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Identification of lncRNA functions 
in lung cancer based on associated 
protein-protein interaction 
modules
Chih-Hsun Wu1,2,*, Chia-Lang Hsu3,*, Pei-Chun Lu2, Wen-Chang Lin1,4, Hsueh-Fen Juan3,5 & 
Hsuan-Cheng Huang2

Long non-coding RNAs (lncRNAs) have been found to play important roles in various biological 
processes; however, many of their functions remain unclear. In this study, we present a novel approach 
to identify the lncRNA-associated protein-protein interaction (PPI) modules and ascertain their 
functions in human lung squamous cell carcinoma. We collected lncRNA and mRNA expression profiles 
of lung squamous cell carcinoma from The Cancer Genome Atlas. To identify the lncRNA-associated PPI 
modules, lncRNA-mRNA co-expression networks were first constructed based on the mutual ranks of 
expression correlations. Next, we examined whether the co-expressed mRNAs of a specific lncRNA 
were closely connected by PPIs. For this, a significantly connected mRNA set was considered to be 
the lncRNA-associated PPI module. Finally, the prospective functions of a lncRNA was inferred using 
Gene Ontology enrichment analysis on the associated module. We found that lncRNA-associated PPI 
modules were subtype-dependent and each subtype had unique molecular mechanisms. In addition, 
antisense lncRNAs and sense genes tended to be functionally associated. Our results might provide new 
directions for understanding lncRNA regulations in lung cancer. The analysis pipeline was implemented 
in a web tool, available at http://lncin.ym.edu.tw/.

Long non-coding RNAs (lncRNAs), more than 200 nucleotides in length but without protein-coding capacity, are 
a novel class of mRNA-like transcripts. They function in diverse cellular contexts by regulating chromatin struc-
ture and gene expression. lncRNAs function as epigenetic and transcriptional regulators by acting as scaffolds for 
the assembly of chromatin- and gene-regulating complexes, or as guides directing other regulators to specific sites 
in the genome, resulting in the activation or repression of gene expression1–4. Furthermore, lncRNAs can alter the 
post-transcriptional regulation of mRNA, cellular signaling, and protein activity through allosteric regulation4,5. 
Some lncRNAs can act as microRNA sponges to reduce the amount of microRNA available to target genes6–8. To 
obtain a better understanding of regulatory networks in cell, it is important to understand the function of each 
lncRNA.

According to the latest version of GENCODE annotation (v24), more than 15,000 lncRNAs have been iden-
tified; however, the biological and molecular characteristics of the large majority remain unknown. To acceler-
ate the study of lncRNA, many computational methods have been proposed for functional predictions. Current 
methods for the annotation of lncRNA functions rely on their association with protein-coding genes using gene 
co-expression9,10 and the competing endogenous RNA hypothesis11. However, these methods might associate 
lncRNA with many coding genes, which are not functionally related and this could result in high rate of false 
positives.
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To address this issue, we have developed a new computational pipeline to annotate lncRNA functions based 
on associated mRNA co-expression and protein-protein interaction (PPI) networks. Proteins do not function 
independently, but interact with others to mediate signaling pathways, cellular processes, and organismal systems; 
hence, PPI information can aggregate functionally related genes to a functional module. In our previous studies, 
an integration of gene expression and protein-protein interactions was successfully utilized to uncover the func-
tions of microRNAs in various cancers12,13. Therefore, PPI information might be also useful for investigating the 
function of lncRNAs.

To demonstrate the capacity of our proposed method, we investigated lncRNAs in lung cancer. Lung cancer 
is the main cause of cancer-related deaths worldwide. Based on histology, lung cancers can be classified as either 
small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). NSCLC makes up to 80% of lung can-
cers and accounts for the majority of cancer deaths worldwide; therefore, we focused on NSCLC. Recent studies 
have indicated that the abnormal expression of lncRNAs influences tumorigenesis and plays both oncogenic and 
tumor suppressive roles14–16 and suggested that lncRNAs could serve as diagnostic biomarkers and therapeutic 
targets in lung cancer17. In this study, we analyzed the mRNA expression datasets of the NSCLC human lung 
squamous cell carcinoma (LUSC) obtained from The Cancer Genome Atlas (TCGA) project, and found that 
several lncRNAs may play critical roles in the tumorigenesis of different LUSC subtypes.

Results and Discussion
Overview of the analysis pipeline. To increase the understanding of lncRNA functions, we proposed a 
novel computational method to predict functions by identifying lncRNA-associated modules in protein-protein 
interaction networks. The analysis pipeline is depicted in Fig. 1. Firstly, lncRNA-mRNA co-expression networks 
were constructed. The co-expression level between lncRNA and mRNA was calculated using the Spearman cor-
relation coefficient (SCC), as it is less sensitive to outliers. The mutual rank (MR) index was used to define the 
co-expressed lncRNA-mRNA pairs because a pair with low expression similarities might work together if no 
other mRNAs are highly co-expressed. It has been documented that MR is a better measure of similarity than the 
correlation value in order to identify related genes18. The top-scoring mRNAs were selected as the co-expressed 
mRNAs for each lncRNA. Subsequently we examined whether there were a significant number of pairs among 
lncRNA-co-expressed mRNAs connected by PPIs using a permutation test. The significantly connected subset 
of lncRNA-co-expressed mRNAs was defined as the lncRNA-associated PPI module. Finally, we performed gene 
ontology (GO) enrichment analysis on the lncRNA modules to understand the regulatory functions.

Construction of the lncRNA-mRNA co-expression network in lung squamous cell carcinoma.  
We obtained 113 LUSC tumor samples from TCGA project. According to the re-annotation of the Affymetrix 

Figure 1. The flowchart of lncRNA-associated PPI module identification For a given lncRNA and mRNA 
expression profiles, the correlations between each pair (lncRNA and mRNA) were measured using the 
Spearman’s correlation coefficient (SCC). The co-expressed mRNAs were then determined using the mutual 
correlation rank score (MR), the geometric average of the absolute value of SCC (|SCC|) rank from lncRNA to 
mRNA and vice versa. For each lncRNA, the top-scoring mRNAs were selected as the co-expressed mRNAs 
(lncRNA-associated mRNAs). Subsequently we used protein-protein interaction analysis of co-expression 
mRNAs to find lncRNA-associated PPI modules. Finally, we performed gene ontology enrichment analysis on 
the associated mRNAs of each lncRNA module to understand their regulatory functions.
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exon array probes19, this dataset consisted of 10,207 lncRNAs and 18,319 mRNAs. The top 0.1% of lncRNA-mRNA 
pairs based on MR index (i.e. ≤ × × . ≈ .MR 10207 18319 0 001 13 6) were considered as co-expressed pairs. 
A total of 99,175 co-expressed lncRNA-mRNA pairs consisting of 10,063 lncRNAs and 18,207 mRNAs were 
determined. On average, each lncRNA had 9.8 co-expressed mRNAs (Figure S1).

lncRNA-co-expressed mRNAs tended to be connected by PPI. Among the 10,063 lncRNAs, the 
co-expressed mRNAs of only 740 lncRNAs were connected by at least one PPI. To examine whether the number 
of PPIs connecting co-expressed mRNAs of a given lncRNA was observed by chance, the real lncRNA-mRNA 
co-expression network was compared to 1,000 random co-expression networks whose topological properties 
were identical to the real one, but mRNAs were re-sampled. We found that the frequency of lncRNAs with 
co-expressed mRNAs connected by at least one PPI in real co-expression networks (7%) was higher than that 
in random co-expression networks (Fig. 2a). Then we compared the distribution of mean number of PPIs of 
740 lncRNAs in real and random co-expression networks, and found the mRNAs co-expressed with a lncRNA 
have significantly higher number of connections via PPIs (p <  2.2 ×  10−16, Fig. 2b). Because the number of 
co-expressed mRNAs may affect the observed number of PPIs, we also examined the distribution of interaction 
density of 740 lncRNAs and found that the interaction density of these lncRNAs was still significantly higher than 
that in random co-expression networks (p <  2.2 ×  10−16, Fig. 2c). These results indicated that the co-expressed 
mRNAs for a lncRNA tended to be connected by PPIs.

Next, we examined whether the mRNAs which are co-expressed with a lncRNA and connected by PPIs tend to 
be involved in similar biological processes. The co-expressed mRNAs without any PPI connections were ignored. 
There were 1,653 mRNAs connected by 2,264 PPIs. The functional similarity scores of these 2,264 pairs were 
calculated using the R package GoSemSim20. Random pairs were generated by permutating these 2,264 PPI pairs 
and the functional similarity scores of these random pairs were calculated as a background distribution. In com-
parison with the background distribution, the functional similarities among PPIs from lncRNA-co-expressed 

Figure 2. Functional and correlation analysis of lncRNA-associated PPI modules. (a) Frequency of lncRNAs 
which co-expressed mRNAs are connected by at least one PPI in real (red) and random (blue) co-expression 
networks. (b) Distributions of mean number of PPIs for co-expressed mRNAs of each lncRNA in real (red) and 
random (blue) co-expression networks. Purple area is the overlap of the two distributions. (c) Distributions of 
the mean density of PPIs in real (red) and random (blue) co-expression networks. Purple area is the overlap of 
the two distributions. (d) Cumulative density plots for GO similarity between mRNA-mRNA pairs which are 
both co-expressed with a given lncRNA and connected via PPIs (red) and random pairs (blue). The p-value was 
calculated by the KS test. (e) Cumulative density plots for two SCC distributions of 1,257 mRNA-mRNA pairs 
in dense modules and 151 mRNA-mRNA pairs in loose modules. The p-value was calculated by KS test. (f) The 
mean of SCC for all mRNA-mRNA pairs in 106 dense modules and 33 loose PPI modules.
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mRNAs were significantly high (p <  2.2 ×  10−16, Fig. 2d). These indicated that integrating co-expression and PPI 
information might be useful for identifying the associated functions of a lncRNA.

Identification of lncRNA-associated PPI modules in generic and subtypes of lung squamous 
cell carcinoma. The 740 lncRNAs whose co-expressed mRNAs were connected by at least one PPI were 
further analyzed to identify the lncRNA-associated PPI modules. A permutation test was used to assess whether 
the co-expressed mRNAs of a lncRNA interacted with each other more frequently than expectation. If the num-
ber of PPIs among the lncRNA-co-expressed mRNAs were significantly higher (p <  0.05), they are defined as a 
dense lncRNA-associated PPI module. Otherwise, they are called a loose module. There were 466 lncRNAs whose 
co-expressed mRNAs form dense modules in the PPI network. To demonstrate that these lncRNA-associated 
dense modules were biologically meaningful, the expression correlations and functional similarities among 
components of the modules were assessed. We hypothesized that the dense modules would tend to have higher 
expression correlations and functional similarities than loose modules. In addition, the module sizes were also 
considered because the modules with fewer components may not have had sufficient biological functions for fur-
ther analysis. With different module size thresholds, we compared the distribution of the expression correlation 
and functional similarities between the identified dense and loose modules (Figures S2 and S3). Using a threshold 
of module size ≥  6, 1,257 mRNA-mRNA pairs in dense modules had a significantly higher expression correlation 
than 151 mRNA-mRNA pairs in loose modules (p =  0.03, Fig. 2e). The SCC mean of all the mRNA-mRNA pairs 
in the 106 dense modules was also higher than that of the 33 loose modules (Fig. 2f). Moreover, the mRNAs in 
dense modules with six or more co-expressed mRNAs had significantly higher functional similarities than those 
in loose modules with an identical component size threshold (p =  0.0017, Figure S3). To brevity we shall refer 
to the dense module as the lncRNA-associated PPI module. Therefore, using a threshold module size of six, we 
finally obtained 106 lncRNA-associated PPI modules.

We were also interested in the subtype-specific lncRNA-associated PPI modulate in LUSC. There are four 
main gene expression subtypes for LUSC: the classical, basal, secretory, and primitive subtypes. Each subtype 
has different molecular and clinical characteristics21,22. To identify the subtype-specific lncRNA-associated PPI 
modules, we applied the same analysis approach on samples from each subtype. In these datasets, there were 31 
classical, 25 basal, 20 secretory, and 13 primitive subtype samples, while the remaining 24 samples were unknown. 
The primitive lung cancer samples were excluded for further analysis due to their small sample size. Using the 
same criteria (permutation test p <  0.05 and module size ≥  6), there were 48, 50, and 53 lncRNA-associated PPI 
modules identified in classical, basal, and secretory LUSC, respectively.

The associated modules revealed the functions of well-studied lncRNAs. The functional enrich-
ment analysis was performed on each lncRNA-associated PPI module. The enriched functions (corrected 
p <  0.05) for each lncRNA-associated PPI module in generic and each subtype LUSC can be found in the Lncin 
website (http://lncin.ym.edu.tw/Case_Lung/Lung_result.php?id= cancer_lung#Predict).

To demonstrate the capability of our analysis pipeline, we investigated 18 well-studied lncRNAs and found 
that our method could reveal the involved functions of these lncRNAs in most cases (Table S1). For exam-
ple, SNHG6 is associated with ribosomes and is relatively resistant to nonsense-mediated mRNA decay23. 
The SNHG6-associated PPI module in generic LUSC was illustrated in Fig. 3a. The genes in the generic 
SNHG6-associated PPI module were enriched in ribosome-related functions (corrected p <  0.05, Fig. 3b). MEG3 
is important for proper growth and development, and is considered to be a putative tumor suppressor through 
the activation of p53 and inhibition of cell proliferation24,25. The functional analysis of MEG3-associated modules 
identified in classical LUSC revealed that the majority of MEG3-associated genes were related to extracellular 
structure organization, cell migration, cell adhesion, and growth (Figure S4), consistent with previous studies. 
MALAT1 has been considered to be a oncogene that promotes tumorigenesis26 and regulates gene expression by 
altering the histone modifications on chromatin27. In our analysis, the MALAT1-associated module was identi-
fied in classical LUSC, and the components of this module were enriched in chromatin modification functions 
(Figure S5). TUG1 has been reported to promote cell proliferation in many cancer types, including osteosar-
coma28, non-small cell lung cancer29, and esophageal squamous cell carcinoma30. TUG1 also promotes migration 
in esophageal squamous cell carcinoma30. In our study, the TUG1-associated module was identified in classical 
LUSC, and the function analysis showed that TUG1 functions were related to the regulation of cell proliferation, 
positive regulation of growth, regulation of the cell cycle, and regulation of cell adhesion (Figure S6).

Although our method could reveal the prospective functions of lncRNA functions mostly, it failed in a few 
cases. For example, FAM3D-AS1 is involved in the migration and cell proliferation in head and neck squamous 
cell carcinoma31, but our inferred functions in basal LUSC are RNA splicing and peptidyl-amino acid modifi-
cation (Table S1). The inconsistency might be due to the difference in cancer cell types since lncRNAs may play 
different roles in different cell lines, tissues and cancers. In addition, the incomplete GO and PPI information 
could influence the effectiveness of our approach.

Functions of lncRNA-associated PPI modules in generic lung squamous cell carcinoma. The 
assembled network of 106 lncRNA-associated PPI modules in generic LUSC revealed that the majority of lncR-
NAs were connected through common co-expressed mRNAs or PPIs (Fig. 4a). We performed GO enrichment 
analysis of all the lncRNA-associated mRNAs to investigate the possible biological functions of lncRNAs in over-
all generic lung cancer. The enriched functions (corrected p <  0.05) included multi-organism processes, macro-
molecular complex subunit organization, mRNA metabolic processes, gene expression, extracellular structure 
organization, cellular component disassembly, and immune system processes.

Although the majority of lncRNAs were in the largest connected component, this network could be bro-
ken down to subnetworks. The distance matrix of lncRNAs was generated by calculating the overlap of 

http://lncin.ym.edu.tw/Case_Lung/Lung_result.php?id=cancer_lung#Predict
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lncRNA-co-expressed mRNAs. Hierarchical clustering was performed to break down the largest connected com-
ponent of the network. After the removal of clusters with less than five lncRNAs, seven clusters were identified 
(Fig. 4b). The GO enrichment analysis on these seven clusters revealed that lncRNAs in each cluster might be 
associated with specific functions (Fig. 4c). The lncRNA modules in Cluster 1 were enriched with biological 
processes such as cell activation, the antigen receptor-mediated signaling pathway, and regulation of the immune 
response. Cluster 2 was enriched with the humoral immune response, regulation of ion homeostasis, calcium ion 
transport, and regulation of the cellular response to stress, including positive regulation of the stress-activated 
MAPK cascade and positive regulation of the JNK cascade. Cluster 3 was enriched with extracellular structure 
organization and biological adhesion, and Cluster 4 was enriched with translation. Cluster 5 was enriched with 
the fibroblast growth factor receptor-signaling pathway and the ERBB signaling pathway. Cluster 6 was enriched 
with mRNA transport, RNA splicing, and the cell cycle. Cluster 7 was enriched with the post-transcriptional reg-
ulation of gene expression and intracellular receptor signaling pathways. The results indicate that lncRNAs might 
play diverse roles in generic LUSC samples.

The comparison and functions of subtype-specific lncRNA-associated PPI modules. The com-
parison of lncRNAs-associated modules derived from each subtype and generic samples revealed that the overlap 
of co-expressed mRNAs and lncRNAs among different subtypes were quite low (Fisher’s exact test, left-sided 
p <  0.02, Fig. 5a,b). In addition, there were 35 lncRNAs which associated PPI modules were identified in at least 
two subtypes, but the components of the subtype-specific module of a given lncRNA were different (Table S2). 
Interestingly, we examined the functional similarity between modules associated by a given lncRNA in different 
subtypes, and 13 of lncRNAs display significantly high in functional similarity scores (functional similarity >  0.8, 
Table S2). This suggests that some lncRNAs may play similar roles in different subtype LUSC by regulating differ-
ent genes, while some of them play quite different roles in each subtype.

Figure 3. SNHG6-associated PPI module and its enriched functions in generic LSCC. (a) The SNHG6-
associated PPI module is visualized as a graph. Hexagon and oval node denote lncRNA and mRNA. Edge color 
represents different interaction type. (b) Enriched GO terms derived from the SNHG6-associated PPI module 
are visualized as a network. Nodes represent enriched GO terms (corrected p <  0.05) and links between the 
nodes represent the overlap score calculated from the number of genes two GO terms share (threshold =  0.85). 
Node color encodes the statistical significance of enrichment analysis. The node size is proportional to the 
number of genes belonging to the corresponding GO term.
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The integrative network of the identified modules in each subtype of LUSC showed that some 
lncRNA-associated PPI modules could connect to form a large module (Fig. 5c–e). We performed the GO 
enrichment analysis on clusters, which contained at least two lncRNA-associated PPI modules, to determine 
lncRNA-involved biological processes. We found that some functions, such as RNA splicing and chromatin mod-
ification, were enriched in all three subtypes (corrected p <  0.05) and that each LUSC subtype had unique molec-
ular mechanisms. For example, most lncRNAs identified in secretory LUSC might be involved in immune-related 
signaling pathways, including the JAK-STAT cascade, regulation of I-kappaB kinase/NF-kappaB signaling, 
and the toll-like receptor signaling pathway (Fig. 5f), consistent with a previous study that suggested secretory 
LUSC is related to immune system processes21. In addition, the secretory LUSC-specific lncRNAs were uniquely 
related to the processes of cell proliferation, cell death, and cell cycle function. Previous work has indicated that 
secretory-type cell lines were less sensitive to the most effective anticancer drugs, due to low proliferation activity32.  
Our investigation suggests that these lncRNAs might be associated with the low drug-sensitivity of secretory 
LUSC.

Antisense lncRNAs tend to play similar roles as sense genes. Many identified lncRNAs are located 
on the antisense strand of DNA opposing a known gene in the genome. Because some antisense lncRNAs 
modulate the expression of sense genes33, we were interested in whether antisense lncRNAs participate in the 
same functions as the sense genes. To address this, we examined several antisense lncRNAs. GLUT1-AS1 is the 
tail-to-tail antisense of the glucose transporter 1 (GLUT1) which is selectively essential for CD4 T cell activation34. 
The enriched functions of the GLUT1-AS1-associated module in secretory LUSC included positive regulation of 
T cell activation and immune effector processes (Figure S7). We also found that GLUT1-AS1 was negatively cor-
related with their associated genes (Figure S7), and had lower expression in secretory LUSC compared with other 
subtypes (Fig. 6a). TBA5-AS1 is the tail-to-tail antisense of T-box 5 (TBX5) which is a transcription factor and 
is associated with lung agenesis35. Our results showed that the components of the TBX5-AS1-associated module 
in classical LUSC were significantly enriched in extracellular structure organization (Figure S8). BHLHE40-AS1 
is the tail-to-tail antisense of the transcription factor basic helix-loop-helix family member e40 (BHLHE40). 

Figure 4. Generic lncRNA-associated PPI modules, the similarity of lncRNAs, and the functions of seven 
clusters in lung cancer. (a) The assembled networks of all lncRNA-associated modules were visualized as 
graph. The gray nodes represent the mRNAs, the remaining nodes represent the lncRNAs. The different colors 
correspond to different network clusters from (b). The gray lines represent the PPIs among these lncRNA-co-
expressed mRNAs, and the remaining lines represent the co-expressed pairs of lncRNAs and mRNAs.  
(b) Clustering of the lncRNAs in the largest subnetwork in (a). The similarity of lncRNAs was determined using 
the common lncRNA-co-expressed mRNAs. The hierarchical clustering with average linkage was performed 
using GAP software. The lncRNAs were classified into seven clusters. (c) Comparison of enriched biological 
functions among seven lncRNA clusters. The GO terms which are significantly enriched (corrected p <  0.05) in 
at least one of clusters were retained, and the p-values of each GO term in all clusters were converted to − log10 
p as the raw matrix for visualization. The heatmap and dendrogram plot showing similarity between lncRNA 
clusters were generated using GAP software with Pearson correlation and complete linkage.
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BHLHE40 is negatively related with the cancer TNM stage classification and inhibits proliferation in NSCLC36. 
Our results showed that the function of the BHLHE40-AS1-associated module in secretory LUSC was related to 
the regulation of cell proliferation and cell adhesion (Figure S9). These examples reveal that antisense lncRNAs 
and sense genes tend to be involved in similar biological processes.

miR-143 and its host lncRNA tend to play similar roles. In our analysis, we identified some host 
lncRNAs of microRNAs–associated module, such as MIR143 host gene (MIR143HG)–associated module was 
recognized in the secretory LUSC subtype and miR-143 located at the exon of the MIR143HG, so we assessed 
whether there was any functional association between a microRNA and its host lncRNA. The MIR143HG–asso-
ciated module was only identified in the secretory LUSC subtype, and indeed, the expression of MIR143HG in the 
secretory subtype was significantly higher compared with the classical subtype (p =  0.0056, Fig. 6b). The expres-
sion of mRNAs in the MIR143HG-associated PPI module in secretory LUSC were all positively correlated with 
MIR143HG, and these mRNAs were enriched in functions related to extracellular matrix organization and cell 
adhesion (Figure S10). Many studies have reported that the overexpression of miR-143 inhibited cell migration 
and invasion37,38. Hence, MIR143HG and miR-143 might be involved in similar biological processes via different 
regulatory mechanisms, whereby MIR143HG activates targets and miR-143 represses targets.

Figure 5. lncRNA-associated PPI modules and their functions in different lung cancer subtypes. (a) Venn 
diagram showing the number of mRNAs in lncRNAs-associated modules derived from the overall generic lung 
cancer dataset, as well as the lung cancer subtypes, including classical, basal, and secretory. (b) Venn diagram 
showing the number of lncRNAs in lncRNAs-associated modules derived from generic lung cancer and each 
lung cancer subtype. (c–e) The assembled network of lncRNA-associated PPI modules identified in the classical 
(c), basal (d), and secretory (e) subtype of lung cancers. The blue and red nodes denote lncRNAs and mRNAs, 
respectively. The lncRNAs which are connected via co-expressed mRNAs or PPI were highlighted in colors 
and their enriched functions (Fisher’s exact test, corrected p <  0.05) are described in the box. (f) Comparison 
of enriched biological functions among three subtypes of lung cancer. The GO terms which are significantly 
enriched (corrected p <  0.05) in at least one of subtypes were retained, and the p-values of each GO term in all 
clusters were converted to − log10 p as the raw matrix. The heatmap and dendrogram plot showing similarity 
between subtypes were generated using GAP software with Pearson correlation and complete linkage.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:35939 | DOI: 10.1038/srep35939

Conclusions
Because the biological and molecular characteristics of the most lncRNAs remain unknown, this work pre-
sents a new computational pipeline for functional annotation of lncRNAs. Our method utilized not only the 
lncRNA-mRNA co-expression networks based on the rank of correlation which is a better measure of similarity 
than the correlation value, but also protein-protein interactions among co-expressed mRNAs to identify a set 
of mRNAs that may be modulated by lncRNA. Our analysis results revealed that the co-expressed mRNAs for 
a lncRNA tended to be connected by PPIs and the functions of a lncRNA could be inferred from its connected 
co-expressed mRNAs. We implemented a practical tool, named “Lncin”, for our methodology, and it is freely 
available at http://lncin.ym.edu.tw/. It provides a user-friendly interface for non-bioinformatics experts to deter-
mine the lncRNA-associated PPI modules and investigate the unknown or novel functions of lncRNAs.

For well-studied lncRNAs, our method could express their prospective functions to a certain extent. For anti-
sense lncRNAs, our analysis indicates that these lncRNAs and their antisense genes tend to be involved in similar 
biological processes. Similarly, miR-143 and its host lncRNA tend to play similar roles. These findings might pro-
vide new directions to further understand the lncRNA regulation based on the associated PPI modules.

We applied this method to LUSC dataset and found that lncRNA-associated PPI modules are 
subtype-dependent because the overlap of co-expressed mRNAs and lncRNAs among different subtypes were 
quite low. In addition, the predicted functions of lncRNAs revealed that each LUSC subtype might be associ-
ated with different pathogenesis mechanisms. We also identified several lncRNAs might play critical roles in 
the tumorigenesis of different LUSC subtypes. Although a few common lncRNAs were identified in different 
cancer subtypes, the components of associated PPI module were quite different between subtypes. The common 
lncRNAs may play different roles in different subtypes by regulating different genes, but some of them play sim-
ilar functional roles in different subtypes. These subtype-specific lncRNAs might be useful for understanding 
subtype-specific carcinogenesis and developing subtype-specific treatment strategies.

Materials and Methods
lncRNA and mRNA expression profiles. The lncRNA and mRNA expression profiles for LUSC were 
collected from TCGA19. According to the re-annotation of microarray probes19, this expression dataset consisted 
of 10,207 lncRNAs and 18,319 mRNAs.

Construction of the lncRNA-mRNA co-expression networks. The lncRNA-mRNA co-expression 
networks were constructed based on the rank of correlations. The correlations between lncRNAs and mRNAs 
were evaluated by the Spearman correlation coefficients (SCC) and their absolute values |SCC| were used to rank 
lncRNAs and mRNAs. For each pair, mRNA A and lncRNA B, the mutual rank (MR) index was calculated as a 
geometrically average of the SCC rank from A to B and that from B to A as follows:

= ×→ →MR Rank Rank (1)A B B A, A B

To reduce the false discovery rate, we considered the top 0.1% of pairs to be co-expressed, namely 
≤ × × . ≈ .MR 10207 18319 0 001 13 6.

Identification of lncRNA-associated PPI modules. The protein-protein interaction data were collected 
from the following databases: MINT39, BioGRID40, DIP41, HPRD42, and IntAct43. The protein identifiers of each 

Figure 6. Comparison of the expression of GLUT1-AS1 and MIR143HG among lung cancer subtypes.  
(a) The expression levels of GLUT1-AS1 in classical (red), basal (green), and secretory (blue) lung cancer 
subtypes. (b) The expression levels of the MIR143 host gene in classical (red), basal (green), and secretory (blue) 
lung cancer subtypes. The p-value was calculated by the KS test (**p <  0.01).

http://lncin.ym.edu.tw/
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database were mapped using the Entrez Gene ID44. There were 15,472 proteins and 143,300 interactions in total 
after removing self- and duplicate interactions.

The selected lncRNAs whose co-expressed mRNAs were connected by at least one PPI were further examined 
using the following permutation test. For a lncRNA with n co-expressed mRNAs connected by x PPIs, we ran-
domly selected a set of n mRNAs from the pool of 18,319 mRNAs and counted the number of PPIs connected 
among this set of randomly selected mRNAs. We repeated this procedure for 1,000 times and calculated the mean 
(μ ) and standard deviation (σ ) of the numbers of PPIs in the 1,000 random mRNA sets. The observed value x was 
converted to z-score by µ σ= −z x( )/ , and the corresponding p-value can be obtained. If p <  0.05, the lncRNA 
and its co-expressed mRNAs connected by PPIs were defined as a dense lncRNA-associated PPI module. 
Otherwise, if p >  0.05, they were called a loose module.

We further disregarded the modules with less than six co-expressed mRNAs since they could fail in functional 
enrichment analysis. Finally, 106, 48, 50, and 53 lncRNA-associated PPI modules were recognized in generic, 
classical, basal, and secretory lung cancer subtype samples, respectively.

Functional enrichment analysis. The gene ontology enrichment analysis were performed on all 
lncRNA-associated PPI modules from the overall generic lung cancer dataset, as well as the lung cancer subtypes, 
including classical, basal, and secretory. The Fisher exact test was used to calculate the statistical significance of 
each GO term, and then the p-values were corrected using the Benjamini-Hochberg procedure. The GO terms 
with corrected p-value <  0.05 were considered as enriched functions. The results of functional enrichment anal-
ysis can be found in the “Lncin” website which is freely accessible at http://lncin.ym.edu.tw/Case_Lung/Lung_
result.php?id= cancer_lung#Predict.

For each lncRNA, the enriched functions (corrected p-value <  0.05) were graphically organized into a net-
work, where each GO term is a node and edges represent gene overlap between GO terms45. The gene overlap 
was scored by the arithmetic average of Jaccard coefficient (JC) and Simpson coefficient (SC) defined as follows:

∩
∪

=JC
A B
A B (2)

∩=SC
A B

A Bmin( , ) (3)

where A and B are two gene-sets. An edge which overlap score passes a threshold was presented in the networks. 
The networks were visualized by Cytoscape46.

Functional similarities of a gene set. For a gene set G =  (g1, g2, … , gn), the functional homogeneity of G, 
fm, was defined as:

=
∑ = = +
≤

fm
s

C (4)

i j i
i n

g g

n
1, 1 ,

2

i j

where s is the functional similarity between gi and gj based on GO annotation, and C is the combination function. 
The functional similarity was calculated using the R package GoSemSim20 with the “Rel” method to measure 
semantic similarity and the “BMA” method to combine the scores.

Interaction density of a gene set. For a gene set G =  (g1, g2, … , gn), the interaction density of G, d, was 
defined as:

=d k
C (5)n

2

where k is the number of interaction existing among the gene set and C is the combination function.

Clustering of lncRNA modules. The association between lncRNAs was assessed by calculating the overlap 
between lncRNA-associated PPI modules. The association index between lncRNA A and B was calculated by:

=
+

I
JC SC

2 (6)A B
A B A B

,
, ,

where JC and OC are the Jaccard coefficient and Simpson coefficient defined as:

∩
∪

=JC
G G
G G (7)

A B

A B

A B,

∩=SC
G G

G Gmin( , ) (8)
A B

A B

A B,

http://lncin.ym.edu.tw/Case_Lung/Lung_result.php?id=cancer_lung#Predict
http://lncin.ym.edu.tw/Case_Lung/Lung_result.php?id=cancer_lung#Predict
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where GA and GB denote the associated mRNAs of lncRNA A and B, respectively. This association index was used 
as the similarity between lncRNAs, and the average-linkage hierarchical clustering was performed using GAP 
(Generalized Association Plots)47.
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