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Weight prediction in complex 
networks based on neighbor set
Boyao Zhu1, Yongxiang Xia1 & Xue-Jun Zhang2

Link weights are essential to network functionality, so weight prediction is important for understanding 
weighted networks given incomplete real-world data. In this work, we develop a novel method for 
weight prediction based on the local network structure, namely, the set of neighbors of each node. The 
performance of this method is validated in two cases. In the first case, some links are missing altogether 
along with their weights, while in the second case all links are known and weight information is missing 
for some links. Empirical experiments on real-world networks indicate that our method can provide 
accurate predictions of link weights in both cases.

Many real-world systems, such as social, biological and communication systems, can be described as networks, 
where nodes denote individuals and links represent interactions between them. Over the last few decades, the 
field of network science has been developed as a critical framework for understanding the organization of real 
networked systems1,2. Faithful representation of many real-world networks requires not only links to indicate the 
existence of interactions but also associated weights to express interaction strengths. Examples are ubiquitous. For 
example, in an airline network, the weight of a link may represent the number of flights3, the number of available 
seats4, or the number of passengers5 traveling between two airports. In food webs, link weights may represent 
energy or carbon flows between taxa6. In scientific collaboration networks, the weight of a link may quantify the 
number of papers co-authored by two researchers7.

Unfortunately, data collected from real-world networks are usually incomplete. This gives rise to two related 
data reconstruction problems. First, some links may be missing from the data, in which case we need to predict 
these missing links from the available data. This link prediction problem has received much attention in the past 
decade8–12, and many link prediction algorithms have been proposed for both unweighted9,13–26 and weighted27–31 
networks. Second, the weights of some links may be unavailable. Of course, if the existence of a link is unknown, 
then its weight is obviously unavailable as well. However, even if the existence of a link is known, its weight may 
still be missing due to incomplete data, and in this case we need to estimate the missing weights. Unfortunately, 
only a few studies have focused on this second problem of weight prediction. Recently, Aicher et al. developed a 
weighted stochastic block model, that can be applied to infer both the existence and weights of links29. Zhao et al. 
proposed another method based on reliable routes to extend unweighted similarity indices to weighted ones30, 
which can be used to predict the weights of links by assuming that similarity scores are linearly correlated with 
link weights.

Although link prediction and weight prediction problems can be described by the same model, we believe it 
is better to separate these two tasks. First, they address different types of missing information, and therefore they 
CAN be separated. Second, according to the “no free lunch theorem”32, “if an algorithm performs well on a certain 
class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems”. 
Based on this theory, separately designed link prediction and weight prediction algorithms should achieve better 
prediction performance than a single model for predicting both the existence and weights of links. Thus, we pro-
pose the following general process to predict the missing information. If links are missing from the data, we first 
perform link prediction and then predict the weights of the recovered links. If all of the links are available and the 
weights of only some links are missing, then we skip straight to weight prediction. The link prediction step of this 
process has been studied extensively, but the weight prediction step remains largely un-investigated. Therefore, in 
this paper we will focus on the essential problem of weight prediction.

In this study, we try to predict weights of links with the help of local structural information. We develop a 
novel method for predicting weights by examining the network structure surrounding a node, namely, its set of 
neighbors. The algorithm can be used in two cases, depending on whether there are missing links to be recovered 
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or not. According to our assessments, the proposed method performs well in both cases. We hope this work may 
lead to a deeper insight into the design of weight prediction algorithms in weighted networks.

Results
Problem description. We are given an undirected weighted network G(V, E, W), where V, E and W denote 
the sets of nodes, links and link weights, respectively. Let Adj be the adjacency matrix of the network: if two 
nodes, say i and j, are connected, then we have aij =  1, where aij is the (i, j) entry of Adj; otherwise, aij =  0. Because 
the networks we considered here are undirected, the entries wij and wji of W are the same.

Usually, the incomplete information of networks, namely the missing links and their weights, is not available 
simultaneously. In this case, the prediction consists of two steps: link prediction and weight prediction. In the 
first step, our goal is to estimate the likelihoods of the existence of links in a given network. To do this, we assign a 
score, sxy, to each candidate node pair (x, y) ∈  U −  E, where U stands for the universe of possible links to quantify 
the likelihood that the node pair (x, y) is connected, with a higher score indicating a more likely connection. Then, 
all candidate pairs are sorted by their scores in decreasing order, so that the most likely existed links are those with 
the highest ranks. More details about link prediction will be given in the Methods section. In the second step, we 
predict the weights for the highest-ranked links.

In the case where all the links are available and only the weights of some links are missing, we need to perform 
only the second step, i.e., weight prediction.

A weight prediction method based on neighbor set. Our method relies on the assumption that 
the formation of link weights is regulated by local clusterings in which homogenous links tend to have similar 
weights. The local structure we considered is the neighbor set of a node, defined as the set of nodes linked to it, 
which captures a great deal of information about the node. For instance, in online social networks, the neighbors 
of a node represent the friends of a person. The co-existence of two people in the same neighbor set enhances the 
probability of their relationship changing from non-friends to friends.

Our method of weight prediction can be well explained by considering a simple example, illustrated in Fig. 1. 
If a link is generated between nodes a and b, then one wish to have a guess of the weight, wab, of link (a, b). Since 
nodes a and b appear together in neighbor set A, according to our fundamental hypothesis, the weight of (a, b) is 
related to the weights of other similar links in A. Because only one other link (b, c) exists, here we focus on exam-
ining its relationship to the candidate link. From our perspective, the weight of (b, c) is correlated with the weights 
of links to common node α. For example, if Fig. 1 is an illustration of social networks and weights of the network 
indicate time commitments, then the amount of time b spends with c depends on the time α spends with b and 
c33. If the events “α is with b” and “α is with c” are independent of each other, then the event “b is with c” would 
have probability equal to the product of their probabilities. Based on this, one can simply estimate wab as 

⋅α α⋅α α
w ww

w w a b
bc

b c
. If other similar links exist, an averaging strategy will be applied to combine the estimates. 

Similarly, one can use the weight of link (d, e) to infer the weight of link (a, f) across neighbor sets A and B by 
estimating the value of waf to be ⋅α β⋅α β

w ww
w w a f

de

d e
.

In practice, a node often belongs to more than one neighbor set. For example, in Fig. 1, node d belongs to 
both neighbor sets A and B. Indeed, any two candidate nodes may coexist in multiple neighbor sets. In this case, 
a natural approach is to calculate the individual contributions of different neighbor sets or pairs of neighbor sets 
to the candidate node pair and then combine them to obtain a more accurate weight. Viewed in terms of link 
formation, our hypothesis is that loosely connected clusterings are less likely than densely connected clusterings 
to form a link34 and thus contribute less to the link weight of the link once it is formed. Under this assumption, a 
more refined weight can be estimated based on the connection probabilities in or across different neighbor sets.

A detailed explanation is as follows. Suppose our goal is to estimate the weight of the link (x, y). Let Γ (x) be the 
set of neighbors of node x and Lxy

1  be the event that nodes x and y are connected. If nodes x and y both belong to 
the neighbor set of node α, i.e., x, y ∈  Γ (α), the weight of (x, y) can be written as

Figure 1. An illustration of neighbor set. In this example, neighbor set A is defined as the set of neighbors of 
node α, which are a, b, c and d. Neighbor set B consists of three nodes, namely, d, e and f. Note that node α and 
node β have one common neighbor, which belongs to both neighbor sets A and B. Within neighbor set A, 
because there is only one link, the existence probability for the remaining possible links is =

⋅ −
1/61

4 (4 1)/2
, 

while the remaining links in neighbor set B exist with probability =
⋅ −

1/31
3 (3 1)/2

. Connections across 
neighbor sets A and B exist with probability =

⋅
1/121

4 3
.
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which is the average clustering weight over links similar to (x, y). Note that we apply add-one smoothing to pre-
clude the possibility of an undefined fraction. Based on our hypothesis, in order to quantify the contribution of 
the neighbor set Γ (α) to the formation of wxy, we need to calculate the probability that the pair (x, y) is connected, 
given that both are in the neighborhood Γ (α). This probability can be estimated through
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where |·| denotes the number of elements in the set. In fact, Eq. (3) is the clustering coefficient of node α, given by 
the link density within the neighbor set Γ (α).

On the other hand, if nodes x and y belong to different neighbor sets, say x ∈  Γ (α), y ∈  Γ (β), the weight of (x, y)  
can be described as
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which is the average weight across clusterings. When nodes x and y appear in separate neighborhoods, we can 
use the connection probability across the two neighbor sets to measure their contribution to the formation of wxy. 
Then the probability that nodes x and y are connected can be written as

α β
α β
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Clearly, this equation measures the connection density across neighbor sets Γ (α) and Γ (β).
Finally, by considering the contributions of different neighbor sets to the formation probability of the link (x, y),  

we can estimate wxy by
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where α| ∈ Γp L x y( , ( ))xy
1  and α β| ∈ Γ ∈ Γp L x y( ( ), ( ))xy

1  are normalized probabilities, defined as
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respectively.

Experimental results. First, we consider the case where information is missing regarding both existence 
and weights of links. To validate the prediction accuracy, the observed links are randomly divided into two parts: 
training set ET and validation set EV, where ET is regarded as the given information, and EV is only used for testing. 
Clearly, we have ∪ =E E ET V  and ∩ = ∅E ET V . In this experiment, the training set contains 90% of the links, 
and the validation set contains the remaining 10%. With the help of link predictors, the candidate node pairs are 
sorted based on their scores. Then the top-L links are selected as the predicted link set EL. In this paper we set L as 
the size of validation set for the reason of weight prediction. After link prediction, the weight prediction algo-
rithm is conducted. The corresponding predicted weight set and actual weight set are denoted as Ŵ

L
 and WL, 

respectively. The actual weights for non-observed links are set to zero. In most cases, this default value is 
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reasonable. For example, in transportation networks, if there is no connection between two nodes, then the traffic 
flow directly between these two nodes is zero. For some special cases, this is not the appropriate default, such as 
for those networks whose weights denote distances between nodes. However, this default is appropriate for all 
networks we presented here. Then the accuracy of weight predictor can be estimated by calculating the Pearson 
correlation coefficient and root mean squared error (RMSE) between the vectors Ŵ

L
 and WL.

Table 1 compares the accuracy of the linear-correlation method30 (refer to the Methods section for details) 
with that of our method, as measured by the Pearson correlation coefficient under different link prediction 
approaches. Each Pearson correlation coefficient is calculated between the vectors of predicted and actual weights 
for the top-L ranked links. A larger correlation coefficient indicates more accurate linear correlation between 
predicted and actual weights. As shown in the table, almost all of the correlation coefficients achieved by our 
method are larger than those from the linear-correlation method under every link prediction algorithm, indi-
cating that the good performance is due to our method itself, regardless the detailed link prediction algorithms. 
The linear-correlation method assumes that weights of links measure similarities or affinities between nodes, so 
the correlation between similarities and weights is weak for those networks whose weights don’t exhibit similar-
ities between nodes, such as the Everglades network. On such networks the linear-correlation method performs 
poorly. In contrast, our method can be applied to a wider range of networks, in which weights do not necessarily 
characterize similarities between nodes.

We also calculate the RMSE between the vectors of predicted and actual weights for the top-L ranked links. 
Detailed results are summarized in Table 2. As shown in the table, in most networks the weights predicted by our 
method have remarkably smaller errors than those predicted by the linear-correlation method under a variety of 
link prediction algorithms. In Everglades and USAir1, our method performs similarly to the linear-correlation 
method as measured by RMSE. However, combining with the metric of Pearson correlation coefficient, we 
can find that our method performs significantly better than the linear-correlation method on those networks. 

Network\Index CN WCN rWCN AA WAA rWAA RA WRA rWRA

Celegans
0.89 0.887 0.887 0.875 0.872 0.868 0.866 0.863 0.847

0.964 0.965 0.964 0.965 0.965 0.964 0.965 0.966 0.966

Everglades
0.161 0.459 0.637 0.208 0.501 0.645 0.284 0.449 0.585

0.858 0.793 0.81 0.85 0.87 0.815 0.84 0.882 0.812

USAir1
− 0.0059 0.668 0.403 − 0.0711 0.346 0.375 − 0.0868 0.332 0.308

0.531 0.636 0.557 0.481 0.592 0.54 0.382 0.507 0.556

USAir2
0.944 0.942 0.939 0.926 0.924 0.92 0.774 0.768 0.756

0.995 0.995 0.995 0.995 0.995 0.995 0.994 0.994 0.994

Advogato
0.861 0.867 0.87 0.837 0.835 0.84 0.789 0.79 0.806

0.963 0.963 0.963 0.962 0.961 0.962 0.956 0.956 0.957

Geom
0.808 0.863 0.876 0.816 0.853 0.878 0.855 0.853 0.871

0.958 0.961 0.964 0.942 0.948 0.957 0.919 0.919 0.941

Table 1.  Comparison of prediction accuracy under the metric of Pearson correlation coefficient for the 
top-L ranked links. In each network, the first row is the results achieved by the linear-correlation method, while 
the second row shows the accuracy of our method. Each accuracy value is an average over 100 independent 
random divisions of the links into a training set and a validation set.

Network\Index CN WCN rWCN AA WAA rWAA RA WRA rWRA

Celegans
0.535 0.529 0.531 0.528 0.524 0.527 0.531 0.53 0.536

0.0587 0.0595 0.0583 0.0623 0.0629 0.0627 0.0616 0.0616 0.0607

Everglades
0.0821 0.0795 0.0978 0.089 0.107 0.104 0.101 0.116 0.11

0.0686 0.0806 0.124 0.082 0.118 0.135 0.102 0.127 0.132

USAir1
0.00217 0.00359 0.00419 0.00223 0.00426 0.00433 0.00216 0.00419 0.00441

0.00194 0.00485 0.00468 0.00197 0.00455 0.00477 0.0018 0.00445 0.00466

USAir2
0.73 0.73 0.731 0.729 0.729 0.73 0.726 0.725 0.724

0.045 0.0446 0.0442 0.0455 0.045 0.0447 0.053 0.0529 0.0499

Advogato
0.313 0.311 0.309 0.311 0.308 0.306 0.313 0.311 0.307

0.0408 0.0416 0.0424 0.0439 0.0457 0.0466 0.0506 0.0518 0.0528

Geom
0.435 0.419 0.41 0.39 0.377 0.37 0.369 0.358 0.347

0.0786 0.077 0.0767 0.11 0.105 0.0978 0.129 0.131 0.12

Table 2.  Comparison of prediction accuracy under the metric of root mean squared error for the top-L 
ranked links. In each network, the first row is the results achieved by the linear-correlation method, while the 
second row shows the accuracy of our method. Each accuracy value is an average over 100 independent random 
divisions of the links into a training set and a validation set.
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Furthermore, the linear-correlation method employs the information from the validation set to estimate the scal-
ing coefficient in Eq. (19). As a result, predictive information from the validation set leaks into the optimization 
step and will lead to optimistically biased performance estimates35. This does not happen in our method because 
only the information from the training set is used.

Next, we consider the case where only the weight information is missing. In this case, we can directly set EL as 
EV. For our method, the link prediction is not needed, and we can directly perform weight prediction. However, 
since the linear-correlation method uses link prediction to calculate the similarity scores SV, it actually still needs 
to perform both link prediction and weight prediction.

The Pearson correlation coefficient and RMSE between the vectors of predicted weights and actual weights are 
presented in Tables 3 and 4, respectively. Compared with the linear-correlation method, our method generally 
gives better estimates of weights in most networks. On the other hand, the advantages of our method are not so 
apparent when using RMSE to measure accuracy.

Altogether, empirical experiments indicate that the weights of links can be recovered more correctly by our 
method, in contrast to the linear-correlation method.

Furthermore, to assess the robustness of our method, we also present the accuracy results of weight predic-
tions on different sizes of training set (ranging from 40% to 90%) in Figs 2 and 3. The results demonstrate that 
the advantages of our method is not sensitive to the density of the network. Because the CN-based (CN, WCN 
and rWCN) indices have similar precisions in link prediction, our weight prediction method yields roughly the 
same results using these indices, as observed from the nearly identical points in Fig. 2. The same phenomenon 
also occurs by employing AA-based (AA, WAA and rWAA) and RA-based (RA, WRA and rWRA) indices. These 
figures also show that our method outperforms the linear-correlation method in most cases.

Discussion
In this paper, we explore the problem of weight prediction in weighted networks. A novel weight prediction algo-
rithm which examines the local structure of neighbor set is proposed. To assess the prediction accuracy of our 
method, empirical experiments are conducted on six real-world networks. The simulation results demonstrate 
that our method can predict weights much more accurately than the linear-correlation method as measured by 
the Pearson correlation coefficient and root mean squared error. Furthermore, our method can be used no matter 
whether the existence of links is missing or not.

Methods
Link prediction algorithms. As described above, if the existence of some links is unknown, we need to 
determine which candidate links are most likely to exist before inferring their weights. Plenty of methods have 
been proposed to address this link prediction problem. Among them, Common Neighbors (CN) is the sim-
plest framework to determine which non-connected node pair is more likely to become connected. Its basic 

Network\Index

Linear-correlation

OursCN WCN rWCN AA WAA rWAA RA WRA rWRA

Celegans 0.203 0.23 0.242 0.238 0.264 0.273 0.271 0.289 0.291 0.379

Everglades 0.137 0.177 0.415 0.141 0.291 0.455 0.157 0.271 0.406 0.799

USAir1 0.0403 0.554 0.305 0.0421 0.24 0.292 0.0712 0.224 0.218 0.513

USAir2 0.259 0.262 0.265 0.255 0.259 0.262 0.2 0.202 0.21 0.378

Advogato 0.234 0.262 0.289 0.247 0.275 0.303 0.255 0.274 0.314 0.4

Geom 0.181 0.332 0.45 0.207 0.34 0.496 0.19 0.246 0.517 0.545

Table 3.  Comparison of prediction accuracy under the metric of Pearson correlation coefficient when only 
the weight information is missing for some links. The validation set always contains 10% of the links from 
the example network. Each accuracy value is an average over 100 independent random divisions of links into a 
training set and a validation set. In each network, the best performance is emphasized in bold.

Network\Index

Linear-correlation

OursCN WCN rWCN AA WAA rWAA RA WRA rWRA

Celegans 0.207 0.206 0.206 0.206 0.204 0.204 0.204 0.203 0.203 0.203

Everglades 0.172 0.171 0.154 0.171 0.164 0.15 0.171 0.164 0.156 0.162

USAir1 0.00587 0.00482 0.00531 0.00587 0.00571 0.00536 0.00586 0.00573 0.00555 0.00593

USAir2 0.136 0.136 0.136 0.136 0.136 0.136 0.138 0.138 0.137 0.134

Advogato 0.107 0.106 0.105 0.106 0.105 0.105 0.106 0.105 0.104 0.108

Geom 0.173 0.166 0.158 0.173 0.166 0.153 0.173 0.171 0.151 0.185

Table 4.  Comparison of prediction accuracy under the metric of root mean squared error when only the 
weight information is missing for some links. The validation set always contains 10% of the links from the 
example network. Each accuracy value is an average over 100 independent random divisions of the links into a 
training set and a validation set. In each network, the best performance is emphasized in bold.
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Figure 2. Comparison of the Pearson correlation coefficient (r) for weight prediction accuracy under 
different link prediction algorithms with various training set sizes (f denotes the fraction of links from the 
original network which are used in the training set). The first column of figures shows the results under the 
CN-based methods, the second shows the AA-based methods and the third shows the RA-based methods.
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Figure 3. Comparison of the root mean squared error (e) for weight prediction accuracy under different 
link prediction algorithms with various training set sizes (f denotes the fraction of links from the original 
network which are used in the training set). The first column of figures shows the results under the CN-based 
methods, the second shows the AA-based methods and the third shows the RA-based methods.
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assumption is that two nodes are more likely to form a link if they have more common neighbors. However, CN 
is limited in that it assumes all common neighbors contribute equally to the connection likelihood. Therefore, 
several variants of CN have been proposed to remedy this oversight, such as Adamic-Adar (AA)36 and Resource 
Allocation (RA)15, which amplify low-degree common neighbors by assigning more weight on them. The precise 
scores assigned by the different methods are

∩= Γ Γs x y( ) ( ) , (10)xy
CN

∑
∩

=
+∈Γ Γ

s
k
1

log( 1)
,

(11)
xy
AA

z x y z( ) ( )

∑
∩

=
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s
k
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where kz is defined as the degree of node z.
In some real-world networks, links are naturally weighted. Murata and Moriyasu studied the way to extend 

similarity indices from unweighted networks to weighted networks27. Based on this method, the weighted ver-
sions of CN, AA and RA (denoted by WCN, WAA and WRA, respectively) are
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where wxz is the weight of link (x, z).
Zhao et al. proposed another strategy to generalize similarity indices from unweighted networks to weighted 

ones based on reliable routes30. The weighted versions of CN, AA and RA (denoted as rWCN, rWAA, rWRA, 
respectively) based on this method are
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Weight prediction algorithm for comparison. Now, with the aid of link prediction algorithms, we 
obtain a set of the candidate links most likely to exist. Because local information is applied for both our method 
and ref. 30, we compare our performance only with that method. In ref. 30, the authors assumed that the sim-
ilarity index for link prediction between two unconnected nodes also reflects their interaction strength. Then, 
inspired by a linear correlation between similarity scores and link weights in many empirical networks, they set 
the weights of missing links proportional to their similarity scores. Formally, let the weighted adjacency matrix 
corresponding to the training set ET and validation set EV be denoted by WT and WV, respectively and let SV be 
the vector of similarity scores for links in EV. Given the linear correlation mentioned above, we want to find the 
prediction function F(WT) =  λ · SV, which minimizes the difference between λ · SV and WV, where λ is a free 
parameter. This can be estimated by solving the following optimization problem:

λ ⋅ −
λ

S Wmin , (19)
V V

F

where ||·||F is the Frobenius norm, defined as the square root of the sum of the squares of the matrix’s elements. 
For the sake of brevity, we will call this weight prediction method linear-correlation in this paper.

Data description. In this work, we consider six networks to evaluate our new weight prediction method.  
1) Celegans1: a neural network of the nematode worm C. elegans, where nodes represent neurons, links join 
neurons if they have synaptic contacts, and the weight stands for the number of synapses between two neu-
rons. 2) Everglades37: a food web network describing carbon exchanges in the Everglades during the wet season, 
where each node represents a taxon, and an edge denotes that one taxon uses another as food, with link weights 
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representing trophic factors (feeding levels). 3) USAir137: a network of US air transportation, where the weights 
of links are the frequency of flights between airports. 4) USAir238: a network of flights between US airports in 
2010. The weight of a link shows the number of flights between two airports. 5) Advogato38: a trust network of the 
Advogato online community, where nodes represent users of Advogato, links represent trust relationships and 
weights indicate the trust levels between users. 6) Geom37: a collaboration network of researchers in the area of 
computational geometry, where nodes represent authors, links join authors if they have coauthored a paper and 
weights are the numbers of joint works. To compare the results across different data sets, all link weights are nor-
malized to fall with in the interval [0, 1] as in ref. 30.
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