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Multiscale limited penetrable 
horizontal visibility graph for 
analyzing nonlinear time series
Zhong-Ke Gao, Qing Cai, Yu-Xuan Yang, Wei-Dong Dang & Shan-Shan Zhang

Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper 
develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear 
time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to 
demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we 
detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients 
and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow 
signals and find that the average clustering coefficient at different scales allows faithfully identifying 
and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method 
particularly useful for analyzing nonlinear time series from the perspective of multiscale network 
analysis.

Uncovering complicated behavior from nonlinear time series constitutes a fundamental problem of continuing 
interest and it has attracted a great deal of attention from a wide variety of fields on account of its significant 
importance. Different methodologies have been developed to fulfill this challenging task, e.g., chaotic analysis1, 
fractal analysis2–3, recurrence plot4, complexity measure5, multiscale entropy6, and time-frequency representa-
tion7. In recent years, a new multidisciplinary methodology using complex network has emerged for characteriz-
ing complex systems8–14, especially the complex network analysis of time series, which has undergone a dramatic 
advance. Many efficient methods have been proposed to infer complex networks from univariate or multivariate 
time series15–25. In particular, Lacasa et al. proposed visibility graph17 and horizontal visibility graph18 which allow 
mapping a univariate time series into a complex network. The visibility graph theory has established itself as an 
efficient tool for probing the dynamics underlying real complex systems from time series26–40. The (horizontal) 
visibility graph leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit 
of symbolic dynamics. More recently, we extended the visibility graph to develop a limited penetrable visibility 
graph (LPVG)41,42 and found that LPVG presents a good anti-noise ability especially for the analysis of signals 
polluted by noise. Our LPVG method has been successfully applied to analyze gas-liquid flow signals42, signals 
from electromechanical system in process industry43, and EEG signals associated with manual acupuncture44 and 
Alzheimer’s disease45.

As a further study, we in this paper develop a novel multiscale limited penetrable horizontal visibility graph 
(MLPHVG) to analyze nonlinear time series from the perspective of multiscale and complex network analysis. 
In particular, we use two examples to demonstrate the validity of our method, i.e., (a) EEG signals recorded from 
healthy subjects and epilepsy patients; (b) experimental flow signals from oil-water two-phase flows.

The brain is one of the most complex systems. Epilepsy is a paroxysmal disorder of the brain, characterized by 
sudden occurrence of unprovoked seizures. The underlying mechanism of epileptic seizure is still elusive. Since 
the fluctuations of EEG signals are associated with the occurrence of epileptic seizures, the characterization of 
epileptic seizure from EEG signals becomes quite important. We apply our method to analyze two sets of EEG 
data recorded from numbers of healthy and epileptic subjects. We combine the support vector machine and net-
work statistical measures including the average clustering coefficient and clustering coefficient entropy to detect 
epileptic seizures at different scales. We interestingly find that the network statistical measures present significant 
difference between healthy subjects and epilepsy patients. The classification accuracy is 100% at the scale factor 
2. These results indicate that our method allows efficiently classifying and identifying EEG signals recorded from 
healthy subjects and epilepsy patients during epileptic seizures.
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Liquid-liquid two-phase flows are widely encountered in many industrial processes. The mixture flow of immiscible 
oil-water can be viewed as a complex system with typical features of instability, transient and randomness. In recent 
years, the interest in oil-water two-phase flows has greatly increased due to the development of petroleum industry. The 
oil and water usually coexist during the oil-well production, and these two immiscible fluids can distribute themselves 
in various temporal-spatial configurations, known as flow patterns. Different flow patterns exhibit distinct local flow 
behaviors, how to identify and uncover the underlying dynamics of different flow patterns from experimental meas-
urements has represented a challenge of significant importance. We carry out oil-water two-phase flow experiment to 
obtain the flow signals and then use our proposed method to identify and characterize different flow patterns from the 
experimental measurements. The results suggest that our method enables to identify distinct flow behaviors underlying 
three typical oil-water flow patterns. The above findings render our MLPHVG method particularly powerful for char-
acterizing a dynamical process underlying a given nonlinear time series of time dependent complex system.

Results
MLPHVG analysis of EEG signals. The EEG data sets analyzed in this paper are from the experiments 
carried out by Andrzejak et al.46. We use two EEG data sets (set A and set E) and each data set consists of 100 
single-channel EEG segments of 23.6 s duration. These segments were selected and cut out from continuous mul-
tichannel EEG recordings after visual inspection for artifacts, e.g., due to muscle activity or eye movements. Set 
A consists of segments taken from five healthy subjects through surface electrodes using the international 10–20 
electrode placement scheme. Set E from five epilepsy patients consists of segments selected from all recording 
sites exhibiting ictal activity during seizure activity. All EEG signals were recorded with the same 128-channel 
amplifier system, using an average common reference. The data were digitized at sampling rate of 173.61 Hz. 
Band-pass filter settings were 0.53–40 Hz. We derive 200 MLPHVGs (multiscale limited penetrable horizontal 
visibility graphs) corresponding to two sets of EEG signals with the limited penetrable distance being 1. Then we 
calculate the average clustering coefficient47 and clustering coefficient entropy24 from the derived networks. We 
combine the average clustering coefficient and clustering coefficient entropy to generate two-dimensional feature 
vectors and then employ SVM (Support Vector Machine) to realize the classification of sets A and E. In particu-
lar, we employ the leave-one-out cross-validation and 10-fold cross-validation to estimate the classified results 
of the features derived from MLPHVGs. The leave-one-out cross-validation48 consists of removing one sample 
from the dataset (set A and E), constructing the decision function on the basis only of the remaining dataset 
and then testing on the removed sample. In this fashion this process is repeated 200 times independently, with a 
different sample left out for testing every time. After 200 cross validations, we obtain the predicting labels for all 
samples and measure the fraction of correctly predicted samples over the total number of samples in the dataset. 
In addition, we employ the 10-fold cross-validation to estimate the classification accuracy. For one realization 
of 10-fold cross-validation, the 200 samples from sets A and E are randomly partitioned into ten equal subsets; 
nine subsets are used for training and one subset remains for testing. This procedure is repeated ten times so 
each subset serves once for validation and then we obtain predicting labels for all samples from ten subsets and 
a classification accuracy for one implementation of 10-fold cross-validation can be obtained by measuring the 
fraction of correctly predicted samples over the total number of samples in the dataset. In order to reduce bias 
introduced by randomly partitioning dataset in the cross-validation, we implement the 10-fold cross-validation 
10 times independently and the final classification accuracy of set A and E can be estimated by taking the average 
of the 10 independent realizations of 10-fold cross-validation. The classification accuracy using leave-one-out 
cross-validation and 10-fold cross-validation at different scales are presented in Fig. 1. Notably, the classification 
accuracy is high over different scales and the highest value is 100% at scale 2. We in Fig. 2 show the joint distri-
butions of the average clustering coefficient and clustering coefficient entropy for sets A and E at scale factor 2.  
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Figure 1. Classification accuracy of EEG set A recorded from healthy subject and EEG set E recorded from 
epilepsy patients at different scale factors. 
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This EEG database has been recognized as a benchmark for developing seizure detection models, and many 
researchers have used this database to test their proposed methods49–56. To give a few examples, Nigam et al.49 pro-
posed a method using multistage nonlinear pre-processing filter in combination with a diagnostic artificial neural 
network to classify sets A and E with a classification accuracy of 97.2%. Kaya et al.50 presented a novel method 
based on one-dimensional local binary pattern to classify sets A and E and the classification accuracy is 99.5%. 
Kannathal et al.51 proposed a method based on various entropy measures and adaptive neuro-fuzzy classifier to 
classify sets A and E with a classification accuracy of 92.22%. Subasi52 employed wavelet feature extraction and a 
mixture of expert model to distinguish sets A and E and obtained a classification accuracy of 94.5%. Polat et al.53 
classified sets A and E with a classification accuracy of 98.72% by using a hybrid system based on decision tree 
classifier and fast Fourier transform. Nicolaou et al.54 integrated the permutation entropy with the support vector 
machine to classify sets A and E with a classification accuracy of 93.55%. Zhu et al.55 proposed a weighted hori-
zontal visibility graph to classify sets A and E and the classification accuracy is 100%. Zamir56 developed linear 
least squares-based preprocessing models to classify sets A and E with a classification accuracy of 100%. There are 
many published good classification results of this EEG dataset and the above are just a few of them. More results 
can be found in Ref. 57. Therefore, our method allows accurately classifying EEG signals recorded from healthy 
subjects and epilepsy patients.

MLPHVG analysis of experimental flow signals. The two-phase flow signals are from our oil-water 
two-phase flow experiment, which was carried out in a vertical upward 20 mm-inner-diameter plexiglass pipe 
at Tianjin University. The experiential media are tap-water and No. 3 white oil. These two immiscible fluids 
mix themselves and then flow together into the vertical testing pipe. Three oil-in-water flow patterns have been 
observed, i.e., oil-in-water slug flow, oil-in-water bubble flow, oil-in-water VFD flow (Very Fine Dispersed bubble 
flow). The conductance sensor58 is designed to capture the flow behavior and the measured flow signals are stored 
by data acquisition devices. The sampling rate is 4000 Hz. We use the high-speed camera to observe and define 
oil-water flow patterns. We infer multiscale limited penetrable horizontal visibility graphs from our experimental 
measurements and the limited penetrable distance is 1. Then we employ the average clustering coefficient to ana-
lyze the derived complex networks corresponding to three typical vertical oil-in-water flow patterns.

The results are shown in Fig. 3, in which each error bar is calculated from different flow conditions for the same 
flow pattern at the same scale factor. We can see that, the multiscale distributions of the average clustering coefficient 
for different flow patterns exhibit distinct features, which allows identifying three different oil-water flow patterns. 
For the oil-in-water slug flow, small numbers of oil droplets simultaneously follow the cap shaped oil slugs. Its flow 
behavior exhibits the feature of intermittent oscillation and its flow structure presents non-homogenous distribu-
tion. The flow of oil slug through the sensor will lead to a large fluctuation in the measured conductance signals. 
Consequently, the average clustering coefficients of oil-in-water slug flow exhibit large values at different scales, and 
the deviation of the average clustering coefficients calculated from  different oil-in-water slug flow conditions at 
the same scale factor is also the largest among three flow patterns. The turbulent energy enhances with the increase 
of mixture flow rate, the oil slug are broken into small oil droplets consequently. That is, oil-in-water bubble flow 
occurs, where oil phase exists in the form of discrete droplets flowing in a water continuum. In this flow pattern, the 
intermittent oscillation of oil slugs gradually disappears and the non-homogenous distribution of oil phase becomes 
weak. The fluctuation strength of the measured conductance signals is weakened. Correspondingly, the average clus-
tering coefficient decreases as the flow pattern changes from oil-in-water slug flow to oil-in-water bubble flow and 
meanwhile the deviation value also decreases. When the mixture flow rate is high, the oil droplets are dispersed into 
even smaller oil droplets, i.e., an onset of oil-in-water very fine dispersed bubble flow (VFD flow). The fluctuation 
strength of the signals from VFD flow is further weakened. The average clustering coefficient and its deviation of 
VFD flow are the smallest, indicating the underlying flow behavior becomes stochastic and the distribution of oil 
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Figure 2. Joint distributions of the average clustering coefficient and clustering coefficient entropy for EEG 
data sets A and E at scale factor 2. 
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phase becomes homogenous as the flow pattern evolves from oil-in-water bubble flow to VFD flow. These inter-
esting findings suggest that our method is capable of identifying and characterizing three typical flow patterns 
arising from vertical oil-water two-phase flow at different scales.

Discussions
In summary, we have articulated a novel MLPHVG strategy (multiscale limited penetrable horizontal visibility 
graph) for analyzing nonlinear time series. The basic idea of MLPHVG is to define temporal scales in terms of 
coarse-grain process and then infer limited penetrable horizontal visibility graph from coarse-grained time series 
for each scale to construct MLPHVG. We choose nonlinear time series from two typical complex systems, i.e., 
EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG 
and support vector machine, we detect epileptic seizure from two sets of EEG signals recorded from numbers of 
healthy subjects and epilepsy patients. The results suggest that our method allows a high-accurate classification 
of EEG signals recorded from healthy subjects and epilepsy patients during epileptic seizures. In addition, we use 
our method to derive multiscale complex network from oil-water two-phase flow signals and then employ multi-
scale network statistical measures to characterize the constructed networks. Our results indicate that the average 
clustering coefficient at different scales allows faithfully revealing the change of flow behavior underlying different 
flow patterns. Bridging multiscale analysis and limited penetrable horizontal visibility graph provides a novel 
methodology for characterizing a dynamical process underlying a given nonlinear time series of time dependent 
complex system which widely exists in science and engineering.

Methods
The multiscale limited penetrable horizontal visibility graph (MLPHVG) method can be implemented by the fol-
lowing steps: For a time series of length N, {x (i), i =  1, 2, … , N}, we first define temporal scales in terms of coarse 
grain process6 and get a coarse-grained time series {ys (j), j =  1, 2, … , N/s} in the following form

∑= ≤ ≤
= − +

y j
s

x i j N s( ) 1 ( ), 1 /
(1)

s

i j s

js

( 1) 1

where s represents scale factor. Next we infer limited penetrable horizontal visibility graph from the coarse-grained  
time series {ys (j), j =  1, 2, … , N/s}. We in Fig. 4 show a schematic diagram for demonstrating how to infer limited 
penetrable horizontal visibility graph from a time series. For a continuous time series of length 10, we display 
them in the form of vertical bars in Fig. 4(a) and regard each data point (vertical bar) as a node of a complex 
network. For the horizontal visibility graph (HVG)18, two nodes ys (i) and ys (j) are connected if one can draw a 
horizontal line joining ys (i) and ys (j) that does not intersect any intermediate data height. That is, a connection 
between two nodes ys (i) and ys (j) exists (black lines in Fig. 4(b)) if the following criterion is fulfilled:

> < <y i y j y k k i k j( ), ( ) ( ) forall suchthat (2)s s s

Our limited penetrable horizontal visibility graph is a development of the HVG. In particular, if we set the limited  
penetrable distance to L, a connection between two nodes exists if the number of in-between nodes that block the 
horizontal line is no more than L. As shown in Fig. 4(a,b), the red lines are the new established connections when 
we infer the LPHVG on the basis of HVG with the limited penetrable distance being 1. Finally, based on the above 
procedure, we can obtain multiscale limited penetrable horizontal visibility graph (MLPHVG) by deriving the 
LPHVG from the coarse-grained time series at different scales.

Figure 3. Distribution of the average clustering coefficient of MLPHVG for three oil-in-water flow patterns 
at different scale factors. 
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Representing a time series through a multiscale limited penetrable horizontal visibility graph, we can then 
explore the dynamic behaviors from multiscale analysis and network analysis, which is quantified via network 
statistical measures. In particular, we employ the average clustering coefficient (C)47, and our recently proposed 
clustering coefficient entropy (EC)24 to characterize the topological structure of inferred networks. These network 
statistical measures can be calculated as follows
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where τi,Δ denotes the number of closed triplets centered on node i, τi is the number of triplets centered on node 
i, N is the node number of the derived MLPHVG.
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