetization and the correlation function 
between nearest neighbours after interaction quenches and after field quenches for systems of size L =  8, 12 and 
16. Figure 6 shows our results for the time evolution of the observables for the different quench protocols we 
considered as well as a comparison between their time averages and the thermal expectation values for the system 
in equilibrium at Teff as a function of h/J after the quench. For the interaction quenches we confine us to values 
h/J >  (h/J)crit, as for smaller ratios h/J the accuracy of the rt-VMC with the Jastrow ansatz decreases, while for the 
field quenches we study quenches with <h J h J/ ( / )1

2 crit as for stronger quenches the system is predicted to be 
driven from the ferromagnetic to the paramagnetic phase. We observe that after the quenches the observables 
quickly approach a stationary value and in the following oscillate around it. This stationary value is in good 
approximation constant for the simulated time intervals. For small quenches both the amplitude and the fre-
quency of the oscillations are almost constant. For larger quenches modulations of the amplitudes occur. 
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Considering the time averages and the thermal expectation values as function of h/J after the quench we observe 
that the relative shape of the curves is preserved when the system size is increased. There is a good agreement 
between the time averages and the thermal expectation values for small quenches with continuously increasing 
deviations for stronger quenches. While for the interaction quenches the observed deviations are small, in case of 
the field quenches the deviations become significant when the system is quenched closer to the phase transition. 
Comparing the deviations for strong field quenches one observes that they do not decrease with the system size, 
so that we assume them not to be caused by finite size effects.

Up to this point we have only considered the time-dependent expectation values of the observables and com-
pared their time averages to the thermal expectation values. To decide whether the stationary state of the system 
after the quenches can be described by the CGE not only the expectation values of the observables have to coin-
cide, but also their distributions. The study of the distributions is thus especially important for the interaction 
quenches and small field quenches, for which we have found a good agreement between the thermal and the 
time-averaged expectation values of the rescaled modulus of the magnetization as well as of the correlation func-
tion between nearest neighbours. [The strong variations in the distributions of the correlation function between 
nearest neighbours for εn

xx close to + 1 are not due to deficiencies of the algorithm, but are intrinsic to the system. 
Values of εn

xx close to + 1 correspond to small kink numbers n. The possible values of n depend on the number m 
of spin down. In the two-dimensional model the smallest possible value of n for a given m increases with m. For 
this reason small values of n are linked to small values of m. For small values of m the configurations with the 
highest possible number of kinks are much more likely than configurations with the smallest possible number of 
kinks. This causes the strong variations in the distributions of εn

xx close to + 1.] As the number of possible values 
of µm

x and εn
xx grows linearly with the system size, the resolution of the distributions becomes higher with increas-

ing system size. For this reason we show in Fig. 7 the distributions of µm
x and εn

xx for the 16 ×  16 system, i.e. the 
largest system size we can simulate. The quench protocols for the interaction and the field quenches are the same 

Figure 4. Comparison between thermal values (● ), results of the rt-VMC algorithm ( ) and results of exact 
diagonalization ( ) for the rescaled modulus of the magnetization after (a) interaction quenches and (b) field 
quenches for the 4 ×  4 system. (a) i. and (b) i. contain a comparison of the exact and the rt-VMC time evolution, 
(a) ii. and (b) ii. a comparison between the thermal distribution and the time-averaged distributions of the rt-
VMC and the exact computations with Δ t =  100. The thermal values have been computed for the system in 
equilibrium at the temperature Teff attributed to the quench. The distance of the end point of the quenches from 
the phase transition is reduced from top to bottom.
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as in Fig. 6. The distance of the end point of the quenches from the phase transition is reduced from top to bot-
tom, i.e. for the interaction quenches the ratio h/J after the quench is decreased, while for the field quenches it is 
increased. For small interaction quenches we observe a very good agreement between the thermal and the 
time-averaged distributions. Deviations increase when the system is quenched closer to the phase transition, but 
the shape of the thermal curves is well reproduced by the time averages after the quenches. Comparing the distri-
butions for the 16 ×  16 system to those of the 4 ×  4 system in Fig. 4 we observe that the agreement is better than 
for the smaller system. For the field quenches we find strong deviations between the thermal distributions and the 
time-averaged distributions. In the distributions deviations can already be observed for quench protocols for 
which the time averages still agree with the thermal expectation values. These deviations could not be seen in the 
distributions of the 4 ×  4 system in Fig. 4 due to the lower resolution of the distributions caused by the small sys-
tem size. In general we observe that the time-averaged distributions after the field quenches are wider than the 
thermal distributions. The positions of their maxima are almost the same as for the thermal distributions, but the 
maxima are less pronounced. In addition the time-averaged distributions after the quenches show an increased 
probability to find the system in the fully ordered state (µ = ±1m

x  or ε = +1n
xx  respectively) compared to the 

thermal system. As these states are the initial state of the system this means that the system does not lose the 
memory of its initial state which contradicts to thermalization. We can thus state that for the system sizes and 
time scales that we can simulate the system does not thermalize after field quenches.

Up to this point we have only given a qualitative discussion of the distributions of the observables. In order 
to compare the deviations as a function of the system size and make predictions for the system in the thermody-
namic limit we introduce the measure for the deviations between the thermal and the time-averaged distributions

∑∆ =
−

= .ˆ { }N

p p

p
p p( ) 1

( )

( ) ( )
with max ( )

(38)j j

t j
T

j
T

T T
j

CGE

CGE,max
CGE,max CGE

eff

eff
eff eff



 


N ( )j  is the number of different eigenvalues of ̂. The normalization is with respect to the maximum of the 
thermal distribution for the considered quench protocol and system size. We computed µ∆ ̂( )

x
 and ∆ Ĉ( )

xx
nn  for the 

system sizes L =  4, 8, 12 and 16 for the described quench protocols and did a finite size scaling to conclude to the 
system in the thermodynamic limit. Figure 8 shows i. µ∆ ̂( )

x
 and ii. ∆ Ĉ( )

xx
nn  after (a) the interaction and (b) the 

field quenches for the different quench protocols. The results are plotted as a function of the inverse system size 
1/N. We find that for the interaction quenches the deviations between the thermal and the time-averaged distri-
bution decrease with increasing system size. We thus conclude that the observed deviations of the expectation 
values and the distributions between the thermal and the time-averaged system will further decrease with increas-
ing system size and that the system will thermalize in the thermodynamic limit. Before we make a statement on 
the results of the finite size scaling for the field quenches we discuss the effect of the spontaneous symmetry 
breaking in the ferromagnetic phase for the system in the thermodynamic limit. For the finite system sizes con-
sidered in our numerical studies the initial state of the field quenches is the symmetric superposition of the two 
fully magnetized states according to equation  (10). In the thermodynamic limit on the other hand 

µΨ Ψ = ±ˆ 1x
i,0 i,0  implies Ψ = ↑↑ … ↑↑ xi,0  and Ψ = ↓↓ … ↓↓ xi,0  respectively. We compute the time evo-

lution of the expectation value of an arbitrary operator ̂ starting from the symmetric superposition and compare 
it to the time evolution starting from ↑↑ … ↑↑ x

:
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Figure 5. Comparison between results of exact diagonalization ( ) and rt-VMC ( ) for the rescaled modulus of 
the magnetization after (a) interaction quenches and (b) field quenches for the 4 ×  4 system to thermal values 
for the system in equilibrium at the temperature Teff (⚫ ). The graphs (a) ii. and (b) ii. show the relative error of 
the rt-VMC time averages compared to the time averages of the exact time evolution.
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For the rescaled modulus of the magnetization µ̂
x
 and the correlation function Ĉ

xx
r  the first and the second 

expectation value in the sum give the same result. Their sum thus just corresponds to the time evolution starting 
from ↑↑ … ↑↑ x

. Applying a series expansion of the time evolution operator one can easily show that the two 
remaining matrix elements vanish in the thermodynamic limit, so that the time-evolved expectation values of µ̂

x
 

and Ĉ
xx
r  are independent of the initial state for the system in the thermodynamic limit. Simulations for finite  

Figure 6. Results for i. the rescaled modulus of the magnetization and ii. the correlation function between 
nearest neighbours after (a) interaction quenches and (b) after field quenches for the system sizes L =  8, 12 and 
16. The graphs in the first line for each system size show the time evolution of the observables (rescaled modulus 
of the magnetization and correlation function between nearest neighbours) after the quenches for different 
quench parameters (continuous lines), their time averages (dashed lines) and the thermal expectation values for 
the system in equilibrium at Teff according to the CGE (dotted lines). To characterize the quenches we use the 
notation (Ji; hi) →  (Jf; hf). For the interaction quenches the colour code is as follows: − (0; 10) →  (1; 10)/  (0; 
7.5) →  (1; 7.5)/  (0; 5) →  (1; 5)/  (0; 4) →  (1; 4)/  (0; 3.5) →  (1; 3.5); and for the field quenches: − (1; 0) →   
(1; 0.25)/  (1; 0) →  (1; 0.5)/  (1; 0) →  (1; 0.75)/  (1; 0) →  (1;1)/  (1; 0) →  (1; 1.25). In the graphs in the 
second line for each system size we compare the thermal expectation values of the observables (● ) to their time 
averages after the quenches ( ) as a function of h/J after the quench. For the interaction quenches the system 
does not leave the paramagnetic phase, while field quenches will drive the system from the ferromagnetic into 
the paramagnetic phase for ⪆h J h J/ ( / )1

2 crit. We observe continuously increasing deviations between the thermal 
expectation values and the time averages after the quenches the closer the system is quenched to its phase 
transition.
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system sizes indeed show that the difference between the time evolutions starting from the two different initial 
states decrease with increasing system size. Our results for the field quenches can thus be used to conclude to the 
system in the thermodynamic limit. The finite size scaling in Fig. 8(b) shows that both µ∆ ̂( )

x
 and ∆ Ĉ( )

xx
nn  increase 

with the system size or at least do not decrease. We interpret this as indication that the system will not completely 
thermalize in the thermodynamic limit either.

As the last point of our studies we consider correlation functions between spins which are not nearest neigh-
bours. Due to the long-range order in the ferromagnetic phase the correlation function of two spins will not 
vanish at large distances but reach a constant non-vanishing value given by the square of the expectation value of 
the rescaled modulus of the magnetization. In the paramagnetic phase on the other hand there is no long-range 
order and the Hamiltonian is gapped, i.e. there is an energy gap between the ground state and the first excited 
state. It has been shown that in the ground state (T =  0) of gapped quantum systems correlations decay exponen-
tially with the distance83,84. The same holds for thermal states in the paramagnetic phase85. In contrast to this there 
are no analytic expressions for the decay of the correlations in phases with long-range order, i.e. the ferromagnetic 
phase in case of the 2D-TFIM. We compute the long-range correlations for the 4 ×  4 and the 12 ×  12 system. The 
constraint to the 12 ×  12 system is due to the computational effort in the computation of the C m n( , )xx

r . The 
rt-VMC results for the 4 ×  4 system are compared to exact results. Figure 9 shows the results for the long-range 
correlations for i. the 4 ×  4 system and ii. the 12 ×  12 system after (a) interaction quenches and (b) after field 
quenches. The distance d between two sites is measured in the Manhattan metric, i.e. if r =  R −  R′  defines the 
relative position of the sites we have = ∑ − ′=d R Ri

D
i i1  with D the dimensionality (here D =  2). Thus for a given 

distance d there may be several r. The strength of the correlation between two sites depends on the number of 
shortest paths between them, which depends on r. We compare the time-averaged rt-VMC results after the 
quenches (red) to the correlation functions for the system in equilibrium at the temperature Teff attributed to the 
quench (black). For the 4 ×  4 system we additionally show results of the exact time evolution (green). For the 
interaction quenches we do a least-square fit with a · ebd. We observe that the decay of the correlations in the ther-
mal system as well as in the quenched system is well described by the fit curves in agreement with the analytic 

Figure 7. Comparison between the thermal (● ) and the time-averaged distributions ( ) of i. µm
x and ii. εn

xx after 
(a) interaction quenches and (b) field quenches for a system of size L =  16. The quench protocols are the same as 
in Fig. 6. The quench strength is increased from top to bottom. Especially in case of the field quenches we 
observe clear deviations between the thermal and the time-averaged distributions already for small quenches, 
for which the thermal expectation values and the time-averages still agree.
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results. For the field quenches we have added the square of the rescaled modulus of the magnetization. We 
observe that within the numerical error its value and the correlation function for large d coincide as predicted. 
Comparing the decay of the correlations for the thermal system to the decay in the quenched system we find for 
the interaction quenches a good agreement both for the 4 ×  4 and the 12 ×  12 system. The curves show only small 
deviations and have the same shape going to 0 for large distances d. The rt-VMC results show a very good agree-
ment to the exact results apart from the interaction quench (0; 3.5) →  (1; 3.5). For the field quenches the differ-
ences between the time-averaged results after the quenches and the thermal results are more significant. For small 
quenches the shapes of the curves are very similar and the values coincide within the numerical error. For larger 
quenches we still observe a good agreement between the rt-VMC results and the exact results, but here larger 
deviations from the thermal curves arise. Although the absolute differences between the curves for a given value 
of d are not too large, the decay of the correlations as function of d is different for strong field quenches. After the 
field quenches the correlations decay faster with d than for the system in thermal equilibrium and the stationary 
long-range value of the correlations is reached at larger distances d and is lower than for the thermal system.

Related work
Recently an exact theorem on generalized thermalization in D-dimensional quantum systems in the thermody-
namic limit has been formulated55. The theorem states that generalized thermalization can be observed if the state 
of the system is algebraically sizably clustering. It also holds for exponentially sizably clustering states. Then the 
stationary state of the system can be described by a GGE which has to take into account all local and quasilocal 
charges of the system. For non-integrable systems, for which the total energy is the only conserved quantity, the 
generalized thermalization reduces to thermalization with a stationary state according to the CGE. We now dis-
cuss the exact theorem with respect to the 2D-TFIM. Considering the 2D-TFIM one has to distinguish between 
the ferromagnetic and the paramagnetic phase. In the paramagnetic phase the 2D-TFIM is gapped and there is 
no symmetry breaking both for finite system sizes as well as in the thermodynamic limit. As the ground state of 
gapped quantum systems is sizably exponentially clustering83,84 the exact theorem can be applied to the 2D-TFIM 
in the thermodynamic limit after the interaction quenches in the paramagnetic phase and predicts thermaliza-
tion. In our numerical studies we have indeed observed a very good agreement both between the time-averaged 
observables and their thermal counterparts as well as between the distributions for small quenches, i.e. large 
ratios h/J, also for the finite system sizes that we can simulate. For larger quenches closer to the phase transition 
we have found deviations between the time averages and the thermal values, but the finite size scaling shows that 
they decrease with the system size. Our results for the interaction quenches in the paramagnetic phase are thus in 
agreement with the exact theorem. In the ferromagnetic phase on the other hand the Hamiltonian of the system 
is not gapped in the thermodynamic limit. The spin flip symmetry is spontaneously broken and long-range order 
exists, so that all spins of the system are correlated to each other and the correlations do not cluster. An analytic 
expression for the shape of the decay of the correlations has not been found yet, thus it cannot be decided whether 
the exact theorem can be applied in the ferromagnetic phase or not.

Summary and Conclusion
We have studied the quantum relaxation of the 2D-TFIM after global interaction quenches in the paramagnetic 
phase and global field quenches in the ferromagnetic phase using a newly developed rt-VMC method which 
allowed us to explore system sizes and time scales that have not been accessible before. In order to answer the 
question whether this two-dimensional, non-integrable system thermalizes or not we compared time-averaged 
results after the quenches to results for the system in thermal equilibrium at a temperature defined by the excess 
energy after the quench. We found that the presence or absence of thermalization depends crucially on the quench 
protocol and the initial state. For the interaction quenches there is a good agreement between the results for the 
quenched system and the thermal system in accordance with a recently formulated exact theorem for systems in 

Figure 8. Deviations between the thermal distributions and the time-averaged distributions for i. the rescaled 
modulus of the magnetization and ii. the correlation function between nearest neighbours after (a) interaction 
quenches and (b) field quenches as function of the inverse system size for the system sizes L =  4, 8, 12 and 16. 
The deviations µ∆ ̂( ) and ∆ Ĉ( )

xx
nn  respectively between the distributions have been computed according to 

equation (38). For the interaction quenches the colour code reads: ●  (0; 10) →  (1; 10)/  (0; 7.5) →  (1; 7.5)/   
(0; 5) →  (1; 5)/  (0; 4) →  (1; 4)/  (0; 3.5) →  (1; 3.5); and for the field quenches: ●  (1; 0) →  (1; 0.25)/  (1; 0) →  (1; 
0.5)/  (1; 0) →  (1; 0.75)/  (1; 0) →  (1; 1)/  (1; 0) →  (1; 1.25). One observes that for the interaction quenches the 
differences between the distributions decrease with increasing system size, while for the field quenches they 
increase or remain almost constant.
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the thermodynamic limit. Deviations are only observed for strong quenches ending in the vicinity of the phase 
transition. Finite size scaling suggests that these deviations should vanish in the thermodynamic limit. In contrast 
to this we have found significant deviations between the thermal results and the time-averaged results after the 
field quenches in the ferromagnetic phase. These deviations become especially clear comparing the distributions 
which show deviations already for small quenches for which the thermal expectation values and the time averages 
still agree. The shape of the distributions indicates that the system does not completely lose the memory of its ini-
tial state during the relaxation process, which is a clear contradiction to thermalization. Finite size scaling shows 
that the deviations do not decrease with the system size either. Although we currently cannot give an explanation 
for the observed deviations between the thermal system and the time averages after the field quenches in the fer-
romagnetic phase, we assume that they might be related to the long-range order or the structure of the spectrum 
of the Hamiltonian without an energy gap between the ground state and the first excited state.

Appendix
Ansatz function in the ferromagnetic phase. The unitary time evolution of the state of the system after 
the quench reads in terms of the eigenbasis of Ĥ f

∑Ψ = Ψ Ψ Ψ
λ

λ λ
λt e( )

(40)
iE t

f, i,0 f,
f,

with |Ψ f,λ〉  the eigenstate of Ĥ f  to the eigenvalue Ef,λ. The |Ψ f,λ〉  and Ef,λ are a priori unknown. Due to the structure 
of |Ψ i,0〉  for field quenches starting from hi =  0 according to equation (10), 〈 Ψ f,λ|Ψ i,0〉  is proportional to the sum of 
the coefficients of the two completely ordered basis states in the representation of |Ψ f,λ〉  in the x-basis. Thus 〈 Ψ f,λ|Ψ i,0〉   
decreases with increasing energy Ef,λ and vanishes for antisymmetric eigenstates of Ĥ f .

Figure 9. Correlation function between spins at arbitrary distance for i. the 4 ×  4 and ii. the 12 ×  12 system after 
(a) interaction quenches and (b) field quenches. The distance d is measured in the Manhattan metric. We 
compare the thermal expectation values for the system in equilibrium at temperature Teff (● ) to the time-
averaged values after the quenches computed with rt-VMC ( ). For the 4 ×  4 system we additionally include the 
time-averaged values after the quenches computed with exact diagonalization ( ). The continuous curves in the 
graphs for the interaction quenches are least-square fits according to an exponential decay a · ebd as predicted by 
analytic expressions. For the field quenches the continuous lines serve as a guide to the eye and the dotted lines 
represent the square of the rescaled modulus of the magnetization.
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We use equation (40) to derive a variational ansatz for |Ψ (t)〉  for the rt-VMC in the ferromagnetic phase. 
For vanishing transverse field h the states of the x-basis are eigenstates of the Hamiltonian. Their energies are 
determined just by the number n of kinks. Turning on the transverse field, the Hamiltonian is not diagonal in the 
x-basis any more. The effect of the non-diagonal part of the Hamiltonian is to flip the orientation of spins. For 
small system sizes we computed the eigenstates of the Hamiltonian with exact diagonalization and found that for 
small ratios h/J basis states of the x-basis with the same number n of kinks and the same magnetization, which we 
determine by the number m of spin down, have in good approximation the same coefficients, so that

∑Ψ ≈ Ψλ
λc

(41)m n
m n m nf,

,
,

f,
,

with |Ψ m,n〉  according to equation (23). The accuracy of the approximation (41) decreases with increasing ratio 
h/J. For this reason we only apply it to field quenches starting from the completely ordered state and not leaving 
the ferromagnetic phase. Another important point for the accuracy of the ansatz is the spatial dimension D of 
the system, as for a fixed number N of sites the number of symmetries within the system increases in higher 
dimensions. With increasing number of symmetries the number of basis states which can be transformed into 
each other by symmetry transformations like translation, rotation or reflection, also increases. For basis states 
which can be transformed into each other by symmetry transformations the description with the same variational 
parameter is exact.

Using the approximation in equation (41) we can rewrite equation (40):

∑∑Ψ ≈ Ψ Ψ Ψ .
λ

λ
λ

α

λ

� ���������� ����������
t e c( )

(42)
m n

iE t
m n

t

m n
,

f, i,0 ,
f,

( )

,

m n

f,

,

The αm,n(t) are the variational parameters of the rt-VMC for the field quenches in the ferromagnetic phase.
As shown in the main part of the text by a comparison to results of exact time evolution for the 4 ×  4 system, 

using the ansatz function (42) for the rt-VMC calculations allows an accurate description of the time evolution of 
the 2D-TFIM after a field quench starting from the completely ordered state.

Time evolution after field quenches. The exact time evolution of the variational state in equation (23) 
according to the Schrödinger equation reads

Ψ = − Ψ
ˆt iH t( ) ( ) (43)exact f

and its variational time dynamics

∑ ∑
α

Ψ = Ψ .

t
t

N
( )

( )

(44)m n

m n

m n k
m n
k

var
,

,

,
,

Thus inserting equations (43) and (44) into equation (17) we find for the Euclidian distance

 ∑ ∑ ∑
α α

= − Ψ Ψ − .
′ ′ ′

′ ′
′ ′ ′

′ ′

ˆt i
t

N
H

t
N

( )
( ) ( )

(45)m n k m n

m n

m n k
m n
k

m n
k m n

m n, , ,

,

,
, f ,

,

,

2

Obviously t( )  is minimal if each summand is 0, i.e. if

∑ ∑
α α

= − Ψ Ψ .′ ′

′ ′
′ ′
′ ˆt

N
i

t
N

H
( ) ( )

(46)
m n

m n m n

m n

m n k
m n
k

m n
k,

, ,

,

,
, f ,

Summation over k′ , multiplication with i and division through ′ ′N m n,  leads to the equations of motion of the 
variational parameters in equation (26).
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