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A role for intestinal TLR4-driven 
inflammatory response during 
activity-based anorexia
Liliana Belmonte1,2,3,4,*, Najate Achamrah1,2,3,4,*, Séverine Nobis1,2,3, Charlène Guérin1,2,3,  
Gaëtan Riou1,3,5, Christine Bôle-Feysot1,2,3, Olivier Boyer1,3,5,6, Vincent Richard1,3,7, 
Jean Claude Do Rego1,3,8, Pierre Déchelotte1,2,3,4, Alexis Goichon1,2,3 & Moïse Coëffier1,2,3,4

Anorexia nervosa (AN) is associated with low-grade systemic inflammation and altered gut microbiota. 
However, the molecular origin of the inflammation remains unknown. Toll-like receptors are key 
regulators of innate immune response and their activation seems also to be involved in the control 
of food intake. We used activity-based anorexia (ABA) model to investigate the role of TLR4 and its 
contribution in anorexia-associated low-grade inflammation. Here, we found that ABA affected early 
the intestinal inflammatory status and the hypothalamic response. Indeed, TLR4 was upregulated 
both on colonic epithelial cells and intestinal macrophages, leading to elevated downstream mucosal 
cytokine production. These mucosal changes occurred earlier than hypothalamic changes driving to 
increased levels of IL-1β and IL-1R1 as well as increased levels of plasma corticosterone. Paradoxically, 
TLR4-deficient mice exhibited greater vulnerability to ABA with increased mortality rate, suggesting a 
major contribution of TLR4-mediated responses during ABA-induced weight loss.

Anorexia nervosa (AN) is a serious eating disorder characterized by a significant malnutrition (more than 15% 
BMI deficit), a fear of gaining weight, and an excessive obsession about body shape and weight1. AN is most 
prevalent in adolescent girls and young women and it is associated with the highest rates of mortality between 
all psychiatric disorders although more recent studies report less severe mortality rates2,3. The molecular mech-
anisms underlying the outset, progression and maintenance of AN remain poorly understood. The concept of 
microbiota-gut-brain axis in the regulation of food intake has emerged in the last years4.

Recent studies have demonstrated the presence of autoantibodies directed against neuropeptides regulating 
food intake4–8 and the origin of these autoantibodies seems to be in the gut9. In this context, alterations of the 
gut barrier function could play a key role in the pathophysiology of eating disorders and particularly in AN by 
increasing endotoxemia and low grade inflammation. We previously reported increased colonic permeability 
in anorectic male mice10. Elevated chemokine and pro-inflammatory cytokine levels have been reported during 
AN11 and plasma levels of TNF-α  were correlated to AN duration12. Toll-like receptors (TLRs) activation seems 
also to be involved in the control of food intake13. TLRs are key regulators of innate immune response to bacteria 
and have been proposed to act as a connection between inflammation and metabolism. TLR4 principally rec-
ognizes bacterial lipopolysaccharide (LPS) and its activation mainly leads to the synthesis of pro-inflammatory 
cytokines and chemokines. Studies in animal models demonstrate that mice deficient in TLR4 were protected 
from high-fat-diet-induced obesity13,14. It has been shown that TLR4 plays an important role in obesity-associated 
inflammation and insulin resistance15,16; however regulation of TLR4 during AN has not been investigated.

Pro-inflammatory cytokines produced both peripherally and centrally can have profound effects on the brain 
function (e.g, melanocortin system in the hypothalamus) relevant to behavior and possibly can disturb anorexic 
food comportment17,18. In addition cytokines can also modulate the release of gastrointestinal hormones that 
impact food intake regulation17. Disturbances of bidirectional gut-brain system have been involved in a wide 
range of disorders, including obesity and eating disorders. Even if accumulating evidence suggests hypothalamic 
dysfunction in AN19, it is still unclear whether this dysregulation is a primary event or secondary to the starvation 
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and weight loss. Our hypothesis is that alterations of the gut barrier function could activate the intestinal immune 
response during the early period of food restriction, and could act as a trigger for systemic low-grade inflamma-
tion during AN.

Thus, the present study aimed to analyze intestinal TLR4 signaling pathway activation during activity-based 
anorexia (ABA), as well as the hypothalamic immune response to early weight loss. We used TLR4 knockout (KO) 
mice to test the effect of TLR4 on ABA induction. We used the ABA model since it is one of the most widely used 
animal models for the study of AN20,21.

Results
Activity-based anorexia model. Physiological and behavioral measures during food restriction. We 
observed that body weights of female mice remained similar in the three groups (control group “ad libitum” 
(CT), ABA group and control group “limited food access” (LFA) during the adaptation phase (d1 to d5, Fig. 1A). 
However, over the first 5 days of limited food access (d6 to d11), body weight rapidly decreased in ABA and LFA 
mice. At d11, ABA mice lost 15.2% of their weight compared to d6, whereas LFA mice lost 10.7%. Thereafter, body 
weight slightly decreased in ABA and LFA mice until d17. We found that weight loss was more marked in ABA 
compared with LFA mice from d15 to d17 (p <  0.05). Cumulative food intake was similarly reduced in ABA and 
LFA groups compared with CT whereas cumulative water intake was not affected (data not shown).

We also analyzed the physical activity in ABA mice throughout the adaptation phase (d2 to d6) and we 
observed that it was mainly present during the dark phase (Fig. 1B). Then, from d7 to d10 (beginning of lim-
ited food access), the wheel activity was increased (7.75 km/d at d7 vs 8.45 km/d at d10, p <  0.05). Subsequently 
from d10, there was a clear trend of decrease in wheel activity but it remained elevated until d17 (%/d6), despite 
body weight loss. By contrast, activity during the light phase significantly increased at d11 (0.022 km/d at d7 vs 
0.14 km/d at d11, p <  0.05) and reached the highest value at d14 (0.4 km/d, p <  0.001 vs d6) (Fig. 1B). Nevertheless, 
the proportion of physical activity during the light phase remains low related to total activity (7.19%).

Paracellular colonic permeability during initial (d10) and persistent weight loss (d17). To determine if gut barrier 
function is disturbed during the initial period of experimental anorexia, we have evaluated the colonic para-
cellular permeability by measuring 4 kDa FITC-labeled dextran flux in Ussing chambers. We did not find any 
differences in the FITC-dextran flux between CT, ABA and LFA groups, neither at d10 nor at d17 (p >  0.05) 
(Fig. 2A). To further explore, we also evaluated circulating plasma zonulin, the only known physiologic modula-
tor of intercellular tight junctions recently reported as a plasma marker of gut barrier22. We observed that during 

Figure 1. Body weight and wheel activity. (A) Percentage of body weight change measured in control mice 
(CT, closed circles) and in mice placed in standard cages with limitation of food access (LFA, open circles), or 
in cages with activity wheel and limitation offood access (ABA, open squares). The data represent cumulative 
body weight loss expressed in %/d6. *p <  0.001 vs ABA and LFA; $p <  0.05 vs ABA. (B) Wheel activity, expressed 
in km/day, measured in ABA mice by using RunningWheel®  software (Intellibio, France). Total activity 
and activities during the dark (grey) or light (black) phases were continuously monitored. *p <  0.05 vs d1; 
**p <  0.01 vs d1; αp <  0.05 vs d7, βp <  0.05 vs d7.
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initial weight loss period, levels of circulating zonulin were similar in CT, ABA and LFA groups. However, during 
persistent weight loss, ABA mice have significant higher levels of plasma zonulin compared with LFA and CT 
(p <  0.05; Fig. 2B).

Differential TLR4 expression during initial and persistent weight loss. As TLRs are of critical importance in main-
taining gut barrier function and homeostasis, we evaluate colonic TLR4 expression during initial and persistent 
weight loss (d10 and d17 respectively). We first investigated the gene expression of TLR4 in the whole colonic 
mucosa of mice. We observed that TLR4 mRNA expression was significantly increased in ABA mice when 
compared to CT during initial weight loss (d10) and also in ABA and LFA during persistent weight loss (d17) 
(p <  0.05, Fig. 3A). We next analyzed TLR4 total protein level and we did not find any differences between the 3 
groups throughout initial weight loss (d10, data not shown). However, surprisingly, we observed significant lower 
levels of total TLR4 protein content in ABA and in LFA mice when compared to CT mice during persistent weight 
loss (d17) (p <  0.05, Fig. 3B). In order to clarify data discrepancies, we assessed TLR4-MD2-complex cell surface 
expression by flow cytometric analysis in epithelial cells and macrophages from the colonic mucosa. MD-2 is 
a secreted molecule necessary for TLR4-mediated recognition of LPS. We observed that surface TLR4-MD2 
expression on colonic epithelial cells was similar in ABA, LFA and CT mice at d10 (Fig. 3C). Similarly, there 
were no differences in macrophages-TLR4-MD2 expression between the groups at d10 (Fig. 3D). However, con-
sistent with our previous results, we observed that TLR4-MD2 surface expression on epithelial cells was signif-
icantly higher in ABA and LFA mice compared to CT at d17 (p <  0.001 and p =  0.0007, respectively, Fig. 3C). 
We observed similar results when we analyzed TLR4 expression on CD11b+  F4/80+  cells (macrophages) as 
TLR4-MD2 expression was increased in ABA and LFA at d17 (p =  0.02 and p =  0.04, respectively, Fig. 3D).

Finally, TLR4 expression was explored by immunofluorescence staining in the colon. Most TLR4 expression 
was localized in the crypts. TLR4 immunofluorescence intensity was markedly enhanced in ABA and LFA when 
compared to CT during persistent weight loss (d17, Fig. 4).

Increased mucosal cytokines expression during ABA. We next asked whether the increased colonic TLR4 expres-
sion, was associated to an augmented mucosal innate immune response. Therefore, we examined whole colonic 
mucosa homogenate from ABA, LFA and CT for cytokine expression both at d10 and at d17 (Fig. 5). Our results 
revealed significantly increased TNF-α  mRNA levels in ABA and LFA compared to CT during initial weight loss 
and persisted elevated in ABA at d17 (Fig. 5A). IL-1β  levels were increased only in the ABA group during persis-
tent weight loss (Fig. 5B) while IL-6 and IL-4 were not significantly affected during both periods (Fig. 5C,D). The 

Figure 2. Intestinal Permeability. (A) Paracellular permeability measured by FITC-dextran (4 kDa) fluxes 
assessed in colonic samples from control mice (CT) or mice placed in standard cages with limitation of food 
access (LFA) or in cages with activity wheel and limitation of food access (ABA) at day 10 and at day 17.  
(B) Plasma zonulin levels were assessed in sera and expressed as ng/ml. *p <  0.05 vs CT.
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expression of the anti-inflammatory cytokine IL-10 was also significantly increased in ABA during initial weight 
loss (d10) but was restored at d17 (Fig. 5E).

To investigate the downstream signaling pathways in TLR4-mediated inflammation following ABA, we 
next examined the TIR adaptors expression in the colonic mucosa. We observed that the TIR adaptors of the 
MyD88-independent pathway, TLR adaptor molecule 1 (TRIF) and TRIF-related adaptor molecule (TRAM) 
expression were not different between ABA and CT mice (Supplementary Figure S1A,B). However, nuclear 
NF-κ B expression, a downstream event of the TLR4/MyD88 signaling pathway23, was significantly increased in 
the colonic mucosa in response to ABA (Supplementary Figure S1C).

TLR4 and the adaptor proteins MyD88, TRIF and TRAM remained unchanged in the hypothalamus during initial 
and persistent weight loss. As central immune dysregulation have been described during AN, we hypothesized 
that hypothalamic TLR4 signaling pathway may possibly be activated in ABA. We assessed TLR4 expression 
in hypothalamus of ABA, LFA and CT mice and we found that food restriction combined or not with physical 

Figure 3. TLR4 expression. (A) TLR4 mRNA levels in colonic mucosa of CT, ABA and LFA mice at d10 and 
d17. Data are shown as mean ±  SEM. Results were normalized to the values in GAPDH control amplifications. 
*p <  0.05 vs CT; **p =   <  0.005 vs CT. (B) TLR4 expression protein assessed in colonic samples from CT, ABA 
and LFA mice.*p <  0.0001 vs CT. (C) TLR4–MD-2 expression on epithelial cells (EpCam+ cells) isolated 
from colonic mucosa. MFI, mean fluorescence intensity. *p <  0.001 vs CT; ϕp <  0.05 vs d10. (D) TLR4–MD-2 
expression on macrophages isolated from colonic mucosa. *p <  0.05 vs CT. (E) Representative flow cytometry 
analysis of colonic epithelial cells (EpCam+) cells and representative histograms for  TLR4 of the outlined 
population for CT, ABA and LFA.
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activity did not affect TLR4 expression neither at d10 nor at d17 (Fig. 6A). Similar results were obtained for 
MyD88, a critical adaptor protein in TLR4 signaling pathway, since no significant differences were observed 
during initial and persistent weight loss, even if a trend towards an increase of MyD88 was observed in ABA and 
LFA mice at d17 (Fig. 6B). We also assessed the TIR adaptors of the MyD88-independent pathway in the hypo-
thalamus at d17 and we observed that TRIF and TRAM mRNA expressions were not affected in LFA and ABA 
mice (Fig. 6C,D).

Increased hypothalamic expression of IL-1β, IL-1R1 and IRAK-4 during persistent weight loss. Although TLR4 
seems not to be activated in the hypothalamus in ABA mice, anyway we aimed to investigate the brain levels of the 
pro-inflammatory cytokine IL-1β . As IL-1β  initiates transduction by binding to IL-1R1, we assessed both proteins 
in hypothalamic homogenates by western blot. No major changes were observed in the expression of IL-1β  and 
IL-1R1 at d10 (data not shown). However, levels of IL-1β  were significantly increased in ABA and LFA compared 
with CT at d17 (p =  0.004 and p =  0.01, respectively) (Fig. 7A). Likewise, hypothalamic IL-1R1 expression was 
significantly higher in ABA compared to CT and LFA at d17 (p <  0.05) (Fig. 7B). As the NLRP3 inflammasome 
activation is a key signaling event for activation and secretion of IL-1β , we also assessed, in the hypothalamus, 
NLRP3 mRNA levels that were not different between the 3 groups (CT: 0.68 ±  0.1, ABA: 0.68 ±  0.1 and LFA: 
0.59 ±  0.07, arbitrary units, p =  ns).

To go forward in the signaling cascade, we investigated Interleukin-1 receptor-associated kinase (IRAK-4) 
that is a key mediator in IL-1β  and TLR4 signaling. We did not find any difference in the hypothalamic expres-
sion of IRAK-4 at d10, while higher levels of IRAK-4 were observed at d17 in ABA and LFA compared to CT 
(p =  0.001 and p =  0.004, respectively) (Fig. 7C).

Differential PPAR-γ levels in colon but not in hypothalamus during persistent weight loss. Peroxisome 
proliferator-activated receptor-gamma (PPAR-γ ) plays a significant role as a modulator of the TLR4-dependent 
inflammatory pathway, so we wanted to test PPAR-γ  expression during both periods of experimental anorexia 
(d10 and d17) in both compartments, in colon and hypothalamus. We found that colonic PPAR-γ  expression was 

Figure 4. TLR4 expression by immunofluorescence. Representative photomicrographs show the distribution 
of TLR4 protein in the colonic mucosa of ABA, LFA and CT. Green, TLR4 staining; blue, DAPI nuclear staining. 
Original magnification, × 20.
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not different between the 3 groups at d10 and at d17. However, PPAR-γ  expression increased significantly from 
d10 to d17 in ABA and LFA (p <  0.05) while in CT, PPAR-γ  remained unchanged (Fig. 8A). We also investigated 
hypothalamic PPAR-γ  expression levels and no significant changes were observed between the groups neither 
during initial nor during persistent weight loss (Fig. 8B).

Increased plasma corticosterone levels in ABA. Finally, to investigate the impact of weight loss on hypothalamic 
pituitary axis (HPA) functioning, we assessed plasma corticosterone levels. We observed that plasma corticoster-
one concentration was elevated in ABA and LFA mice compared to CT at d17 (p =  0.005 and p =  0.001, respec-
tively, Fig. 9A). No changes were observed at d10 (data not shown). Moreover, a significant positive correlation 
was observed between plasma corticosterone concentration and hypothalamic IRAK-4 levels (p =  0.02, Fig. 9B), 
suggesting a link between HPA hyperactivity and IL-1β /IL-1R1 signaling activation.

Physiological and behavioral measures during ABA induction in ABA-TLR4−/− mice. Finally, to investigate the 
effects of TLR4 deficiency in the progression of activity-based anorexia, we used wild type (WT) and TLR4−/− 
mice for ABA induction. Unexpectedly, we observed a high rate of mortality in TLR4−/− mice during ABA com-
pared to WT mice. Indeed, at d12, 4 out of 6 mice were died (Fig. 10A). For this reason, we only reported data on 
food intake, body weight changes and physical activity until d11.

During the adaptation phase (d1 to d5), food intake and body weight remained similar in CT, ABA WT and 
ABA TLR4−/− groups. From d6 to d10, food intake decreased significantly in ABA WT and ABA TLR4−/− groups 
when compared to CT. At d11, food intake was lower in ABA TLR4−/− than in ABA WT (Fig. 10B). Body weight 
decreased significantly from d7 in ABA WT and ABA TLR4−/− (Fig. 10C). Before the beginning of limited food 

Figure 5. Mucosal cytokine gene expression. (A) TNF-α  mRNA, (B) IL1-β  mRNA, (C) IL-6 mRNA, (D) IL-4 
mRNA and (E) IL-10 mRNA expression in the colon of CT, ABA and LFA mice at d10 and d17. Data are shown 
as Mean ±  SEM. *p < 0.05 vs CT, **p < 0.01 vs CT, ϕp <  0.05 vs d10.
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access (d5), wheel activity was not different between ABA wt and ABA TLR4−/− groups (Fig. 10D). However, 
at d11, dark phase wheel activity was significantly lower in ABA TLR4−/− mice compared to ABA WT mice 
(Fig. 10E).

Discussion
The main finding of the present study is that TLR4 has a dual effect during ABA playing a key role in the early 
colonic inflammatory response and having a protective role. Our study also report increased hypothalamic IL1-β  
and IL-1R-1 expression during ABA, which play a central role in the activation of HPA axis acting as essential 
mediators of the immune-induced glucocorticoid release24.

Firstly, we provide evidence for increased TLR4/MD2 expression in colonic epithelial cells and macrophages, 
and downstream mucosal cytokine production in ABA mice from the beginning of food restriction. Recent stud-
ies support the concept that high fat diet and bacteria interact to promote early inflammatory changes in the intes-
tine that contribute to development of or susceptibility to obesity and insulin resistance16,25. However the potential 
role of TLR4-mediated response leading to low-grade inflammation during anorexia has received relatively little 
attention. Although total protein TLR4 levels were reduced in ABA and LFA mice at d17, we could confirm 
increased TLR4 membrane expression in colonic macrophages and epithelial cells, associated with increased 
pro-inflammatory cytokines. Activation of TLR4/NF-κ B pathway has been previously associated with induced 
intestinal hyperpermeability26. To evaluate intestinal permeability in the present study, we assessed plasma zonu-
lin that is increased in ABA mice at d17, whereas no modifications were observed at the earlier phase (d10). We 
were not able to confirm these results by evaluating FITC-dextran flux across colonic mucosa in Ussing chambers, 
while we previously reported increased colonic paracellular permeability in anorectic male mice10,27. Zonulin has 
been recently proposed as a marker of intestinal permeability in other diseases like celiac disease, type I diabetes 
or obesity-associated insulin resistance28,29. We speculate that zonulin upregulation may precede the onset of gut 
barrier alteration that may take place later in female mice compared to male mice. Gender-related differences in 
intestinal permeability after smoking and indomethacin have already been reported by others, showing reduced 
permeability in women than in men30. Further investigations should be done to evaluate whether intestinal per-
meability is differently affected by sex during ABA. Our results show for the first time TLR4-mediated intestinal 
inflammatory response associated to the ABA model that reproduces the AN symptoms of body weight loss and 
physical hyperactivity20,21. Altered gut microbiota has been previously reported both in AN patients31,32 and in 
ABA rats33. Associated to a disruption of intestinal barrier, changes in gut microbiota may lead to increased leak-
age of lipopolysaccharides, which can act upon TLR4 to activate intestinal and systemic inflammation. In a recent 

Figure 6. Hypothalamic TLR4, MyD88, TRIF and TRAM expression. (A) TLR4 protein expression and (B) 
MyD88 protein expression in the hypothalamus of CT, ABA and LFA mice at d10 and d17, (C) TRIF mRNA 
expression and (D) TRAM mRNA expression in the hypothalamus of CT, ABA and LFA mice at d17.
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meta-analysis, a significant association between anorexia nervosa and increased plasma inflammatory cytokines 
IL-1β , IL-6 and TNF-α  has been reported34. Our results are in accordance with the literature as we show increased 
TNF-α  and IL-1β  levels in colonic mucosa in ABA mice. TNF-α  level augmented earlier than IL-1β . Probably, 
the anticipated function of TNF-α , induces the others pro-inflammatory cytokines as they act in a cascade pat-
tern, including in the central nervous system35,36. Furthermore, ABA induction also resulted in increased levels 
of IL-1β  in the hypothalamus suggesting not only intestinal but also hypothalamic inflammation. Peripheral and 
central pro-inflammatory cytokines lead to satiety through regulation of hypothalamic neuropeptides. In AN, 
IL-6, IL-1β  and TNF-α  have anorexigenic effects by regulating peripheral hormones, i.e. leptin, or central medi-
ators like POMC or NPY37,38. In cancer-induced cachexia models, cytokines signaling is also involved in feeding 
behavior39. Our data suggest that hypothalamic inflammatory response may occur in AN patients.

Secondly, we also found that TLR4 deficiency aggravates the disease since TLR4−/− mice exhibited high mor-
tality rates, suggesting that TLR4 has protective role during ABA. TLR4 activation contributes to the regulation of 
intestinal inflammatory response but also to the limitation of bacterial translocation by regulating antimicrobial 
defense, for instance40. Indeed, even if TLR4 activation leads to higher intestinal permeability26, TLR4 is involved 
in the regulation of luminal exosome release leading to antimicrobial peptide release40. TLR4 deficiency may 
be thus associated with an altered antimicrobial defense while previous studies reported gut dysbiosis both in 
AN patients31,32 and in ABA rats33. By contrast, in animal models of obesity, an increased TLR4 expression is 
shown16,41 but TLR4 −/− mice were protected from high-fat diet-induced obesity13,14.

Our observations significantly add to the emerging role of intestinal TLRs in eating disorders, suggesting that 
the TLR4 pathway may thus have a dual role, both pathogenic and protective. However, in the present study, we 
did not evaluate soluble TLR4 that inhibits LPS-induced TLR4 signaling pathway by enabling LPS binding42. 
Soluble TLRs were increased in infectious and non-infectious inflammatory patients43, suggesting a key role 
of soluble TLRs during inflammatory states. Candia et al. reported that soluble TLR2 were up-regulated in the 

Figure 7. Hypothalamic IL1-β IL-1R1 and IRAK-4 levels. (A) IL-1β  protein expression, (D) IL-1R1 
protein expression and (E) IRAK-4 protein expression in the hypothalamus of CT, ABA and LFA mice at d17. 
*p <  0.05 vs CT, **p <  0.01 vs CT. (F) Representative immunoblots for TLR4, MyD88, IRAK-4, IL1-R1 and 
GAPDH from CT, ABA and LFA mice at d17.
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colon of patients with ulcerative colitis44 but, to our knowledge, soluble TLRs have not yet been more described in 
intestinal mucosa. Further studies should be performed to evaluate soluble TLRs during anorexia and weight loss.

Activity based anorexia (ABA) is one of the most widely used animal models for the study of AN20,21,45,46. This 
model reproduces hyperactivity behaviors observed in AN patients, as well as reduced food intake, in the pres-
ence of hunger, weight loss, desire for activity along with physiological responses of malnutrition46. In addition 
to excessive activity and reduced food intake, weight loss causes the cessation of the estrous cycle in female ABA 
rats47. The ABA model reproduces other clinical manifestations present in AN such as the generalized endocrine 
disorder that affects the hypothalamus-pituitary-adrenal/gonadal axis19,48. ABA model may be less appropriate to 
assess psychopathological disorders even if evaluation of anxiety and/or stress has been previously performed45,49 
Our results should be then confirmed in AN patients.

In conclusion, we show that activity-based anorexia leads to gut inflammation from the initial period of 
body weight loss through TLR4 activation. Enhanced pro-inflammatory cytokines expression in the gut may 
be involved in the hypothalamic IL-1β /IL-1R1 signaling pathway activation. However, TLR4 also has protec-
tive role since its deficiency leads to high mortality rate. These data underlie the role of gut brain axis during 
anorexia-induced cachexia that needs to be further investigated.

Figure 8. Colonic and hypothalamic PPAR-γ protein expression. (A) Colonic PPAR-γ expression and (B) 
Hypothalamic PPAR-γ expression in CT, ABA and LFA mice at d10 and d17. ϕp <  0.05 vs d10.

Figure 9. Plasma corticosterone level. (A) Plasma corticosterone level in CT, ABA and LFA mice at d17. 
*p <  0.05 vs CT. (B) Correlation between plasma corticosterone and hypothalamic IRAK-4 levels.
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Material and Methods
Animal experimentation and ABA induction. Female C57BL/6 mice used in the study were obtained 
from Janvier Labs (Le Genest St Isle, France) and acclimatized one week in individual cages at 23 °C with a 
reversed 12-hour light-dark cycle before study (dark phase: 10:30 AM–10:30 PM). At day 1, 48 female C57BL/6 
mice were randomly assigned to 3 experimental groups: ABA group (ABA, n =  16), control group named “lim-
ited food access” (LFA, n =  16) and control group “ad libitum” (CT, n =  16). ABA mice were placed in individual 
cages with an activity wheel with RunningWheel® software (Intellibio, Seichamps, France). Wheel activity was 
continuously recorded. LFA and CT mice were placed in individual cages without activity wheel. During 5 days 
(d1 to d5), all mice had free access to food and water. Then, food access was progressively limited in ABA and LFA 

Figure 10. Food intake, body weight and wheel activity of TLR4-KO mice. (A) Survival curves for CT 
(n =  6), ABA wt (n =  6) and ABA TLR4−/− (n =  6) C57BL/6 female mice, *log-rank test, p =  0.0057. (B) Food 
intake and (C) Percentage of body weight change measured in control mice (CT, closed circles) and in ABA 
wild-type (ABA wt, open squares) and ABA TLR4−/−, open circles) mice placed in cages with activity wheel and 
limitation of food access. (B) ***p <  0.001 vs ABA wt and ABA TLR4−/−, a, p <  0.05. (C) The data represents 
cumulative body weight loss expressed in %/d6. ***p <  0.0001 vs ABA wt and ABA TLR4−/−. Wheel activity 
measured at d5 (D) and at d11 (E), expressed in cm, measured in ABA wt (closed circles) and ABA TLR4−/− 
(open circles) mice by using RunningWheel®  software (Intellibio, France). Activities during the dark or light 
phases were continuously monitored. *p <  0.05; **p <  0.01; ***p <  0.001. Two-way ANOVA and Bonferroni 
post-test were used for B, C, D and E.
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groups from 6 h/d at d6 to 3 h/d at d9 until the end of experiment, as previously described10. Food was given at the 
beginning of the dark phase (10:30 AM). Water remained in free access. Body weight, water and food consump-
tion were daily measured at 10:00 AM. In the ABA and LFA groups, water and food intake were also monitored 
when food was removed. If weight loss exceeded 20% during 3 consecutive days, mice were euthanized for ethical 
reasons. Two experiments were carried out to evaluate the effects at initial weight loss at d10 and persistent weight 
loss at d17.

A supplementary experiment was performed with 10-wk-old C57BL/6 female mice knockout for TLR4 
(TLR4−/−) kindly provided by Dr V Richard, INSERM unit 1096, Rouen University, France. Wild type (wt) con-
trols from the same C57BL/6 background were used for comparisons. Mice were randomly assigned to 3 exper-
imental groups: ABA wt (n =  6), ABA TLR4−/− (n =  6) and Control wt “ad libitum” (CT) (n =  6). Behavioral 
parameters were measured as described before and animals were euthanized at d17. All experiments were carried 
out in accordance with protocols approved by the local institutional review boards. Animal care and experimen-
tation were carried out in strict accordance with both French and European Community regulations (Official 
Journal of the European Community L 358, December 18, 1986), M.C. was authorized by the French government 
to use animal models (authorization no. 76–107). All protocols were approved by the local ethical committee 
named CENOMEXA (Authorization N/05-11-12/28/11-15).

Euthanasia and tissue sampling collection. Mice were deeply anesthetized with ketamine/Largactil  
(40 and 1 mg.kg−1, respectively). Blood samples were obtained by puncture in portal vein and collected in 5 ml 
polyethylene heparinized tubes that were stored on ice until centrifugation. Samples were then centrifuged at 
1,500 g for 20 min at 4 °C, and plasma was stored at − 80 °C until analysis.

Colon was collected and immediately rinsed with ice-cold PBS. Colon samples were (i) immediately frozen in 
liquid nitrogen and stored at − 80 °C for western blot analysis and quantitative PCR, (ii) embedded in Tissue-Tek 
O.C.T. compound (Sakura Finetek USA Inc, Torrance, CA), and immediately frozen at − 80 °C for immunofluo-
rescence analysis, (iii) freshly processed for flow cytometry and colonic permeability.

Hypothalamus was removed, immediately frozen in liquid nitrogen and stored at − 80 °C until analysis.

Measurement of colonic paracellular permeability. Distal colon samples were removed and cut along 
the mesenteric border. Colonic permeability was assessed by measuring FITC-dextran (4 kDa) fluxes in Ussing 
chambers with an exchange surface of 0.07 cm2 (Harvard Apparatus, Holliston, MA). FITC-dextran (5 mg/ml) 
was placed in the mucosal side. After 3 h at 37 °C, medium from the serosal side was removed and stored at  
− 80 °C. The fluorescence level of FITC-dextran (excitation at 485 nm, emission at 535 nm) was measured in 
96-well black plate with spectrometer Chameleon V (Hidex Co, Turku, Finland). Values were converted to con-
centration (mg/mL) using a standard curve.

Evaluation of serum zonulin. For quantitative assessment of the plasma levels of zonulin, a commercial 
enzyme-linked immunosorbent assay, Zonulin ELISA Kit, (MyBiosource, San Diego, CA) was used according to 
the manufacturer’s instructions.

Total RNA Extraction and real-time qPCR analysis. Total RNA from colon segments was extracted 
using TRIzol reagent (Invitrogen, Carlsbad, CA). RNA was purified according to the manufacturer’s instructions. 
Total RNA was treated with DNase I (Invitrogen, Carlsbad, CA) to remove any contaminating DNA. DNase 
I was removed with DNase inactivation reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s 
instructions. The quality and quantity of total RNA were determined using a NanoDrop 2000 spectrophotome-
ter (Thermo Scientific, Wilmington, MA). The ratio of absorbance at 260 nm and 280 nm was used to assess the 
purity of RNA. A ratio of ≥ 2.0 was accepted for analysis.

After reverse transcription of 1.5 μ g total RNA into cDNA by using 200 units of SuperScript II Reverse 
Transcriptase (Invitrogen, Carlsbad, CA), quantitative polymerase chain reaction (PCR) was performed by SYBR 
Green technology on Bio-Rad CFX96 real time PCR system (Bio-Rad Laboratories, Marnes la Coquette, France). 
GAPDH was chosen as reference gene after checking that similar results were obtained by using three refer-
ence genes (GAPDH, β 2-microglobulin and 18S RNA, Supplementary Figure S2). All samples were performed 
in duplicate in a single 96-well reaction plate. Serially diluted cDNA samples were used as external standards. 
Absolute quantification of mRNA was performed by converting the sample cycle threshold (Ct) values to con-
centration (copies per ul) based on the standard curves. The identity and purity of the amplified product were 
assessed by melting curve analysis at the end of amplification. The primer sequences for the targeted mouse genes 
are presented in Table 1.

Flow cytometrical analysis. Colon sections were dissected and cut longitudinally after removing the fat 
and the Peyer’s patches. Small pieces of colon were incubated with EDTA (0.5 M) and  dithiothreitol (500 mM) 
during 20 min at 37 °C with shaking and then processed by mechanical disruption using scissors and passage 
over a mesh, using previously applied protocols50. The resulting mucosal suspension was passed through 70-μ m 
cell strainer and evaluated by flow cytometry. Cells (5 ×  105) were incubated with 5 μ l/ml purified rat anti-mouse 
CD16- CD32 mAb (TruStain fcX, Biolegend Inc, San Diego, CA) before incubation with specific anti-mouse 
antibodies. The following directly conjugated anti-mouse antibodies were used: CD45 PerCP-Cy5.5 (mouse 
IgG2a, 104 clone), F4/80 APC (rat IgG2a, BM8.1 clone) (both from TONBO, San Diego, CA), CD11b FITC 
(rat IgG2b, M1/70 clone, Biolegend Inc, San Diego, CA), EpCAM APC (Epithelial cell adhesion molecule) (rat 
IgG2a, G8.8 clone, LSBio, Seattle, WA) and TLR4/MD-2 complex PE (mouse IgG1, UT15 clone, MBL, Nagoya, 
Japan). The antibodies were added for 30 min at 4 °C at 2 mg/ml. Cells were washed with PBS and fixed with 0.5% 
paraformaldehyde. Cells were gated, based on forward and side scatter and on living cells with a FACS Canto  
(BD Biosciences, San Jose, CA).
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Post-acquisition analysis was performed using FCS Express software (DeNovo software, Los Angeles, CA). 
Acquisition of multiparameter data was carried out with an appropriate forward scatter (FSC) threshold to 
exclude debris. At least 30,000 intestinal epithelial cells and peritoneal macrophages per sample were analyzed. 
CD45+ cells that were F4/80+ CD11b+ were considered as macrophages; CD45− EpCam+ cells were considered 
as epithelial cells. Fluorescence intensity was assessed.

Immunofluorescence. Frozen tissue sections (5 μ m thick) were performed using a Leica CM1950 cryostat 
(Leica Biosystems Nussloch GmbH, Nussloch, Germany) and were mounted on glass slides, and air dried. Tissue 
was permeabilized for 30 min with PBS solution, 0.2% triton X-100, 1% bovine serum albumin (BSA). After three 
washes in PBS, nonspecific binding was blocked for 60 min at room temperature with PBS containing 3% (BSA). 
The sections were then incubated at 4 °C overnight in the same solution supplemented with primary antibodies 
mouse anti-TLR4 (1:50, Novus biologicals, Littleton, CO). After three washes with PBS, sections were incubated 
with FITC coupled secondary antibodies (Life Technologies, Cergy-Pontoise, France) for 1 h at room temper-
ature. Negative controls were assessed omitting the primary antibodies. Slides were mounted with Vectashield 
Mounting Medium 4′ ,6′ -diamidino-2-phenylindole (DAPI) solution (Vector Laboratories, Cambridgeshire, UK) 
to visualize cell nuclei. After immunohistochemistry, microphotographs were acquired with an Axiolmager Z1 
microscope by using Axiovisio software (Carl Zeiss, Gottingen, Germany). Staining for comparative studies was 
performed in the same experimental session.

Protein extraction and western blot analysis. For total protein extraction, colon and hypothalamus 
sections were homogenized at 4 °C in lysis buffer (100 μ l Buffer A X2, 2 μ l dithiothreitol 100 mM, 50 μ l NP40 
1%, 1 μ l protease inhibitors P8340 1X, 2μ l phosphatase inhibitors P2850 1X, for H2O 200 μ l) (≈ 100 mg tis-
sue/200 μ l lysis buffer).Vials were placed on ice for 15 min and then centrifuged at 12,000 g for 15 min at 4 °C. 
The supernatant containing proteins was collected and stored at − 80 °C until analysis. Proteins (25 μ g) were 
separated on a 4–20% gradient polyacrylamide gel (Bio-Rad, Marnes la Coquette, France) and then transferred 
to a nitro-cellulose membrane (GE Healthcare, Orsay, France), which was blocked for 1 h at room temperature 
with 5% (w/v) non-fat dry milk in Tris buffered saline/0.05% Tween 20 (TBS-T) (blocking solution). Then, an 
overnight incubation at 4 °C was done with mouse anti- TLR4 (working dilution =  1:1000; Novus biologicals, 
Littleton, CO), PPAR-γ  (working dilution =  1:1,000; Fisher Scientific, Illkirch, France), IL-1β , MyD88, Nfκ B p65 
and IRAK-4 (working dilution =  1:1000, Santa Cruz Biotechnology, Tebu-Bio, Le Perray en Yvelines, France). All 
antibodies were diluted in blocking solution. After three washes in blocking solution, 1 h incubation with per-
oxidase conjugated goat anti-rabbit or anti-mouse IgG (working dilution =  1:5,000; Santa Cruz Biotechnology, 
Tebu-Bio, Le Perray en Yvelines, France) was performed. After three additional washes, immunocomplexes were 
revealed by using the ECL detection system (GE Healthcare Life Sciences, Little Chalfont, UK). Protein bands 
were quantified by densitometry using ImageScanner III and ImageQuant TL software (GE Healthcare Life 
Sciences, Little Chalfont, UK).

Corticosterone assay. A commercial serum corticosterone enzyme immunoassay kit (Abnova, Ann Arbor, MI)  
was used. All procedures were performed according to the manufacturer’s instructions. Final values were deter-
mined by averaging the results of duplicate.

Statistical analysis. Data are expressed as mean ±  standard error mean. Differences between two 
groups were assessed using the unpaired two-tailed Student’s t-test or non-parametric Mann–Whitney test, as 

Gene Sequences
Annealing 

Temperature (°C)

TLR4 Sense: 5′ -AGATCTGAGCTTCAACCCCTTG-3′   
Antisense: 5′ -AGAGGTGGTGTAAGCCATGC-3′ 60

TNF-α Sense: 5′ -TGTCTACTCCTCAGAGCCCC-3′   
Antisense 5‘-TGAGTCCTTGATGGTGGTGC-3′ 60

IL-1β Sense: 5′ -CCCAAAAGATGAAGGGCTGC-3′   
Antisense 5′ -AAGGTCCACGGGAAAGACAC-3′ 59

IL-6 Sense: 5′ -CACTTCACAAGTCGGAGGCT-3′   
Antisense 5′ -CTGCAAGTGCATCATCGTTGT-3′ 59

IL-4 Sense: 5′ -ATGGATGTGCCAAACGTCCT-3′   
Antisense 5′ -TGCAGCTCCATGAGAACACT-3′ 59

IL-10 Sense: 5′ -ACCTGGTAGAAGTGATGCCC-3′   
Antisense 5′ -GCTCCACTGCCTTGCTCTTAT-3′ 59

NLRP3 Sense: 5′ -ACCAGCCAGAGTGGAATGAC-3′   
Antisense: 5′ -ATGGAGATGCGGGAGAGATA-3′ 61

TRIF Sense: 5′ -CAGAGTTGTCTACAAAGTCG-3′   
Antisense: 5′ -TGGATGACGTGGTGTTCTGC-3′ 60

TRAM Sense: 5′ -ATAAAGCTCCCTCGTCTGCC-3′   
Antisense: 5′ -GGTGTGTGCTCGGTTTCAGG-3′ 63

GAPDH Sense: 5′ -ATCACTGCCACTCAGAAGA-3′   
Antisense 5′ -AAGTCACAGGAGACAACCT-3′ 57

Table 1.  Sequences of primers used for PCR.
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appropriate, and ANOVA followed by Tukey post-test or Kruskall Wallis followed by Dunn’s multiple comparison 
tests for more than two groups. Pearson analysis was used to analyze correlations between the groups. Survival 
rates curves were created by Kaplan-Meier method and compared by log-Rank test. Data were analysed using 
GraphPad Prism version 5.0 for windows (GraphPad software, San Diego, CA). Results were considered statisti-
cally significant when p <  0.05.
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